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 This research introduces an integrated optimization methodology for spindle 

design, combining the improved dung beetle optimization (IDBO) algorithm 

with finite element analysis (FEA). The IDBO algorithm, enhanced in 

population initialization and convergence factors, minimizes total 

deformation and mass, addressing a multi-objective optimization model.  

The obtained optimal parameters guide the construction of a finite element 

model, considering additional factors like stiffness and maximum stress.  

The ensuing FEA produces a foundation for constructing a response surface, 

further optimized to refine the initial design. Through the combination of the 

IDBO algorithm and FEA method, the mass of the spindle is reduced from 

46.582 kg obtained by the IDBO algorithm solution to 28.479 kg, a total 

reduction of 38.86%, while meeting design requirements such as maximum 

total deformation. Modal analysis up to the sixth order validates the design 

correctness reveals dynamic spindle behavior and guarantees the design 

requirements. The study demonstrates the reliability and effectiveness of the 

proposed IDBO algorithm in conjunction with FEA, providing a versatile 

framework for engineering optimization. 
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1. INTRODUCTION 

Optimization of machine tool components is a key aspect of modern manufacturing processes, 

aiming to improve efficiency, precision, and overall performance. The spindle plays a key role in determining 

the success of a machining operation. Achieving optimal spindle design is critical to minimizing energy 

consumption, improving machining accuracy, and extending the life of cutting tools. Current research areas 

emphasize using advanced optimization algorithms and analytical methods to enhance the design of machine 

components [1]. 

Subbaiyan et al. [2] used transient load data from spindle-level MBS to predict critical locations and 

component life. Greco et al. [3] proposed a simulation-based design of an ultrasonic-assisted air-bearing 

spindle for micromachining applications, including the arrangement of the journal and thrust air bearing, the 

drive turbine, and the mechanism to promote the movement of the vibrating tool. Yamato et al. [4] selected 

https://creativecommons.org/licenses/by-sa/4.0/
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the optimal amplitude and frequency of sinusoidal spindle speed changes based on the chatter frequency and 

nominal spindle speed, and contributed to the design of intelligent spindles. 

This study investigated the effects of spindle optimization. While earlier studies have explored the 

impact of structural design, material selection, processing technology, and intelligent diagnosis, they have not 

explicitly addressed its influence on adaptive design, vibration suppression, and smart design for spindle 

design. Recent research has shown a growing interest in integrating nature-inspired optimization algorithms, 

such as the dung beetle optimization (DBO) algorithm, into engineering applications. In addition, finite 

element analysis (FEA) has become the cornerstone for validating and improving structural design in various 

engineering disciplines. By combining these methods, this study strives to provide a comprehensive and 

innovative approach to optimizing spindle design, contributing to the broader precision engineering, and 

manufacturing fields. 

The significance of this study lies in its potential to provide innovative insights into the design and 

optimization of spindles for machining applications. Using a simplified mathematical model based on hollow 

tubular structural steel profiles, design parameters can be systematically explored while considering the 

critical trade-off between structural integrity and weight reduction. Contents of this paper: section 2 

introduces the spindle design modeling, the improved DBO algorithm, and the FEA technology involved in 

the research. Section 3 applies response surface optimization design to the spindle optimization calculation 

required by the case, and verifies the rationality of the design. Section 4 summarizes the results achieved in 

this study. 

 

 

2. METHOD 

Early work on spindle optimization mainly relied on traditional engineering principles and empirical 

methods. Researchers work to improve spindle performance through improved material selection, bearing 

technology, and geometric design. While these methods provide valuable insights, they often face limitations 

in resolving complex interactions within spindle structures [5]. FEA became the cornerstone for assessing the 

structural integrity of spindles and predicting performance under different operating conditions [6].  

