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ABSTRACT

In this paper, the method for unsupervised learning of finite mixture regression
(FMR) models is presented for evaluation using agricultural and emissions data
sets. The FMR models can be written as problems with incomplete data, and
the expectation–maximization (EM) algorithm can be used to estimate unknown
variables. The goals of this research are to find the best clustering model with
different sets of training and test data and examine the relationship between crop
production index and methane emissions in 22 countries from 1990 to 2019
using FMR. In this study also use machine learning process for a FMR model
from real world data. According to the findings, the performance of the random
training data (RDM) in time series is preferable to that of the fixed training
data (FXM). In addition, both RDM and FXM are capable of classifying the
22 countries into two distinct groups and constructing the parameters for the
regression model. However, selecting training and test data will result in a good
prediction; it is dependent on the data collected. Picking the right training and
test data is crucial for accurate predictions-it all comes down to having good data
in the first place.
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1. INTRODUCTION
As a result of growing energy demands, industrialization, and climate change, environmental

challenges have recently emerged as major worldwide concerns [1]-[3]. Global climate change produced by
greenhouse gas emissions has become one of the most pressing issues facing contemporary society, threaten-
ing the global ecological environment and the economy’s sustainable development [4]. It can be seen that the
average temperature is expected to globally rise by two degrees Celsius by the end of the twenty-first century,
owing to global warming and greenhouse gas (GHG) emissions [5]. Agriculture is one of the aspects of the
economy that would suffer the most as a direct consequence of GHG emissions and agriculture is one of the
major contributors to global warming, which is caused by human activities.

Furthermore, agricultural GHG emissions are constantly increasing as traditional farming methods
are increasingly used to meet the world’s growing food demands, in order to feed the world’s growing popu-
lation [6]. Therefore, about one-third of the world’s total greenhouse gas emissions are caused by emissions
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from agricultural practices [7]. For example, GHGs come from the production of agricultural inputs such as
fertilizer, pesticides, herbicides, and irrigation, as well as farm machinery used for spraying, tilling, harvesting,
stocking, and shipping. GHGs such as methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) have
been released in greater quantities as a result of agricultural processes [8]. Nitrous oxide (N2O) and methane
(CH4) have a global warming potential, which is 296 and 34 times more than that of carbon dioxide (CO2),
respectively, despite the fact that their emissions are smaller than that of carbon dioxide (CO2). In order to
measure GHGs, the effects of crop production on and emissions must be evaluated. Methane is a greenhouse
gas in the atmosphere and a major influence on global warming. Agriculture, waste, and energy are the three
main sectors that have been identified as the major sources of methane emissions. It can be seen that methane
emissions from farming seem to be a major, and possibly the main cause of the growth of the atmosphere over
the past ten years [9]. For instance, agriculture is the largest man-made source of emissions, with ruminant
livestock dominating the sector, and rice paddies also contribute to the problem [10]. Additionally, wetland and
crop residue retention leads to increased methane (CH4) emissions. As the amount of methane in the atmo-
sphere keeps increasing quickly, there are an increasing number of methods for reducing it. This is important
due to the need to find a balance between food security and environmental protection.

The relationship between climate change, and agriculture is a very important issue because the world’s
food production resources are already being put under a lot of pressure by a rapidly growing population around
the world [11]. The influence of methane emissions on crop production is of particular interest, not only
because of the global significance of crop production as a food source but also because the recent explosive
growth of crop production, particularly in many regions, contributes to global warming through the emission
of methane (CH4) into the atmosphere. Consequently, Gaussian mixture models can usually be used to predict
methane emissions and determine the relationship between crop production and methane emissions in different
countries. How to construct the prediction models that require small amounts of climate change data from
various regions of the world. In addition, how to split a data set into training data and test data in order to
evaluate prediction models. Finally, how to categorize the countries into groups and determine the pattern of
the mixture using a finite mixture model (FMM).

