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 A brain-computer interface (BCI) is a transformative technology that enables 

users to control external devices or communicate solely through the analysis 

of their brain activity. One promising aspect of BCIs is the utilization of 

steady-state visually evoked potentials (SSVEPs), a neurophysiological 

response in the brain that synchronizes with repetitive visual stimuli.  

This paper introduces a novel approach known as the trans-subject feature 

fusion approach (TFA), designed to improve SSVEP-based BCIs. This 

methodology streamlines data pre-processing, creates invariant SSVEP 

templates, and simplifies calibration, addressing key challenges that have 

hindered BCI adoption. By doing so, the main aim is to contribute to the 

advancement of BCIs, making them more accessible and efficient for a 

range of applications, from assistive technologies to healthcare, ultimately 

enhancing users’ communication, and control capabilities. 
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1. INTRODUCTION 

The utilization of a brain-computer interface (BCI) enables the control of a device exclusively 

through the analysis of an individual's brain activity. The integration of hardware and software components 

enables the facilitation of communication between the user and the device [1]. Electroencephalogram (EEG)-

-based BCI systems are frequently employed in BCI research due to their convenient setup, non-intrusive 

nature, and portability. Significant progress has been made in the field of BCIs utilizing steady-state visually 

evoked potentials (SSVEPs) over the past decade, as evidenced by a comprehensive review SSVEPs refer to 

neurophysiological responses observed in the brain that exhibit synchronization with the frequency of 

recurring and periodic visual stimuli [2]. The occipital region is responsible for registering significant 

cognitive responses when an individual directs their gaze towards an object that is flashing at a specific 

frequency, along with its corresponding harmonics. The SSVEP BCI utilizes the allocation of a specific 

frequency of presentation to each target to facilitate the provision of multiple targets, with each target 

corresponding to a command [3]. When an individual directs their visual attention towards a specific target,  

it becomes possible to analyze their EEG signals to identify the characteristics associated with that target. 

SSVEP BCIs are remarkable due to their notable information transfer rates (ITRs), minimal user 

training prerequisites, and the absence of individual decoder calibration [4]. The SSVEP responses may be 

affected by different visual stimulus characteristics, such as size, color, contrast, inter-stimulus distance, 

frequency, and the type of stimulator used, such as light-emitting diodes (LEDs) or computer screens. 

Currently, the field of study is marked by a limited availability of commercial or clinical systems.  

https://creativecommons.org/licenses/by-sa/4.0/
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Most speller systems commonly employ neurophysiological protocols, such as SSVEPs, event-related 

desynchronization/synchronization (ERD/ERS), and event-related potentials like P300 [5]. Previous studies 

have indicated that the SSVEP pattern demonstrates higher performance in accurate categorization compared 

to other EEG signal patterns. Furthermore, ongoing research is currently being conducted on BCI devices 

that make use of SSVEP. The main aim of this research is to explore the practical applications of these 

devices. The SSVEP speller employs a graphic user interface (GUI) to generate specific EEG patterns in 

response to a designated stimulus. The visual stimuli utilized in this system exhibit distinct positive and 

negative fluctuations [6]. To ensure an accurate representation of the relevant character, the user should focus 

their attention on the specified stimulus. This approach offers the advantage of decreasing the amount of 

training time needed for model calibration [7]. Furthermore, there has been a notable increase in the number 

of stimuli utilized to enhance the efficiency of the BCI speller. The implementation of a GUI is widely 

acknowledged as a crucial factor in enhancing performance in this domain. The bremen speller is widely 

acknowledged as one of the earliest high-speed SSVEP BCI spellers that were developed using the multi-

target stimulus paradigm. 

In recent years, there has been an increasing focus among researchers on BCI spellers, also known 

as alphabetic BCI systems [8]-[10]. The three EEG signals commonly employed for spelling tasks include the 

sensorimotor rhythm (SMR), P300 event-related potential (ERP), and SSVEP. The SSVEP refers to a 

neurophysiological occurrence that involves a regular neural reaction triggered by a repetitive visual stimulus 

[11]. The response is accurately positioned within the central visual field of the subject. The SSVEP speller is 

widely acknowledged as a highly promising paradigm for real-world BCI applications. The primary reason 

for this is the notable attributes of the system, which include a high ITR, easy deployment, and minimal user 

training time requirement [12]-[14].  