These models contribute to a more detailed understanding of the mechanical behavior of the spindle,  

but sometimes lack optimization efficiency. Recent trends in optimization research show a surge in applying 

nature-inspired algorithms to complex engineering problems. Various metaheuristic algorithms such as 

genetic algorithm, particle swarm optimization, and simulated annealing have been adapted for spindle 

optimization. These methods enhance the exploration of the design space and provide novel solutions for 

improving spindle performance [7]. The framework of this research is shown in Figure 1, which includes the 

integration of the improved DBO and FEA to solve practical engineering problems. 

 

 

 
 

Figure 1. Flow chart of DBO algorithm and FEA 
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2.1.  Spindle design modeling 

Spindle design modeling involves creating a mathematical representation that captures a machine 

tool spindle’s fundamental characteristics and behavior. Models are the basis for analyzing, optimizing, and 

predicting spindle performance in machining applications. The modeling machine tool spindle structure and 

stress analysis are shown in Figure 2. Such a simplified model helps optimize calculations. When designing, 

consider the deflection of point C at the spindle’s extended end and the spindle’s weight [8]. 

 

 

 
 

Figure 2. Schematic diagram of the structure and force of the spindle 

 

 

The spindle is made of a tubular profile, the aperture d is a fixed value, and the outer diameter is D. 

When the material of the spindle is selected, the density of the material is expressed as ρ and young’s 

modulus is E. The span of the spindle is l, and the length of the outer end is a. Design variables can be 

expressed as (1). x= (x1, x2, x3)T= (l, D, a)T. The objective function of the optimization problem is (2). 

 

𝑥 = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (𝑙, 𝐷, 𝑎)𝑇 (1) 

 

𝑓(𝑥) =
1

4
𝜋𝜌(𝑥1 + 𝑥1)(𝑥2

2 − 𝑑2) (2) 

 

The spindle work requires that the deflection value y of point C cannot exceed the given value y0. 

The deflection value y is calculated as (3). Based on this, constraint conditions are established such as (4). 

 

𝐼 =
𝜋

64
(𝐷2 − 𝑑2)

𝑦 =
𝐹𝑎2(𝑙+𝑎)

3𝐸𝐼

 (3) 

 

𝑔(𝑥) =
64𝐹𝑥3

2(𝑥1+𝑥3)

3𝜋𝐸(𝑥2
4−𝑑4)

− 𝑦0 ≤ 0 (4) 

 

The boundary constraints of variables are as shown in (5). 

 

{
𝑙𝑚𝑖𝑛 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥

𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥

 (5) 

 

Combining all the above formulas, the mathematical model of spindle design can be expressed as (6). 

 

𝑥: {

𝑥1𝑚𝑖𝑛 ≤ 𝑥1 ≤ 𝑥1𝑚𝑎𝑥

𝑥2𝑚𝑖𝑛 ≤ 𝑥2 ≤ 𝑥2𝑚𝑎𝑥

𝑥3𝑚𝑖𝑛 ≤ 𝑥3 ≤ 𝑥3𝑚𝑎𝑥

min 𝑓(𝑥) =
1

4
𝜋𝜌(𝑥1 + 𝑥1)(𝑥2

2 − 𝑑2)

𝑆. 𝑡. 𝑔(𝑥) =
64𝐹𝑥3

2(𝑥1+𝑥3)

3𝜋𝐸(𝑥2
4−𝑑4)

− 𝑦0 ≤ 0

 (6) 
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2.2.  Improved DBO algorithm 

The DBO algorithm, proposed in 2022 [9], is a nature-inspired meta-heuristic optimization 

technique inspired by the foraging and reproductive behavior of dung beetles. The DBO algorithm mimics 

the complex navigation mechanism of dung beetles, in which the beetles use solar signals, celestial patterns, 

and environmental features to determine their direction and navigate to their destination efficiently.  

This bionic motion is translated into solutions that explore the search space. This study applies the DBO 

algorithm to solve the optimization problem of the machine tool spindle [10], [11]. 

