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 Irregular and complex behavior in the financial system can disrupt stability 

and smooth economic growth. It causes randomness within the system, 

generating chaos; hindering synchronization behaviour. Achieving smooth 

and rapid synchronization between two coupled hyperchaotic finance (HF) 

systems with lessened fluctuation of input and output signals is vital for 

continuing financial stability and fostering economic growth, a challenge 

addressed in this article. The paper proposes a novel time-efficient nonlinear 

control (TENLC) technique and investigates HF systems synchronization 

using the drive-response system (DRS) arrangement. The proposed TENLC 

strategy realizes fast and smooth synchronization behaviour between two 

coupled HF systems, reducing closed-loop state-variable trajectory 

oscillations. The controller is designed to retain the nonlinear components 

within the closed-loop system and does not depend on the system's 

parameters, simplifying the design and analysis process. The Lyapunov 

stability technique confirms the closed-loop's global stability at the origin. 

Proofs of mathematical analysis and computer-based simulation results 

validate the theoretical findings, showing that the presented TENLC strategy 

converges the state error trajectories to zero in a short transient time with 

lessened fluctuations for all signals. The comparative computer-based 

simulation analysis confirms that the presented TENLC approach outperforms 

other synchronization control techniques. 
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1. INTRODUCTION 

Chaotic oscillators are specific types of nonlinear dynamical systems that display unpredictable 

behavior and are highly sensitive to minor variations in their initial conditions and parameters [1]. These 

variations can be recognized by their intricate and irregular oscillation patterns, described by fractals or multi-

fractal structures [2]. Chaotic phenomena can be observed in various natural and artificial systems [3]. Due to 

their inherent randomness, chaotic systems resist synchronization behavior. Synchronization of chaotic 

systems occurs when two or more initially unrelated chaotic systems behave in a coordinated and correlated 

manner over time under the action of a feedback control input [4]. Their chaotic trajectories become similar or 

identical despite having different initial conditions [5]. Chaos synchronization has shown successful 
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applications in physical systems, robotics, secure communication systems, model calibration, space 

engineering, electronics, biological systems [6]-[11], for potential applications. 

The nonlinear finance models exhibit complex and irregular phenomena [12]-[14]. Social and 

economic factors, such as political policies and news, environmental interfaces, and exchange rate fluctuations, 

can cause abrupt variations in stock market prices. As a result, the financial model's periodic dynamics can be 

transferred to chaos [15], [16]. The chaotic nature of a financial system causes complications in financial 

system planning [17]. The chaotic financial models require synchronization to maintain economic growth and 

financial stability [18]. Over the past two decades, the synchronization of chaotic financial systems has been a 

topic of intense research, leading to the development of diverse feedback controller methodologies for 

achieving stable economic dynamics through coordinated synchronization control of chaotic financial 

behavior. For instance, [18] realizes two identical three-dimensional chaotic finance (TDCF) systems' 

synchronization; the Routh-Hurwitz criterion is used to investigate closed-loop stability for known systems' 

parameters, while an active adaptive control strategy is applied for uncertain parameters. The synchronization 

of two coupled uncertain TDCF systems is achieved in [19]. Jajarmi et al. [20] synchronizes two identical 

uncertain HF systems using an adaptive control algorithm based on the Lyapunov stability analysis.  

Tirandaz et al. [21] synchronizes two identical TDFC systems using a linear feedback control method. The 

closed-loop global stability is analyzed using the active adaptive feedback controller. Xu et al. [22] proposes a 

nonlinear adaptive control method with a time-varying delay to synchronize two coupled TDCF systems with 

external disturbances. Ding and Xu et al. [23] explores two mixed synchronization schemes for coupled TDCF 

systems, comparing the closed-loop systems' performance through simulation results. Chen et al. [24] derives 

sufficient conditions and designs a linear feedback control strategy to achieve global asymptotic 

synchronization between two identical HF systems. 