The BCI speller continues to be a prominent area of investigation in various research studies, along 

with other applications of BCI technology such as communication and external device control. SSVEP-based 

BCI spellers provide numerous benefits when compared to alternative control signals/modalities in BCI 

systems [15]-[18]. The benefits of this approach encompass enhanced ITR, increased signal-to-noise ratio, 

decreased number of necessary EEG channels, and reduced training durations. Hierarchical structures have 

been extensively employed in spellers that depend on SSVEP. BCIs offer numerous advantages in improving 

the effectiveness of logical or intuitive tasks. The development of the brain painting (BP) application for the 

P300 BCI incorporated the fundamental principle of user-centered design [19]-[22]. The primary objective of 

the BP application is to address the fundamental human requirement for enhanced communication. This is 

achieved by analyzing the preferences of end-users, including individuals who have been diagnosed with 

amyotrophic lateral sclerosis (ALS). The application is designed to cater to these preferences, even when 

utilizing an “alternative communication channel”. The utilization of an alternate channel in this specific scenario 

enabled the formation of unique visual representations, leading to an innovative design for the BCI [23]. 

The motivation behind this is the transformative potential of BCIs and the persistent challenges that 

hinder their widespread adoption. These challenges include time-consuming calibration, limited ITRs, and 

the need for extensive user training. To address these issues, we focus on leveraging SSVEPs to enhance BCI 

efficiency and usability. Our research aims to develop an optimized BCI system that reduces calibration time, 

improves accuracy, and simplifies the user experience. By doing so, we aspire to contribute to the 

advancement of BCIs, making them more accessible and efficient for various applications, including assistive 

technology and healthcare. Ultimately, our motivation lies in empowering individuals with enhanced 

communication and control capabilities through SSVEP-based BCIs, thereby improving their quality of life. 

− A novel approach is known as the trans-subject feature fusion approach (TFA) for improved SSVEP-

based BCI detection. 

− Invariant templates: this research introduces invariant templates for SSVEP-based BCIs, which are robust 

to variations in user responses, enhancing SSVEP detection accuracy. 

 

 

2. PROPOSED METHOD 

The proposed methodology for SSVEP-based BCIs consists of several key steps. It begins with data 

pre-processing, where visual latency and power noise are removed, and relevant data is extracted using 

filters. Subsequently, spatial filters and SSVEP templates are designed, involving the calibration data from a 

single source and the transfer of common knowledge across subjects to construct internally and mutually 

invariant templates. The SSVEP data is divided into trial data for the target and multi-trial data to train 

templates. The training process involves internal and mutual variant spatial filter creation. Then, in the testing 

phase, spatial filters are tested and evaluated. SSVEP detection is performed, and the target stimulus 

frequency is determined. Finally, a decomposition step involves calculating sub-band information.  

The workflow aims to optimize SSVEP-based BCIs, making them more efficient and user-friendly. 
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2.1.  Data pre-processing 

The visual latency, the first data is removed from the SSVEP signal analysis, and the data is 

extracted via the filtered order and band. A filter notch at 50 Hz is used to discard the power-noise. The data 

prepared is completed, and the data processing and the target are detected and then performed. 

 

2.2.  Spatial filters and SSVEP template 

The individual calibration data from a single source is subjected to corresponding 𝑝 − 𝑡ℎ stimulus 

and is depicted as 𝑍𝑝 = [𝑍𝑝
1, 𝑍𝑝

2,…, 𝑍𝑝
𝑃𝑑] ∈𝑇𝑃𝑒∗𝑃𝑓∗𝑃𝑑 , and 𝑝 = 1, 2, … , 𝑃ℎ. However, 𝑃𝑒 , 𝑃𝑓 , 𝑃𝑑 , and 𝑃ℎ 

denotes the channels for the sampling point, including the blocks and the number of stimuli. 𝑍𝑝
𝑑∈𝑇𝑃𝑒∗𝑃𝑓  (𝑑 =

1, 2, … , 𝑃𝑑) depicts the 𝑑 − 𝑡ℎ block of data for 𝑍𝑝. The common knowledge is transferred across various 

subjects for transferring, to construct internal and mutually invariant templates within a trial-test measure by 

spatial filter using SSVEP data through different blocks. The separated EEG data 𝑍𝑝 is distinguished into two 

parts according to each block 𝑑. The trial data 𝑍𝑝
𝑑 transferred from block 𝑑 and multi-trial data as 𝛿𝑝

𝑑 is 

transferred for template training denoted as mentioned in (1). 