The DBO algorithm incorporates an adaptive mechanism to dynamically adjust its parameters 

during the optimization process. This adaptability enhances the robustness of the algorithm in dealing with 

different problem scenarios. There are four main roles in the DBO algorithm design: rolling dung beetles,  

egg balls (breeding dung beetles), small dung beetles, and stealing dung beetles. The original DBO algorithm 

converges quickly and easily into local optimality. This study proposes an improved DBO algorithm based 

on the original algorithm. 

 

2.2.1. Mapping initialization 

The original DBO algorithm population initialization is randomly generated and unstable.  

The proposed improved DBO (IDBO) algorithm logical chaos map population initialization, (7) shows the 

initialization process [12], 

 

𝑥𝑛+1 = 𝜇𝑥𝑛(1 − 𝑥𝑛) (7) 

 

where n represents the number of populations, and µ is the set parameter. Given an initial value x0 ∈ (0,1), 

u=4 initializes the population. During the population initialization process, it is necessary to determine 

whether the upper and lower limits are exceeded. This study is a 3-dimensional (3 variables) problem.  

The comparison of the original randomly generated population initialization and the logical chaotic 

population initialization drawn in three-dimensional space is shown in Figure 3. 

 

 

 
 

Figure 3. Population initialization comparison chart 

 

 

2.2.2. Convergence factor 

The original DBO algorithm has a linear convergence factor, and based on this, a nonlinear 

convergence factor is proposed such as (8), where r is the value of the convergence factor, t is the current 

number of iterations, T is the set total number of iterations, and k is the control parameter [13].  

This convergence factor can converge slower at the beginning of the algorithm to satisfy a larger  

search range. 

 

𝑟 =
1

2
+

sin(
𝜋

2
+𝜋(

𝑡

𝑇
)
𝑘
)

2
 (8) 
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Figure 4 illustrates a comparison of the convergence factor curves. In this study, the value of k was 

0.8. This convergence factor can make the convergence slower at the beginning of the algorithm to satisfy a 

larger search range, and slower at the end to make it easier to jump out of the local optimal solution and 

obtain a better solution [14]. 

 

 

 
 

Figure 4. Convergence factor curves 

 

 

2.3.  Finite element analysis 

In this study, FEA is used to evaluate the mechanical integrity and performance of the spindle 

structure, providing valuable insights into deformation, stress distribution, and overall stability under various 

operating conditions [15], [16]. The main content involves the three-dimensional geometric model of the 

spindle structure, accurate definition of material properties, finite element meshing, definition of boundary 

conditions, solver configuration, result analysis, and optimization. The FEA method further optimizes the 

calculation of stiffness, and vibration that are not involved in mathematical modeling, and more 

comprehensively guides and improves the reliability and performance of the main design. 

 

 

3. RESULTS AND ANALYSIS 

In this section, the specific parameters of the spindle are set, the proposed IDBO algorithm is used to 

find the optimal solution, and the obtained results are optimized and verified through FEA. Additionally, 

response surface optimization is conducted to refine the design further, enhancing performance metrics. 

Modal analysis is also performed to assess the dynamic characteristics of the spindle, ensuring its stability, 

and reliability under operational conditions. 

 

3.1.  Optimization calculation 

The spindle is made of structural steel, with Young’s modulus of 2 × 105 MPa, density of 7850 

kg/m3, Poisson’s ratio of 0.3, Bulk modulus of 1.667 × 105 MPa, and Shear modulus of 7.5923 × 104 MPa. 