The challenges and motivations are given: 

− Existing feedback control methodologies [18]-[24] rely on canceling nonlinear terms in the closed-loop 

system for synchronization. However, these methods demand precise measurement of parameters and state 

variables, which can be challenging due to technological limitations. Furthermore, nonlinearities can 

contain valuable information about the financial system. Eliminating nonlinear components can lead to 

losing valuable information about the financial system, potentially hindering the understanding and ability 

to manage the system effectively. 

− The control schemes [18]-[24] consume huge amounts of energy and can cause significant synchronization 

errors and control signals' fluctuations. This can destabilize the financial system and may even result in a 

complete loss of economic stability. The precision of HF system synchronization is vital to promoting 

economic growth and ensuring financial stability. 

− The proposed control strategies [18]-[24] can furnish a smaller synchronization error convergence gradient, 

potentially leading to increased investor uncertainty and prolonged periods of instability. 

The abovementioned challenges develop motivations for designing a state-feedback control strategy 

synchronizing two identical HF systems, realizing smoother and faster synchronization error convergence, and 

reducing fluctuation for all signals. The developed controller should achieve the following objectives: 

− The control methodology should elude the cancellation of nonlinear terms within the closed-loop system. 

− It should reduce fluctuations of control signals and state error vector trajectories. 

− It should demonstrate faster convergence of error vector trajectories to zero to improve the efficiency and 

accuracy of the system. 

This work designs a new TENLC technique that accomplishes smooth and rapid synchronization 

behaviour between two identical HF systems. The controller retains closed-loop nonlinear components and 

achieves global stability at the origin based on the Lyapunov stability analysis [25]. Computer-based 

simulations and theoretical analysis confirm the effectiveness of the proposed synchronization approach. The 

contributions of the presented synchronization control approach are as follows: 

− The input signals exhibited by the proposed control effort are free from the nonlinear terms of the closed-

loop; it means that the stability of the closed-loop performance is not affected by any variations within the 

system. This controller feature simplifies the design and analysis process, ensures smooth control 

operations, and consumes less energy.  

− The presented control law enhances the stability of the financial system by reducing sudden fluctuations 

and crash risks; it leads to increased efficiency, productivity, and reduced investment demands.  

− Computer simulation results are compared with the feedback control scheme presented in [24]. This 

comparative analysis further validates the performance proposed synchronization control approach.  

Section 2 analyzes the dynamics of the HF system and formulates the synchronization problem 

between two identical HF systems. Section 3 proposes a new TENLC technique synchronizing two identical 

HF systems. Section 4 presents comprehensive numerical simulations and comparative analysis to validate the 
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proposed technique's efficiency. Section 5 concludes the article by summarizing key findings and giving future 

directions. 

 

 

2. PROBLEM FORMULATION 

2.1.  Chaotic dynamics of the hyperchaotic finance system  

The HF system dynamics model [16] is described in (1): 

 

 ẋ(𝑡) = [

−𝑎 0 1 1
0 −𝑏 0 0

−1 0 −𝑐 0
0 0 0 −𝑑

]

[
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)]
 
 
 

+ [

𝑥1(𝑡)𝑥2(𝑡)

−𝑥1
2(𝑡)
0

−𝜗𝑥1(𝑡)𝑥2(𝑡)

] + [

0
1
0
0

] (1) 

 

where 𝐱(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) 𝑥4(𝑡)]
𝑇 ∈ 𝑅4×1 is the state variables vector, and 𝑎, 𝑏, 𝑐, 𝑑, and 𝜗 denote 

system parameters. The HF system (1) parameters for all simulations are set as 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.5, 𝑑 =
0.2, and 𝜗 = 0.17 [16]. The HF system exhibits chaos, as evident from Figures 1-4. Figures 1(a) and 1(b) 

depict the 3D chaotic attractors of system (1), in which Figure 1(a) shows the attractor along 