The paper outlines an approach to apply unsupervised learning techniques, specifically finite mixture
regression (FMR) models, to analyze methane emissions across various country groups. FMR models are par-
ticularly suited to handling datasets with inherent groupings and can account for different regression relation-
ships within these subsets. By treating the problem as one with incomplete data, the expectation-maximization
(EM) algorithm is employed to estimate the unknown variables, which is a common approach in such statis-
tical modeling to maximize the likelihood function when data are missing or latent variables are present [12].
Therefore, the research aims to construct an optimal predictive model for methane emissions, segmenting the
data into distinct groups of countries. This stratification allows for more nuanced analysis, recognizing that the
relationship between the crop production index and methane emissions may vary significantly across different
national contexts.

The study spans data from 1990 to 2019, encompassing 22 countries, providing a broad temporal and
spatial frame of reference for the FMR application. Moreover, the study ventures into the realm of machine
learning by operationalizing the FMR model with real-world data, emphasizing the practical application of the
methodology with technology in agriculture [13]. In this study, experimentation with various combinations of
training and test datasets is a critical part of the model development process. The paper reports that random
training data (RDM) sequences yield better performance in time-series modeling than fixed training data (FXM)
sequences. This could suggest that the model benefits from the variability and potential non-linearity captured
by random sampling. Furthermore, the FMR models prove effective in clustering the countries into two distinct
groups, allowing for targeted regression parameter construction within these clusters.

In the realm of machine learning, the effectiveness of a predictive model is significantly dependent on
the quality and representativeness of its training and test datasets [14]. This is vital because a model trained on
limited or biased data might exhibit excellent performance during training but fail in real-world applications.
Therefore, the process of carefully selecting and preprocessing data is not just a preliminary step but a corner-
stone in building a model that not only performs well in theory but also functions effectively and reliably in
diverse, real-world scenarios. This highlights the need for meticulous attention in preparing data, encompass-
ing tasks like cleaning data, managing missing values, and ensuring the data used for training truly represents
the environment in which the model will operate.
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2. METHOD
2.1. Data collection

In this detailed investigation, the study delineates two primary factors influencing GHG emissions,
specifically focusing on the agricultural sector. The research categorizes countries into distinct groups based
on these factors, which encompass agricultural practices and GHG emissions, with a spotlight on crop produc-
tion as a significant contributor to methane release into the atmosphere [15]. The crop production index serves
as a proxy for agricultural output, and its impact on methane emissions, measured in kilotonnes (kt) of CO2
equivalent, forms the crux of the analysis. To facilitate this analysis, time-series data spanning from 1990 to
2019 were sourced from the World Bank , a decision underpinned by the need for reliable and comprehensive
global datasets. The study’s breadth is considerable, comprising 22 countries that present a mix of devel-
oped and developing nations, each with unique farming systems and practices. This diverse selection includes
Austria, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, the United Kingdom, Greece, Italy,
Norway, New Zealand, Portugal, Sweden, Cambodia, the Philippines, Vietnam, Japan, Thailand, Laos, and
Myanmar. Choosing 22 countries from both Asia and Europe for research offers several advantages, espe-
cially given criteria of including countries with varying economic sizes and a mix of developed and developing
nations.

Here are some reasons why this approach is beneficial. Firstly, by selecting countries with small,
medium, and large economies, this study can capture a wide range of economic contexts. This diversity is
crucial in understanding how economic factors influence agricultural practices and environmental impacts, such
as methane emissions. Secondly, different countries have unique farming systems and practices. This variability
can provide insights into how different agricultural methods contribute to or mitigate methane emissions. It
can also offer a broader understanding of sustainable farming practices in diverse economic contexts. Next,
different countries have varied cultural approaches to agriculture and differing environmental policies. Studying
a broad range of countries allows for an examination of how these factors influence agricultural practices and
methane emissions. Lastly, with a selection of 22 countries, the study can perform comparative analyses
between nations with similar economic statuses or between developed and developing countries. This can help
identify best practices and areas needing improvement in different contexts.

The dataset’s temporal depth and geographical breadth, accounting for 660 observations across 30
years and 22 countries, allow for a robust statistical examination. The inclusion of both developed and develop-
ing countries provides a comparative lens to assess how different agricultural systems and stages of economic
development correlate with methane emissions. The study’s approach, which involves grouping countries
and analyzing the time series within each cluster, could reveal patterns and trends that are not apparent in
more generalized global models. By meticulously collating and analyzing this data, the research aims to offer
insights into the complex dynamics between agricultural productivity and its environmental impact, potentially
informing policy and practice in both national and international contexts.