 

𝛿𝑝
𝑑 = [𝑍𝑝

1, … , 𝑍𝑝
𝑑−1, 𝑍𝑝

𝑑+1, … , 𝑍𝑝
𝑃𝑑] (1) 

 

SSVEPs from the neighboring –location stimulus share a similar spatial pattern that contains similar 

frequency information. The neighboring stimulus data is used to transfer the trained template. The neighbor 

of the 𝑝 − 𝑡ℎ  stimulus to adjust horizontal and vertical stimuli is shown as 𝑝1 − 𝑡ℎ, 𝑝2 − 𝑡ℎ,…, 𝑝𝑃𝑗 − 𝑡ℎ 

stimuli. The collection of neighbors for 𝑝 − 𝑡ℎ stimulus is depicted in (2). 𝑍
 
𝑃𝑗  ∈ 𝑇𝑃𝑒∗𝑃𝑓∗𝑃𝑑  (𝑗 = 1, 2, … , 𝑃𝑗) 

is the SSVEP data consisting of the neighboring stimuli, j is the index of the neighbor for the 𝑝 − 𝑡ℎ 

stimulus, and along with this the neighboring stimuli 𝑃𝑗. Simultaneously with 𝛿𝑝 
𝑑 ∈  𝑇𝑃𝑒∗𝑃𝑓∗𝑃(𝑑−1) represented 

as in (3). 

 

𝜗𝑝 = {𝑍𝑝1, 𝑍𝑝2 ,…, 𝑍
𝑝

𝑃𝑗  }, (2) 

 

𝛿
𝑝𝑗
𝑑 = [𝑍

𝑝𝑗
1 , … , 𝑍

𝑝𝑗
𝑑−1, 𝑍

𝑝𝑗
𝑑+1,…, 𝑍

𝑝𝑗
𝑃𝑑] (3) 

 

The 𝑑 − 𝑡ℎ combination of SSVEP data consisting of the target along with the neighboring stimuli 

data. 𝑍𝑝
𝑑, 𝛿𝑝 

𝑑  and 𝛿
𝑝𝑗
𝑑  (ℎ = 1,2, … , 𝑃𝑗). Whereas 𝑑 is in the range of 1 to 𝑃𝑑 for each stimulus 𝑝, there are 𝑃𝑑   

variations for the SSVEP training data. The 𝑑 − 𝑡ℎ  variation for the SSVEP training data the training 

method involves the transferred spatial features that consist of three steps. Algorithm 1 shows the proposed 

workflow algorithm. 

− The internal variant of the spatial filter and the template for each subject source extract the frequency 

information across the neighboring stimulus.  

− Calculation of the mutually invariant spatial filter and the template from various sources subjected to 

understanding the common knowledge across shared subjects. 

− While training a test-trial spatial filter data by incorporation of internal and mutual invariant samples. 
 

Algorithm 1. Of the proposed workflow 
Input Initialize  𝑃𝑒 , 𝑃𝑓 , 𝑃𝑑, 𝑃𝑗, 𝑜, 𝑃1, 𝑃ℎ 
Step 1 Training Phase 

 for d in range (1, 𝑃𝑑 + 1): 

for 𝑜 in range (𝑂): 
Internal invariant template 

for q in range (1, 𝑃ℎ + 1): 

Calculate 𝑌(𝑜, 𝑞, 𝑑), 𝑉 (𝑜, 𝑞, 𝑑) 
Step 2 Mutually invariant template 

for 𝑜1 in range (𝑂): 

for 𝑜2 in range (𝑂): 
if 1 != 𝑜2: 

Calculate E12, E21, E11, E22 

for p in range (1, 𝑃ℎ + 1): 

Calculate 𝑋(𝑝, 𝑑) using the optimization problem (eq. 12) 

Calculate 𝑌(𝑜, 𝑞) and 𝑉(𝑜, 𝑞) by averaging across 𝑃𝑑 

Step 3 Testing Phase 

for 𝑜 in range(𝑂): 

for q in range (1, 𝑃ℎ + 1): 
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Calculate 𝑊 (𝑜, 𝑞) using the test-trial spatial filter (eq. 16) 
Step 4 SSVEP Detection 

for p in range (1, 𝑃ℎ + 1): 

for o in range (𝑂): 

Calculate 

  
[𝜇𝑝(1)][𝜇𝑝(2)

   
][𝜇𝑝(3)][ 𝜇𝑝 (4)  

Calculate 𝜑𝑝 (eq. 24) 