(𝑥1(𝑡) − 𝑥2(𝑡) − 𝑥3(𝑡)) and Figure 1(b) along (𝑥2(𝑡) − 𝑥3(𝑡) − 𝑥4(𝑡)) state variables. Figures 2(a)-2(d) 

show the 2D chaotic attractors of system (1), in which Figure 2(a) illustrates chaotic attractor between (a) 

𝑥1(𝑡) and 𝑥2(𝑡), (b) 𝑥1(𝑡) and 𝑥3(𝑡), (c) 𝑥1(𝑡) and 𝑥4(𝑡), and (d) 𝑥2(𝑡) and 𝑥3(𝑡) state variables. Figures 3(a-

d) illustrates the HF system (1) state variables chaotic response for (a) 𝑥1(𝑡) , (b) 𝑥2(𝑡), (c) 𝑥3(𝑡) , and (d) 

𝑥4(𝑡) state variables. Figures 4(a) and 4(b) depict the HF system (1) bifurcation plots for 

(a) 𝑎3 vs 𝑥1, and (b) 𝑎3 vs 𝑥2.  

 

 

  
(a) (b) 

 

Figure 1. Three-dimensional chaotic attractors, (a) (𝑥1(𝑡) − 𝑥2(𝑡) − 𝑥3(𝑡)) and (b) (𝑥2(𝑡) − 𝑥3(𝑡) −

𝑥4(𝑡)) 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 2. Two-dimensional chaotic attractors, (a) 𝑥1(𝑡) 𝑣𝑠 𝑥2(𝑡), (b) 𝑥1(𝑡) 𝑣𝑠 𝑥3(𝑡),  

(c) 𝑥1(𝑡) 𝑣𝑠 𝑥4(𝑡), and (d) 𝑥2(𝑡) 𝑣𝑠 𝑥3(𝑡) 
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(a) (b) 

 

  
(c) (d) 

 

Figure 3. Chaotic response of HF system (1) state variables, (a) 𝑥1(𝑡), (b) 𝑥2(𝑡), (c) 𝑥3(𝑡) and (d) 𝑥4(𝑡) 

 

 

 
 

(a) (b) 
 

Figure 4. HF system (1) bifurcation plots for the parameter 𝑎3, (a) 𝑎3 vs 𝑥1 and (b)  𝑎3 vs 𝑥2 

 

 

To realize two identical HF systems synchronization behaviour, in (2) and (3) show the drive-response 

system (DRS) arrangement; the drive HF system (2) is represented by the state vector x(𝑡), and y(𝑡) denotes the 

response system state vector given in (3). 

 

Drive HF system: 

ẋ(𝑡) = A

[
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)]
 
 
 

+ [

𝑥1(𝑡)𝑥2(𝑡)

−𝑥1
2(𝑡)
0

−𝜗𝑥1(𝑡)𝑥2(𝑡)

] + [

0
1
0
0

] (2) 

 

Response HF system: 

 ẏ(𝑡) = A

[
 
 
 
𝑦1(𝑡)

𝑦2(𝑡)

𝑦3(𝑡)

𝑦4(𝑡)]
 
 
 

+ [

𝑦1(𝑡)𝑦2(𝑡)

−𝑦1
2(𝑡)
0

−𝜗𝑦1(𝑡)𝑦2(𝑡)

] + [

0
1
0
0

] + u(𝑡), (3) 

 

Where: 

 

A = [

−𝑎 0 1 1
0 −𝑏 0 0

−1 0 −𝑐 0
0 0 0 −𝑑

], and 

u(𝑡) = [𝑢1(𝑡) 𝑢2(𝑡) 𝑢3(𝑡) 𝑢4(𝑡)]
𝑇 ∈ 𝑅4×1 is the feedback controller. 

 

The DRS error vector is given in (4). 