2.2. Data processing and data visualization
Before being analyzed, the crop production index as well as the methane emissions data obtained are

cleaned. The process of cleaning involved verifying the data to ensure that they are accurate and comprehensive
[16], [17]. Every row of data contained an index of crop production and methane emissions for a specific
country, as well as a time step. Rows that have erroneous data or data that is missing are removed. In addition,
in order to analyze methane emissions, the logarithmic transformation is used. As a result, the application of
data transformation can increase the efficiency of model training and remove numerical errors caused by the
skewness of a measurement variable.

Plotting the data can provide a visual context and identify trends, patterns, and outliers in the data.
Using scatter plots, relationships between crop production and methane emissions in varying countries over
the years are observed in Figure 1. Employing scatter plots, a versatile tool in data visualization, allows for
meticulous exploration and analysis of the relationships between crop production and methane emissions across
different countries over a span of years. These scatter plots enable a multi-dimensional view, where each point
represents a specific country’s data at a given time. Adjusting variables such as color and pattern of the data
points further distinguishes between countries, years, or other relevant categories [18]. This method provides
a nuanced understanding of how crop production correlates with methane emissions, highlighting any direct or
indirect associations. It also facilitates the identification of anomalies or exceptional cases, where the relation-
ship deviates from the general trend. Such visualizations are instrumental in drawing meaningful conclusions
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and guiding subsequent data-driven strategies in agricultural and environmental management. Therefore, these
plots allow for a clear visual comparison, highlighting correlations or anomalies in the data and aiding in
understanding environmental impacts in different regions.

Figure 1. A scatter plot of the relationship between crop production index and methane emissions
(kt of CO2 equivalent)

2.3. Machine learning methods
Sometimes, it appears difficult to determine the optimum models using the available mathematical

and statistical tools. Regression models are a standard technique for statistical procedures of prediction that
are extensively used in numerous applications and fields [19]. However, machine learning models have been
used to overcome the relationship of data and achieve improved prediction accuracy more efficiently [20],
[21]. It can be said that one of the key benefits of utilizing statistical models is that they provide intuitive data
visualizations that support the discovery of correlations between variables and the formulation of predictions.
Machine learning focuses on making predictions by using general-purpose learning algorithms to find patterns
in data that are more beneficial. Therefore, the use of these machine learning models in this analysis is justified
by their ability to predict interactions between two variables.

An effective machine-learning solution is designed to fit data. A trained model must perform well on
data available during the training data process as well as test data [22]. A split data technique is commonly
utilized, in which a larger subset of existing records is used for learning models and a smaller sample for
testing models [23]. Usually, these are referred to as training and test sets, respectively. Different approaches
are employed in the data selection process to discover a satisfactory performance for the prediction models.
Machine learning such as an unsupervised learning method is used to find the best fit model. The FMMs and
EM algorithm are used to highlight the concepts of unsupervised learning in this study. Moreover, the FMMs,
particularly Gaussian mixtures, have been widely utilized in statistical machine learning as an unsupervised
technique for clustering data in a variety of scientific disciplines including agricultural and ecological science.

Therefore, this research uses two different methods for splitting data into training and testing sets.
The first case study is based on data series. Therefore, the first 547 samples are collected as a training set,
representing 80 percent of the length of the entire series from 1990 to 2013 (24 years) in study countries. The
remaining data represents the test set, which is used to evaluate the accuracy of predictive models. This is
the last six of the available data points in each country that fixes the number of years FXM. In the second
case study, there are a total of 547 samples taken by a random sampling process RDM. These samples also
accounted for 80 % of the total.
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2.4. A finite mixture model
A FMM is a semi-parametric method employed for fitting complex data distributions and estimating

density [24]. This model provides a flexible approach for representing data originating from a heterogeneous
population. Notably, FMM offers the benefits of both analytic simplicity and modeling flexibility when dealing
with complex data distributions.