According to the established optimization mathematical model formula (6), given value y0=0.05, F=15,000 N, 
the lower limit of variable x is lb= [300, 50, 90], and the upper limit is ub= [650, 140, 150]. The penalty 

function method [17] is used to construct the fitness function as shown in formula (9). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥, 𝑟) = 𝑓(𝑥) + 𝑟∑ max[0, 𝑔𝑗(𝑥)]
𝑚
𝑗=1  (9) 

 

Where r is the penalty factor, the value here can be r=100. The proposed IDBO algorithm is used to calculate 

the fitness function (9). The convergence curve is shown in Figure 5. The value of the variable when 

obtaining the optimal solution is x= [300, 64.1155, 90]. The total length of the shaft under this solution is  

390 mm, the volume reaches 5.934 × 106 mm3, the total mass is 46.582 kg, and the maximum deformation 

is 0.0062278 mm (less than y0=0.05), which meets the design requirements. The results prove that the 

proposed IDBO algorithm can solve this engineering problem efficiently. 
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Figure 5. Convergence curve 

 

 

3.2.  Response surface optimization 

To verify the correctness of the spindle design example, FEA was used to analyze the project to 

consider aspects not covered more comprehensively in mathematical modeling. Use the value model solved 

by the IDBO algorithm, that is, x= [300, 64.1155, 90], and set the material to structural steel. The mesh size 

is 5 mm. Set the length and outer diameter of the spindle as input parameters and set the maximum value of 

total deformation and total mass as output parameters [18]. Figure 6 shows the solved total shear moment 

diagram, matching the force case in Figure 2. 

 

 

 
 

Figure 6. Total shear-moment diagram 

 

 

The mechanical performance of the spindle design obtained through numerical optimization is 

illustrated in Figure 7. Figure 7(a) shows the total deformation cloud diagram, which has the largest 

deformation relative to position C in Figure 2. Figure 7(b) shows the equivalent stress cloud diagram, which 

has the largest stress relative to position B in Figure 2. Further narrow the range for the design parameters l, 

D, and a, with the lower limit lb= [300, 60, 90], limit ub= [350, 80, 100]. Central composite design (CCD) 

[19] was used to generate 15 groups of sampling points and calculated separately. 
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(a) (b) 

 

Figure 7. Mechanical performance of optimized design parameters (a) total deformation and  

(b) equivalent stress 

 

 

CCD are constructed within an experimental design framework, systematically combining factor 

points, pivot points, and center points to form a strategically chosen set of sampling points. This process 

enables the identification of configurations that meet the required performance criteria while minimizing 

computational effort. This method can provide an in-depth understanding of complex relationships within the 

design space in spindle design, thereby promoting the optimization of system performance. The results are 

shown in Table 1. 

 

 

Table 1. Design points of CCD 
No. P1-x1-l (mm) P2-x3-d (mm) P3-x2-D (mm) P4-Mass (kg) P5-MaxDef (mm) 

1 325 95 70 41.429 0.0090802 

2 300 95 70 38.963 0.0088856 

3 350 95 70 43.895 0.0092818 

4 325 90 70 40.936 0.0082832 

5 325 100 70 41.922 0.0099202 
6 325 95 60 27.965 0.015598 

7 325 95 80 56.965 0.0058264 

8 304.67 90.935 61.87 28.564 0.012691 
9 345.33 90.935 61.87 31.499 0.013191 

10 304.67 99.065 61.87 29.151 0.014755 

11 345.33 99.065 61.87 32.086 0.015334 
12 304.67 90.935 78.13 50.773 0.005781 

13 345.33 90.935 78.13 55.99 0.0059504 

14 304.67 99.065 78.13 51.816 0.0066434 
15 304.33 99.065 78.13 57.033 0.0068645 

 

 

In this study, the response surface type chosen is genetic aggregation, which is a general technique 

for optimization and modeling. Genetic aggregation represents an innovative approach to capturing and 

modeling complex relationships within a design space, especially in scenarios where the interactions between 

variables are complex and nonlinear [20]. The response surface in Figure 8 shows the relationship between l, 

D, and the maximum total deformation. The X-axis represents l, the Y-axis represents D, and the Z-axis 

represents the maximum value of the total deformation. The response surface relationship between l, and D 

with total mass is shown in Figure 9. The X-axis represents l, the Y-axis represents D, and the Z-axis 

represents the total mass. 