 

ė(𝑡) = Ae(𝑡) + F(x(𝑡), y(𝑡), e(𝑡)) + u(𝑡),  (4) 
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Where: 

 

F(x(𝑡), y(𝑡), e(𝑡)) =

[
 
 
 

𝑦1(𝑡)𝑦2(𝑡)

−𝑦1
2(𝑡)

0
−𝜗𝑦1(𝑡)𝑦2(𝑡)]

 
 
 
−

[
 
 
 

𝑥1(𝑡)𝑥2(𝑡)

−𝑥1
2(𝑡)

0
−𝜗𝑥1(𝑡)𝑥2(𝑡)]

 
 
 
=

[
 
 
 
 

𝑦2(𝑡)𝑒1(𝑡) + 𝑥1(𝑡)𝑒2(𝑡)

−𝑒1(𝑡)(𝑥1(𝑡) + 𝑦1(𝑡))

0
−𝜗(𝑦2(𝑡)𝑒1(𝑡) + 𝑥1(𝑡)𝑒2(𝑡))]

 
 
 
 

, (5) 

 

And, 

 

{

𝐞(𝑡) = 𝐲(𝑡) − 𝐱(𝑡),

𝑦1(𝑡)𝑦2(𝑡) − 𝑥1(𝑡)𝑥2(𝑡) = 𝑦2(𝑡)𝑒1(𝑡) + 𝑥1(𝑡)𝑒2(𝑡), 𝑥1
2(𝑡) − 𝑦1

2(𝑡) = −𝑒1(𝑡)(𝑥1(𝑡) + 𝑦1(𝑡))

−𝜗𝑦1(𝑡)𝑦2(𝑡) + 𝜗𝑥1(𝑡)𝑥2(𝑡) = −𝜗(𝑦2(𝑡)𝑒1(𝑡) + 𝑥1(𝑡)𝑒2(𝑡)).

, (6) 

 

Remark 1: conventional synchronization control methods often rely on discontinuous signum (sign) 

functions within their control protocols to rapidly converge state errors to zero. Although these methods 

effectively speed up error convergence, it can lead to chattering, a high-frequency oscillation in the control 

input. This undesirable behavior can cause increased actuator wear and tear, unwanted noise and vibrations, 

and potential instability in the system dynamics. Further, the TDCF/HF systems synchronization feedback 

control strategies [18]-[24] involve cancelling the nonlinear terms. However, this procedure can have a great 

impact on the economy. For instance, if the nonlinear components are removed through the feedback controller, 

it is likely to reduce investment and economic activity. 

To address these challenges, the present article replaces the sign function with a smoother hyperbolic 

tangent function to avoid the chattering behaviour and make the closed-loop energy-efficient. This controller 

avoids the closed-loop's nonlinear terms cancellation to enhance the proposed synchronization strategy 

efficiency. The introduced control law enhances the stability of the financial system by mitigating unexpected 

fluctuations and minimizing the risk of crashes. The reduction in active synchronization fluctuations can offer 

several benefits, including high productivity and efficiency and diminished demands on investment. 

 

 

3. HYPERCHAOTIC FINANCE SYSTEMS SYNCHRONIZATION  

3.1.  Controller design 

This subsection proposes the design of a time-efficient nonlinear feedback controller that addresses 

the challenges discussed in Subsection 1.3 and achieves the objectives given in Subsection 1.4. In (7) gives the 

design of the feedback control input vector u(𝑡) ∈ 𝑅4×1 that realizes the globally stable synchronization 

between two identical HF systems (2-3) such that lim
𝑡→∞

‖e(𝑡)‖ = 0. 