Let x = [x1, ..., xp] be a p-dimensional random variable. The probability density function p(x) has
the following form:

p(x|Θ) = w1f1(x|θ1) + w2f2(x|θ2) + ...+ wKfK(x|θK)

where Θ = ((θ1, ..., θK)T ,W ) denotes the set of all unknown parameters, W = (w1, ..., wk)
T is the mixing

proportion with the condition wk ≥ 0 and
∑K

k=1 wk = 1, and k = 1, 2, . . . ,K is the number of components.
Given a set of n data samples and identically distributed samples X = {x(1), ..., x(n)}, the log-

likelihood can be written as a function.

log p(x|Θ) = logΠn
i=1p(x

(i)|Θ)

= log

n∑
i=1

K∑
k=1

wkf(x
(i)|θk)

The maximum likelihood machine learning estimate of parameter values is expressed as:

Θ̂ = argmax
Θ

log p(X|Θ)

however, it is important to note that this expression cannot always be analytically determined.
The linear regression of mixture models is part of FMMs [25]. Let y be a response variable, x be a

independent variable that has an effect on y, and (x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n)) be sample of obser-
vations from the linear mixture model. Let z be a latent variable with P (zi = k|x) for k = 1, . . . ,K. Given
zi = k, the linear regression is:

yi = xTβk + εik

a FMR model is defined as follows:

f(y|x,Θ) =

K∑
k=1

wkf(y|x, θk)

wk ≥ 0,

K∑
k=1

wk = 1

where Θ is the vector of all unknown parameters and θk = xTβk , σ2
k and wk is the mixing proportion. The

presented approach and theoretical insights can be applied to the Gaussian mixture linear regression model.

f(y|x) = w1G(xTβ1, σ
2
1) + ...+ wkG(xTβk, σ

2
k)

The log-likelihood of a sample of n observations can be defined as follows.

logL =

n∑
i=1

log

k∑
k=1

wkf(yi|xi, θk)

Typically, direct optimization of the log-likelihood function is not feasible. The EM algorithm,
detailed in the following section, is the most common method for obtaining the maximum likelihood estimate
of the parameter vector with latent variables.
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2.5. The expectation-maximization algorithm
The EM algorithm [26] is an iterative approach commonly used for estimating the parameters of statis-

tical models, especially in the context of FMMs, where latent variables, in addition to unknown parameters, are
involved. Hence, the EM algorithm, which converges to a (local) maximum likelihood estimate of the param-
eters of mixture models, serves as a fundamental method employed in fitting mixture models to observations.
The EM algorithm demonstrates its proficiency in handling incomplete data. As a result, it is suggested to
apply the EM algorithm to the model for estimating the parameters of FMR by incorporating hidden variables.”

The EM algorithm consists of two stages: the computation of a specific conditional expectation of the
log-likelihood (E-step) and the maximization of this expectation over the relevant parameters (M-step). For
the current iteration t+1, using arbitrary initial values w(0)

k , β
(0)
k , σ

2(0)
k ; k = 1, ...,K and the parameter values

from the previous iteration t, the EM algorithm is applied to maximize (2.4.) as outlined in [27], [28]:
E-step: evaluate the responsibility w

(t+1)
ik of each component k = 1, ...,K for each data point i =

1, ..., n using the current value of the parameters β(t)
k ,σ(t)

k and w
(t)
k .

w
(t+1)
ik =

w
(t)
k f(yi|xT

i β
(t)
k , σ

2(t)
k )∑K

j=1 w
(t)
j f(yi|x(t)

i β
(t)
j , σ

2(t)
j )

M-step: re-estimate the parameters β(t+1)
k ,σ(t+1)

k and w(t+1)k for each component k = 1, ...,K using
the recently obtained values of w(t+1)

ik from the E-Step

β
(t+1)
k = argmax

βk

n∑
i=1

w
(t+1)
ik (yi − xT

i βk)
2

w
(t+1)
k =

1

n

n∑
i=1

K∑
k=1

w
(t+1)
ik

σ
2(t+1)
i =

1

n

n∑
i=1

K∑
k=1

w
(t+1)
ik (yi − xT

i β
(t+1)
k )2

The EM algorithm begins by augmenting the given data with estimates of latent group membership.
Implicitly, it assumes that k represents the number of components to be estimated from the data. In addition, the
EM method iteratively updates the parameters using a weighted least-squares estimation. The E (Expectation)
and M (Maximization) steps are repeated until a convergence condition is satisfied.