Spindle design from response surface analysis, using insights gained from experiments on system 

design and subsequent response surface modeling, determines the optimal set of parameters to achieve the 

expected minimum total deformation and total quality target [21]. The result is the identification of optimal 

parameters that significantly enhance the performance of the studied system. The final recommended optimal 

result is x= [304.5, 61.8, 91.1]. The model was updated again according to the optimal plan and FEA was 

performed again. Figure 10 presents the changes in mechanical properties after response surface 

optimization. The updated maximum total deformation is shown in Figure 10(a), and the maximum stress is 

shown in Figure 10(b). The total length of the shaft under this solution is 395.6 mm, the volume reaches 

3.6279 × 106 mm3, the total mass is 28.479 kg, and the maximum deformation is 0.01278 mm (less than 

y0=0.05), which meets the design requirements. 
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Figure 8. Response surface for maximum total deformation 

 

 

 
 

Figure 9. response surface for the total mass 

 

 

  
(a) (b) 

 

Figure 10. Mechanical performance after response surface optimization (a) updated maximum total 

deformation and (b) equivalent stress 

 

 

Comparing the design solution obtained by the numerical solution of the IDBO algorithm, the mass 

of this solution was reduced from the original 46.582 kg to 28.479 kg, a total reduction of 38.86%. Although 

the maximum deformation point increased from 0.00623 mm to 0.01278 mm, they all reached the design 

requirement of 0.05 mm. Modal analysis [22], [23] is a key step in the verification and refinement process of 

optimized spindle designs. The natural frequency, mode shape, and dynamic characteristics of the spindle 

structure are studied through modal analysis. Help identify potential resonances and ensure designs meet 

structural integrity and performance standards. In this study, the 6th-order mode shape was completed, and the 

results are shown in Table 2. The sixth-order modal analysis results in Table 2 help to comprehensively 
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evaluate the dynamic performance of the spindle and prove that the designed spindle exhibits robust behavior 

under a wide range of vibration conditions. This high-level analysis enhances the understanding of spindle 

vibration behavior and supports further refinement and validation to ensure the design is reliable and 

optimally performs in real-world applications [24], [25]. 

 

 

Table 2. Results for the 6th-order mode shape 
Mode 1 2 3 

Frequency (Hz) 1,978.2 2,564.2 2,564.2 
Deformation (mm) 0.0027825 0.0097475 0.0097475 

Mode 4 5 6 

Frequency (Hz) 3,189.8 4,258.5 4,258.5 
Deformation (mm) 0.083832 0.15551 0.15551 

 

 

4. CONCLUSION 

This study proposes an integrated optimization framework that combines the IDBO algorithm with 

FEA for the design of spindle systems. The IDBO algorithm is enhanced in terms of population initialization 

and convergence factors. A multi-objective optimization model is established to minimize the total 

deformation and mass. 

This study explored a comprehensive finite element model with initial values provided by the IDBO 

algorithm. However, further and in-depth studies may be needed to consider factors such as stiffness and 

maximum stress, especially regarding that are not explicitly addressed in the mathematical model.  

The response surface obtained using FEA technology was used for further optimization. We found that the 

mass was reduced from 46.582 kg obtained by the IDBO algorithm solution to 28.479 kg correlates with a 

total reduction of 38.86%. Although the maximum deformation point increased from 0.00623 mm to 0.01278 

mm, they all reached the design requirement of 0.05 mm. 

Additionally, sixth-order modal analysis verified the correctness of the design and provided insights 

into the dynamic behavior of the spindle system. This integration of heuristic optimization with numerical 

simulation provides a versatile and efficient approach to solving complex engineering challenges, providing a 

valuable framework for industry practitioners and researchers. Future studies may explore the application of 

artificial intelligence to engineering problems with feasible ways of producing more efficient and 

comprehensive methods. 
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