 

u(𝑡) = −αe(𝑡) − β(I − 𝜌δ(𝑡))tanh(e(𝑡)), (7) 

 

Where δ(𝑡) = [δ𝑖𝑖(𝑡), 𝑖 = 1, 2, 3, 4]4×4 is a diagonal matrix with δ𝑖𝑖(𝑡) = e−𝜚|𝑒𝑖(𝑡)|, I = I4×4 is the identity 

matrix, and e denotes the logarithmic base. α = [𝛼𝑖𝑖 , 𝑖 = 1, 2, 3, 4]4×4 and β = [𝛽𝑖𝑖 , 𝑖 = 1, 2, 3, 4]4×4 are the 

diagonal matrices of the feedback gains, and 0 < 𝜌 < 1 and 0 < 𝜚 < 1 are any real constants. 

Remark 2. The proposed TENLC design structure has two parts, each serving a specific role: 

− The closed-loop dynamical system's linear dynamics stability is guaranteed by a suitable choice of the 

diagonal entries in matrix α. 

− The mathematical analysis shows that β(I − 𝜌δ(𝑡))tanh(e(𝑡)) effectively manages the system's inherent 

nonlinearities; it translates to rapid and smooth convergence of error signals toward zero, significantly 

reducing unwanted oscillations. 

Using the control law (7) in (4) yields: 

 

ė(𝑡) = (A − α)e(𝑡) + F(x(𝑡), y(𝑡), e(𝑡)) − β(I − 𝜌δ(𝑡))tanh(e(𝑡)). (8) 

 

3.2.  Closed-loop stability analysis 

This subsection presents the theoretical analysis describing the closed-loop dynamic system (8) global 

stability. Theorem: the feedback control strategy (7) added to the response HF system (3) realizes globally 

stable synchronization. Proof: consider the Lyapunov function candidate in (9). 

 

𝑉(𝑡) =
1

2
e𝑇(𝑡)e(𝑡) ≥ 0.  (9) 
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Now: 

 

�̇�(𝑡) = e𝑇(𝑡)ė(𝑡) (10) 

 

Using (8) into (9) implies: 

 

�̇�(𝑡) = e𝑇(𝑡)(A − α)e(𝑡) + e𝑇(𝑡)F(x(𝑡), y(𝑡), e(𝑡)) + e𝑇(𝑡) (−β(I − 𝜌δ(𝑡))tanh(e(𝑡))) 

 = −e𝑇(𝑡)(α − A)e(𝑡) + e𝑇(𝑡)F(x(𝑡), y(𝑡), e(𝑡)) − e𝑇(𝑡) (β(I − 𝜌δ(𝑡))tanh(e(𝑡))) 

 = −e𝑇(𝑡)P1(𝑡)e(𝑡) + e𝑇(𝑡)P2(𝑡)e(𝑡) − e𝑇(𝑡)β(I − 𝜌δ(𝑡))tanh(e(𝑡)), 

 = −e𝑇(𝑡)Q(𝑡)e(𝑡) − e𝑇(𝑡)β(I − 𝜌δ(𝑡))tanh(e(𝑡)), (11) 

 

Where: 

 

−e𝑇(𝑡)Q(𝑡)e(𝑡) = −e𝑇(𝑡)(P1(𝑡) − P2(𝑡))e(𝑡), (12) 

 

P1(𝑡) = [

𝛼1 + 𝑎 0 0 1
0 𝛼2 + 𝑏 0 0
0 0 𝛼3 + 𝑐 0
0 0 0 𝛼4 + 𝑑

], (13) 

 

e𝑇(𝑡)F(x(𝑡), y(𝑡), e(𝑡)) = 𝑦2(𝑡)𝑒1
2(𝑡) + 𝑥1(𝑡)𝑒1(𝑡)𝑒2(𝑡) − (𝑥1(𝑡) + 𝑦1(𝑡))𝑒1(𝑡)𝑒2(𝑡)

 −𝜗𝑦2(𝑡)𝑒1(𝑡)𝑒4(𝑡) − 𝜗𝑥1(𝑡)𝑒2(𝑡)𝑒4(𝑡)
  

= e𝑇(𝑡)P2(𝑡)e(𝑡), (14) 

 