2.6. Model selection criterion
This work focuses on using FMR models when population heterogeneity is unknown. Identifying the

number of latent classes that best match the data is the first step in performing regression mixture analysis.
Then, the effects of independent variables on the dependent variable can be investigated within each latent
class. In order to implement the EM method, it is necessary to know the appropriate number of components, k.
Too many components result in overfitting, whereas too few results in underfitting. It is important to choose the
right number of components. The right number of components can show some significant underlying structure
that describes the data.

This application requires data-driven estimation. As a result, a problem in statistics is the number of
components (k) estimation problem in mixture models. Therefore, this research indicates using the Bayesian
Information Criterion (BIC) to find the number of Gaussian components. In general, it is known that BIC can
be used to estimate k in a consistent way [29]. It can be said that the BIC is a reliable and efficient method for
determining the number of mixture components when each component has a Gaussian distribution. For the k
estimation problem in FMR models, information-theoretic methods like BIC are often used [30], [31]. For a
given set of data, the estimation method is used to fit FMR models with different orders of k = 1, 2, 3 that are
considered in this application. The best possible value for k can be determined by using the minimization [32]:

BICk = −2 log(Lk) +m log(n∗)

where n∗ is the sample of the training data set and m is the total number of parameters.
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2.7. Evaluation models
For the purpose of the present investigation, 80% of the data is chosen to be used as the training set,

and the other 20% is placed to use as the testing dataset. On the basis of the results of the three statistical
evaluation models, the performance of the models is evaluated. Therefore, the performance of the models in
this study is evaluated by utilizing the coefficient of correlation (R2), the mean absolute error (MAE), and the
root-mean square error (RMSE) [33].

R2 is one of the most important measures for assessing the accuracy of prediction models with a value
between 0 and 1. The models with the highest values are considered the best and are better at predicting than
others.

R2 =

 ∑N
i=1(yi − ȳ)(y∗i − ȳ∗)√∑N

i=1(yi − ȳ∗)2
∑N

i=1(y
∗
i − ȳ∗)2

2

Where yi is the actual data of sample i, ȳ is the mean of the actual data, y∗i is the predicted data of sample i, ȳ∗

is the mean of the predicted data and N is the number of data.
The MAE and RMSE both represent the error that happens between the actual data and the predicted

data, and values that are lower indicate that the predictions have more forecast accuracy:

MAE =
1

n

N∑
i=1

|yi − y∗i |

RMSE =

√√√√ 1

n

N∑
i=1

(yi − y∗i )
2

The performance of models is evaluated based on their R2, MAE, and RMSE values.

3. RESULTS AND DISCUSSION
3.1. Data analysis

The provided line graph offers a visual comparison between the mean values of crop production and
methane emissions across a selection of countries in Figure 2. Displayed on the x-axis are the countries, while
the y-axis quantifies the mean values for the two distinct datasets. The blue line, marked with circles, represents
the mean crop production values, suggesting a relatively stable trend across the nations, with slight variations.
In contrast, the green line, highlighted with squares, corresponds to mean methane emissions and shows more
significant fluctuations. This visual representation underscores the variability and complexity of agricultural
metrics and their environmental implications. The precise data points are not provided, which limits the ability
to extract exact figures for each country directly from the graph.

Figure 2. Comparison of crop production and methane emissions by countries
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The graphs presented provide a comprehensive overview of the distribution of data related to crop
production and methane emissions across different countries in Figures 1-4. In Figure 2, the mean values of
the methane emissions index are specifically highlighted. The plots reveal an intriguing observation: one might
anticipate a correlation between high crop production and elevated methane emissions, yet this is not consis-
tently observed across the board. It is noteworthy that certain countries, such as Canada, the United Kingdom,
France, Germany, Vietnam and Thailand, register high indices for methane emissions. Conversely, countries
like Norway, Switzerland, Finland, Denmark, Sweden, and Lao report methane emission indices below 4,
with Canada exhibiting the highest emission levels and Norway the lowest within the dataset. Moreover, the
temporal and geographical variability in methane emissions is apparent, indicating that these patterns are not
uniform. For instance, countries like Canada, Cambodia, Myanmar, Lao, the Philippines, Spain, Thailand, and
Vietnam show an upward trajectory in their methane emissions over time. On the other hand, a set of countries,
including Austria, Denmark, Finland, France, Germany, Sweden, and the UK, demonstrate a declining trend in
emissions. This diversity in patterns underscores the complex interplay of factors influencing methane emis-
sions and highlights the need for country-specific analyses to understand the underlying causes and potential
mitigation strategies.