Step 5 Decomposition 

for 𝑝 in range (1, 𝑃ℎ + 1): 

for l in range (1, 𝑃𝑙 + 1) 

Calculate 𝝉 (𝑝, 𝑙) for each sub-band 
Calculate 𝛾 (𝑝)  

Determine the target frequency with the maximum correlation  

𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 = 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑎𝑥(𝜑)  
Output Output the detected target stimulus (SSVEP frequency) 

 

2.2.1. Internal invariant template 

This is obtained for each source subject depicted as 𝑜. The corresponding spatial filter to the 𝑝 − 𝑡ℎ 

stimulus 𝑦𝑜,𝑞
𝑑  ∈ 𝑇𝑃𝑒 is evaluated by maximizing the subjective correlation through corresponding SSVEPs 

corresponding to the target and the neighboring stimuli 𝛿𝑜,𝑞 
𝑑 ∈  𝑇𝑃𝑒∗𝑃𝑓∗𝑃(𝑑−1) and 𝛿

𝑜,𝑞𝑗 𝑑 ∈  𝑇𝑃𝑒∗𝑃𝑓∗𝑃(𝑑−1)  (𝑗 =

1, 2, … , 𝑃𝑗) through each subject 𝑜. Upon simplification of the expression 𝛿𝑜,𝑞
𝑑  and 𝛿

𝑜,𝑞𝑗 𝑑  defined by (1) and 

(3) to define the multi-trial data as given in (4). 𝛿𝑜,𝑞
𝑑𝑚 ∈  𝑇𝑃𝑒∗𝑃𝑓 (𝑚 = 1, 2, … , 𝑃𝑣). 𝑃𝑣 is the number of trials for 

the multi-trial data and 𝑃𝑣=𝑃𝑑 − 1, in a similar way as given in (5). The invariant spatial filter 𝑦𝑜,𝑞
𝑑  is 

evaluated as given in (6). 

 

𝛿𝑜,𝑞
𝑑 = [𝛿𝑜,𝑞

𝑑1 , 𝛿𝑜,𝑞
𝑑2 ,…, 𝛿𝑜,𝑞

𝑑𝑃𝑣] (4) 

 

𝛿
𝑜,𝑞𝑗
𝑑 = [𝛿

𝑜,𝑞𝑗
𝑑1 , 𝛿

𝑜,𝑞𝑗
𝑑2 , … , 𝛿

𝑜,𝑞𝑗
𝑑𝑃𝑣 ] (5) 

 

𝑦𝑜,𝑞
𝑑 =

𝑦𝑉 𝑈𝑦

𝑦𝑉 𝑆𝑦𝑦

𝑎𝑟𝑔𝑚𝑎𝑥

 (6) 

 

𝑈 = 𝑐𝑜𝑣(𝛿𝑜,𝑞
𝑑 ) + ∑ 𝑐𝑜𝑣

𝑃𝑗

𝑗=1
(𝛿

𝑜,𝑞𝑗
𝑑 ) (7) 

 

𝛿𝑜,𝑞
𝑑 =

1

𝑃𝑣
∑ 𝛿𝑜,𝑞

𝑑𝑚 ,
𝑃𝑣
𝑣=1  (8) 

 

𝛿
𝑜,𝑞𝑗
𝑑 =

1

𝑃𝑣
∑ 𝛿

𝑜,𝑞𝑗
𝑑𝑚𝑃𝑣

𝑣=1  (9) 

 

Wherein, the result of the co-variances for the trial data obtained from 𝑝 − 𝑡ℎ stimulus with its 

neighboring stimulus is shown as in (10). The decomposition of 𝑆−1 U solved by (6), the spatial filter 𝑦𝑜,𝑞
𝑑  is 

evaluated by the eigenvector corresponding to the eigenvalue. The spatial filter 𝑦𝑜,𝑞
𝑑  and the invariant 

template 𝑉𝑜,𝑞
𝑑 ∈ 𝑇𝑃𝑓  for the relevant source subjected as 𝑜 obtained via as mentioned in (11). 