P2(𝑡) = [

𝑦2(𝑡) −𝑦1(𝑡) 0 −𝜗𝑦2(𝑡)

0 0 0 −𝜗𝑥1(𝑡)
0 0 0 0
0 0 0 0

], (15) 

 

And, 

 

Q(𝑡) = P1(𝑡) − P2(𝑡) = [

𝛼1 + 𝑎 − 𝑦2(𝑡) 𝑦1(𝑡) 0 1 + 𝜗𝑦2(𝑡)

0 𝛼2 + 𝑏 0 𝜗𝑥1(𝑡)
0 0 𝛼3 + 𝑐 0
0 0 0 𝛼4 + 𝑑

]. (16) 

 

Remark 3. Since e𝑇(𝑡)β(I − 𝜌δ(𝑡))tanh(e(𝑡)) ≥ 0 for 𝛽𝑖𝑖 ≥1 and selecting 𝛼1 ≥ 𝑦2(𝑡) − 𝑎, 𝛼2, 𝛼3 ≥ 0 

confirms that e𝑇(𝑡)Q(𝑡)e(𝑡) ≥ 0. Hence, it is established that �̇�(𝑡) ≤ 0. Thus, closed-loop system (8) remains 

stable at the origin globally. Therefore, lim
𝑡→∞

‖e(𝑡)‖ = 0. 

 

 

4. NUMERICAL SIMULATIONS AND RESULTS DISCUSSION 

The drive-response HF systems' (2-3) initial conditions are set as 𝑥1(0) = −0.5, 𝑥2(0) = 1, 𝑥3(0) =
1, 𝑥4(0) = 2, 𝑦1(0) = −1,𝑦2(0) = 2.5, 𝑦3(0) = 1.7, 𝑦4(0) = 1. The controller (6) parameters are set as 𝛼𝑖𝑖 =
𝛽𝑖𝑖 = 1, 𝜌 = 0.1, and 𝜚 = 0.01. 

 

4.1.  Example 1 

This example aims to analyze the performance of the presented TENLC approach (7). Figure 5 shows 

the behaviour of closed loop’s state variable trajectories behaviour without and with control effort. Figure 5(a) 

depicts the transient behaviour of the error trajectories (8) without applying any control effort. As depicted in 

Figure 5(a), the error trajectories exhibit significant oscillations and diverge considerably from the origin. 

Figure 5(b) depicts the transient behaviour of the error trajectories (8). The introduction of control 

input (6) to the response HF system (3) effectively lessens active oscillations, allowing state error trajectories 

to converge smoothly to zero in 2 seconds as shown in Figure 5(b). The control input signals behaviour 

computed by control effort (7) is illustrated in Figure 5(c), showing less oscillatory and quickly reaching zero 

steady-state. 
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(a) (b) 

 

 
(c) 

 

Figure 5. Transient behaviour of the error trajectories and control input signals; (a) error signals behaviour 

without any control effort, (b) convergence of the synchronization error using control effort (7) and  

(c) transient behaviour of the control input (7) 

 

4.2.  Example 2: comparative study 

This example presents a comparative analysis utilizing numerical simulation results to evaluate the 

efficiency of the proposed TENLC approach (7) with the previously established control scheme [24] described 

in (17). The state-feedback control strategy u(𝑡) ∈ 𝑅4×1 in (17) is added to the response HF system (3). Further, 

the controller parameters, HF system's (1) parameters, and initial conditions are set the same for the benchmark. 

 

u(𝑡) =

[
 
 
 
 
𝑒3(𝑡) − 𝑦2(𝑡)𝑒1(𝑡) − 𝑥1(𝑡)𝑒2(𝑡)

𝑒1(𝑡)(𝑥1(𝑡) + 𝑦1(𝑡))

 0
𝜗(𝑦2(𝑡)𝑒1(𝑡) + 𝑥1(𝑡)𝑒2(𝑡)) ]

 
 
 
 

 (17) 

 

Figure 6 illustrates the transient behavior of the errors and control input signals by the control effort (17). 