Figure 3. Scatter plots of year versus methane emissions (kt of equivalent) comparing 22 countries

The descriptive statistics of crop production and methane emissions are visualized in Figure 3. The
image displays a series of time-series plots, each representing the log-transformed methane emissions for a
range of countries from 1990 to 2019. The use of logarithmic scale on the y-axis is a common analytical
approach to normalize data and highlight proportional changes over time. Each subplot is clearly labeled with
the name of a country, and the x-axis marks the progression of years. From a high-level perspective, the plots
exhibit varying trends: certain countries show a decrease in methane emissions over the examined period,
others an increase, and some display relatively flat trends, indicating stable emissions over time. In analyzing
the trends, it’s evident that countries such as Austria, Finland, France, and Germany demonstrate a decline in
methane emissions, which could suggest the effectiveness of environmental policies or advances in technology
that lead to reduced emissions. On the other hand, countries like Cambodia, Myanmar, and Vietnam are on
an upward trajectory, possibly reflecting increased industrial or agricultural activities that have not been offset
by emissions control measures. The data for Japan, Norway, and Switzerland, with their minimal fluctua-
tions, might indicate consistent emissions standards or a balance between emissions sources and mitigations.
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To draw deeper conclusions from these graphs, additional context regarding the countries’ economic devel-
opment, environmental policies, and sector-specific activities would be required, as these factors significantly
influence methane emission levels.

Figure 4. Box plot methane emissions compared with countries

The image presents a series of box plots illustrating the distribution of log-transformed methane emis-
sions data for various countries in Figure 4. Each box plot aligns with a specific country, allowing for direct
comparison of methane emission statistics among them. The central line within each box signifies the median
value, offering a quick visual cue to the central tendency of the data. The spread of each box, demarcating the
interquartile range, indicates the middle of the data, providing insight into the variability of emissions within
each country. Notably, certain countries display outliers, depicted as individual points, suggesting emissions
events that are significantly different from the typical range observed. Analyzing these plots, one can discern
that countries such as Greece and Germany have high-value outliers, which could indicate sporadic instances
of elevated methane emissions. On the other end of the spectrum, some countries exhibit a narrow interquartile
range, reflecting more uniform methane emissions over the period studied. The use of a logarithmic scale is
indicative of a focus on relative changes and can be especially useful in revealing patterns in data that span
several orders of magnitude. This type of visualization is particularly adept at highlighting variations in data
distribution and can be instrumental for researchers and policymakers in identifying trends, assessing policy
effectiveness, and prioritizing areas for environmental intervention.

The findings from this section of the research elucidate distinct patterns of methane emissions
related to agricultural practices, particularly crop production. Utilizing the FMM, the study categorizes the 22
countries into separate groups, each demonstrating a unique emission pattern. This model is adept at handling
heterogeneous data, identifying subpopulations within the overall dataset, and fitting multiple distributions to
the collected observations. By applying this methodology, the research discerns the underlying structures and
categorizations that might not be visible in a more homogenized analysis. For each group of countries, the
FMM assigns classification based on the similarity in their time-series patterns of methane emissions from
agriculture. These classifications could be influenced by factors such as the intensity of agricultural practices,
the type of crops produced, the scale of farming operations, and the implementation of methane reduction
technologies or strategies. Developed countries might exhibit one pattern, potentially reflecting advanced agri-
cultural techniques and stringent environmental policies, while developing nations may show another, possibly
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due to traditional farming methods and different regulatory frameworks. Therefore, taking into consideration
the results of this section, the pattern can be broken up into groups of countries each of which classifies the
pattern into a distinct category. This applies to 22 countries by the FMM.