 

𝑆 = ∑ 𝑐𝑜𝑣(𝛿𝑜,𝑞
𝑑𝑚),

𝑃𝑣
𝑣=1 + ∑ ∑ 𝑐𝑜𝑣(𝛿

𝑜,𝑞𝑗
𝑑𝑚 )

𝑃𝑣
𝑚=1

𝑃𝑗

𝑗=1
 (10) 

 

𝑉𝑜,𝑞
𝑑 = 𝑦𝑜,𝑞

𝑑  𝑉𝛿𝑜,𝑞
𝑑  (11) 

 

 

3. PERFORMANCE EVALUATION 

The deep neural network (DNN) is evaluated through the utilization of the dataset, specifically, the 

Benchmark [24] A thorough experimental analysis is carried out in comparison of the results with state-of-

the-art approaches that have been previously evaluated on specific datasets and have demonstrated favorable 

outcomes. The following methods are used for comparison the state-of-art techniques used are convolutional 

correlation analysis (Conv-CA), ms-eTRCA, ensemble-task-related component analysis (eTRCA), two stage-

correlated component analysis (TSCORRCA), modified extended-canonical correlation analysis  

(m-extended-CCA), extended-canonical correlation analysis (extended-CCA), and two stage-correlated 

component analysis (CORRCA). The test methodologies utilized for each of these methods are consistently 
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maintained in the comparisons. To optimize the patient's periods of rest, a BCI SSVEP speller experiment 

consists of several blocks. The Benchmark dataset is composed of six blocks. In our performance 

evaluations, we utilize a leave-one-block-out approach to facilitate comparisons. Our model is trained on a 

specific subset of either 5 or 3 blocks, and its performance is then evaluated on the remaining block. The mean 

classification accuracy and ITR, along with their respective standard errors, are presented for each signal length 

T within the range of T=0.2, 0.3, 1.0. During the calculation of the index of task performance (ITR), a gaze shift 

time of 0.5 seconds is factored in. The testing is performed utilizing a predetermined set of nine channels, 

specifically Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, and O2. In addition, comprehensive testing is conducted 

using all 64 available channels to thoroughly showcase the efficacy of our DNN. The utilization of 64 channels 

offers numerous advantages when compared to the pre-determined selection. Additionally, an analysis is 

conducted to evaluate the impact of the number of sub-bands and channels on the efficacy of identification.  

 

3.1.  Dataset details 

The BCI SSVEP speller trials are evaluated on the Benchmark dataset. This features 35 healthy 

participants, six sessions with a 5×8-character matrix flashing 40 characters at frequencies from 8 to 15.8 Hz. 

EEG data was collected from 64 channels. 

 

3.1.1. Benchmark dataset 

A cohort of 35 participants, all in a state of good health, were chosen to participate in the BCI SSVEP 

speller trials. Throughout these trials, data was systematically collected and meticulously recorded to establish a 

comprehensive reference dataset. Each experiment is composed of six blocks, which are also referred to as 

sessions. During the execution of the program, a matrix of size 5 by 8 is displayed on the screen. The matrix 

consists of a group of 40 specific characters that exhibit flashing patterns at different frequencies. The frequency 

range spans from 8 to 15.8 Hz, with a uniform increment of 0.2 Hz. A minimum phase difference of 0.5 is 

guaranteed to be maintained between consecutive frequencies. The acquisition of EEG data employs a 

comprehensive set comprising 64 channels. A block comprises 40 trials, where each trial represents a target 

character. The trials are presented in a randomized sequence. The trial is initiated by displaying a visual 

stimulus on the screen for a precise duration of 0.5 seconds. The primary objective of this is to effectively guide 

the subject's visual attention towards the intended target. Following this, a stimulation period of 5 seconds 

occurs, which is then followed by an offset of 0.5 seconds. The EEG signal undergoes down-sampling, resulting 

in a reduction of its frequency to 250 Hz. Based on the dataset, the average visual delay observed among the 

individuals is approximately 140 ms. Figure 1 shows the character matrix layout for the stimulus presentation in 

the experiments of the Benchmark dataset. 
 

 

 
 

Figure 1. The character matrix layout for the stimulus presentation in the experiments of the  

Benchmark dataset 
 
 

3.1.2. Results for Benchmark dataset 

In Figure 2 the accuracy graph is plotted for the Benchmark dataset across 9 channels, the 

comparison of various methods, including CORRCA, extended-CCA, m-extended-CCA, TSCORRCA, 

eTRCA, ms-eTRCA, Conv-CCA, existing, and proposed system (PS), reveals that PS consistently 
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outperforms the other methods. PS achieves the highest values of signal strength in all channels, indicating 

higher performance. At channel 0.2, PS scores 60.5, surpassing existing system (ES) at 58 and demonstrating 

its advantage. This trend continues across all channels, with PS consistently delivering the highest signal 

strength values. At channel 0.8, PS scores an impressive 95.2, and ES [25] exhibits 92.6. These results 

highlight PS as the best performer in terms of signal strength across the 9 channels. 