Figure 6(a) shows the synchronization error trajectories behaviour by the control effort (17), illustrating that 

synchronization takes a long time. Slow convergence rates can lead to unpredictable behavior in closed-loop 

systems, often caused by oscillation or instability. Additionally, these systems are more vulnerable to external 

disturbances, which can result in a loss of synchronization. Figure 6(b) depicts the control input (17) transient 

behaviour that demonstrates initial signal oscillations and takes approximately 18 seconds to reach the steady-

state. Figures 5(b) and (c) and Figures 6(a) and (b) illustrate that the controller (7) realizes the HF systems (2-

3) synchronization in less time, and the control signals reach zero steady-state quickly with reduced active 

oscillations than the controller (17). 

 

 

  
(a) (b) 

 

Figure 6. Transient behaviour of the error trajectories and control input signals; (a) synchronization errors 

and (b) control input signals 

 

 

Figure 7 depicts the comparison of the energy functions and gradient of the Lyapunov function 

candidates. Figures 7(a) and (b) depicts the comparative simulation results of the energy functions φ(𝑡) =
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φ1(𝑡) = ∑ 𝑒𝑖(𝑡)
3
𝑖=1  obtained by the TENLC approach (7) and control strategy (17) for 2 seconds and 12 

seconds, respectively. As shown in Figure 7(a), the proposed TENLC technique (7) takes less than 2 seconds 

to drive the system synchronization error energy to zero, whereas the controller attains the same after 11 

seconds, as shown in Figure 7(b). These comparative computer simulations clearly demonstrate the efficiency 

advantages of the presented TENCL technique (7) over the controller in (17). This advancement addresses the 

challenges posed by financial markets' complex and fluctuating nature, where traditional control methods often 

struggle to maintain stable synchronization. The behaviour of energy dissipation rates by the controllers (7) 

and (17) is compared for 2 seconds and 4.5 seconds, respectively, as depicted in Figures 7(c) and (d). The time 

gradient of the energy function by (7) is denoted by �̇�(𝑡) and �̇�1(𝑡) by (17). Figure 7(c) shows that �̇�(𝑡) = 0 

after 1.8 seconds, and the closed-loop remains at zero level forever. �̇�1(𝑡) = 0 depicts that controller (12) takes 

4 seconds to make the energy level zero, as illustrated in Figure 7(d). This comparative analysis demonstrates 

that controller (7) utilizes less energy for faster convergence of the synchronization error to zero with reduced 

fluctuations than (17). Precise synchronization of diverse financial instruments enables more effective portfolio 

management strategies, optimizing risk and return profiles. 
 
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 7. Comparison of the energy functions and gradient of the Lyapunov function candidates:  

(a) φ(𝑡), (b) φ1(𝑡), (c) �̇�(𝑡), and (d) �̇�1(𝑡) 
 

 

5. CONCLUSIONS 

This study introduces an efficient and time-effective robust nonlinear control algorithm, employing a 

drive-response system model for achieving synchronization in two hyperchaotic finance systems. The 

algorithm retains the closed-loop's nonlinear terms and achieves global stable synchronization with reduced 

fluctuations and faster convergence rates. The Lyapunov stability analysis ensures that the closed-loop is 

globally stable. The proposed nonlinear control scheme is designed for quick convergence of state errors to 

zero and reduces input and output signal fluctuations. The control scheme's rigorous theoretical analysis is 

based on the Lyapunov stability principles and validated by mathematical proofs and computer simulations. 

Additionally, extensive comparative simulations have demonstrated the superiority of this synchronization 

approach compared to existing methods for the same chaotic system. The proposed approach shows high 

performance compared to existing methods in terms of convergence speed and synchronization behavior. The 

research team will focus on exploring fixed-time synchronization of fractional-order uncertain hyperchaotic 

financial systems in the future. 
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