 

 

 
 

Figure 2. Accuracy graph of 9 channels for Benchmark dataset comparison 

 

 

The Figure 3 analysis of performance across 64 channels, reveals that PS consistently outperforms 

the other methods. PS achieves the highest values of signal strength in all channels, indicating higher 

performance. At channel 0.2, PS scores 63.8, surpassing ES [22] at 61.59 and demonstrating its advantage. 

This continues across all channels, with PS consistently delivering the highest signal strength values.  

At channel 0.8, PS depicts a value of 97.4, ES showcases 95.78. These results highlight PS as the best 

performer in terms of signal strength across the 64 channels. 

 

 

 
 

Figure 3. Accuracy graph of 64 channels for Benchmark dataset comparison 

 

 

Figure 4 the analysis of performance across 9 channels concerning image transmission rate (ITR), 

the comparison of various methods, including CORRCA, Extended-CCA, m-Extended-CCA, TSCORRCA, 

eTRCA, ms-eTRCA, Conv-CCA, existing, and PS, indicates that PS consistently outperforms the other 

methods. At channel 0.2, PS showcases a value of 205.7, surpassing ES at 194.3. At channel 0.8, PS scores 222.6, 

whilst ES [22], achieves 218.4. Even at channel 1, PS maintains its lead with 199.4. These results highlight PS as 

the best performer in terms of signal strength across the 9 channels, especially for ITR applications. 
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Figure 4. ITR graph of 9 channels for Benchmark dataset comparison 

 

 

In Figure 5 the analysis of performance across 64 channels for ITR. PS consistently exhibits the 

highest signal strength values in all channels, signifying its strong performance. At channel 0.2,  

PS impressively scores 215, surpassing existing at 209.8. At channel 0.7, PS scores 242.6, and ES [22] 

achieves 238.75. Even at channel 1, PS maintains its lead with 205.8. These results underscore PS as the best 

performer in terms of signal strength across the 64 channels, particularly for ITR applications. 

 

 

 
 

Figure 5. ITR graph of 64 channels for BETA dataset comparison 

 

 

3.2.  Comparative analysis 

The comparative analysis is shown below for the Benchmark dataset. The improvisation of accuracy 

comparison for 9 channels and 64 channels is shown in Table 1. This shows the improvisation of the PS made 

over the ES, wherein the PS shows greater improvement in comparison with the ES. 

 

3.2.1. Benchmark dataset 

The comparative analysis is shown below for the Benchmark dataset. Wherein the improvisation of 

accuracy comparison for 9 channels, and 64 channels is shown below. This shows the improvisation of the PS 

made over the ES, wherein the PS shows greater improvement in comparison with the ES. The comparative 

analysis is shown below for the Benchmark dataset. The improvisation for ITR comparison for 9 channels and 

64 channels as shown in Table 2. This shows the improvisation of the PS made over the ES, wherein the PS 

shows greater improvement in comparison with the ES. 
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Table 1. Accuracy comparison on Benchmark dataset 
9-channel improvisation 64-channel improvisation 

4.31 3.60 
2.86 3.67 

4.25 4.94 

2.02 2.14 
3.39 3.29 

2.30 2.34 

2.80 2.53 
2.31 2.08 

2.71 2.35 
 

Table 2. ITR comparison on Benchmark dataset 
9-channel improvisation ITR 64-channel improvisation ITR 

5.87 2.62 
2.17 0.84 

1.14 1.79 

0.88 1.43 
0.70 2.89 

2.23 1.60 

1.92 3.33 
1.48 4.38 

2.05 3.06 
 

 

 

4. CONCLUSION 

In conclusion, the proposed methodology for SSVEP-based BCIs seeks to overcome the challenges 

in BCI adoption by streamlining calibration, enhancing ITRs, and simplifying user training. The research 

introduces invariant templates for SSVEP-based BCIs to improve detection accuracy amidst user response 

variations. The methodology encompasses critical stages, from data pre-processing and spatial filter design to 

testing, SSVEP detection, and sub-band decomposition. By optimizing these processes and employing spatial 

filters, this work aims to make SSVEP-based BCIs more user-friendly and accessible, ultimately empowering 

individuals with advanced communication and control capabilities, thereby enhancing their quality of life 

across applications like assistive technology and healthcare. 
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