3.2. Application results
In the realm of machine learning, particularly within the scope of this application, the robustness of

a model is critically judged by its ability to generalize well to new, unseen data. A model that performs well
not only on the training and test datasets but also on future data exemplifies good machine learning practice.
The goal is to create a model that captures the underlying patterns and relationships within the data without
overfitting to the noise or specificities of the training set. In this study, the finite mixture regression (FMR)
model is calibrated to cluster the dataset of methane emissions and crop production indices from the 22 coun-
tries. The model’s training involves an iterative process where the expectation-maximization (EM) algorithm
is pivotal. This algorithm optimizes the log-likelihood of the FMR model, effectively enabling it to estimate
the parameters that best fit the data. Upon completion of the learning process, the model iteration that yields
the highest log-likelihood is selected as the optimal model for data clustering. This selected model is presumed
to be the most representative of the complex, multidimensional data, encompassing the intricacies of methane
emission patterns across varying agricultural contexts.

The methodology applies a two-pronged approach to data segmentation. The first method involves
a random division of the dataset into training and testing sets, which is conducive to assessing the model’s
predictive power. The second method could involve a more systematic partitioning of data, perhaps chrono-
logical, where earlier years are used for training and later years for testing. This temporal split is particularly
relevant for time-series data, ensuring that the model is tested against the most recent and, presumably, the most
evolved patterns of emissions. Through this dual approach, the research ensures a comprehensive evaluation
of the FMR model’s performance. By effectively estimating the number of components (or clusters) and iden-
tifying the best-fit model, the study paves the way for more informed, data-driven decisions in environmental
policy and agricultural management. Such a model, when applied successfully, can become an indispensable
tool for understanding and mitigating the impact of agriculture on climate change.

In this application, a good machine learning solution should be able to fit new data. A model that has
been trained should first work well on both the data that was used to train and test it and the data that will be
available in the future. After learning, the particle with the highest log-likelihood is chosen, and its FMR is
considered to be the best model for clustering the input data set. The mixture model and EM algorithm are
used to find the number of components and the best fit model. Therefore, two methods are utilized to divide
data into training and testing sets with FMR.

The BIC values are given between FXM and RDM in Table 1. Through the use of BIC, the number
of Gaussian components can be determined. As a result, both FXM and RDM have the lowest BIC for two
components (k = 2), which is −486.6049 for FXM and −474.5145 for RDM. The optimal solution corre-
sponds to k = 2 when evaluated using BIC. Through the use of regression models, it is possible to further
demonstrate that the model with k = 2 is appropriate. It is possible to say that the data on crop output and
methane emissions can be divided into two distinct groups. In the next step, the coefficients of models should
be analyzed in each component.

Table 1. The BIC values compared between FXM and RDM in different the number of components
(k = 1, k = 2, and k = 3)

Model k = 1 k = 2 k = 3

FXM -413.8567 -486.6049 -467.0757
RDM -408.7911 -474.5145 -461.5694

A finite mixture of two regressions fit data sets provides the optimum solution. The models with two
components are fitted, and the parameters are computed using the data set in Table 2. The linear mixture model
identifies the parameters (β̂0k, β̂1k, σ2

k, and wk) that need to have estimates calculated for them. In the case
of FXM, the parameters of variance σ2

1 and σ2
2 are 0.043218 and 0.047868, while the parameters of mixing

proportion w1 and w2 are 0.57 and 0.43, respectively. Then, a mixture of two linear models in this case is
defined by (1) and (2).
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Table 2. The coefficients of two models (FXM and RDM) in different two components (k = 2)
Coeffcient of models FXM RDM
Equation (1)
β̂0 4.882786 4.943889
β̂1 -0.075938 -0.1180935
Equation (2)
β̂0 3.421983 3.55212
β̂1 0.27306856 0.22692

ŷi = 4.882786− 0.075938xi (1)

ŷi = 3.421983− 0.273068xi (2)

Likewise, for the case of RDM, the parameters of variance σ2
1 and σ2

2 are 0.060890 and 0.083298,
whereas the parameters of mixing proportion w1 and w2 are 0.55420 and 0.44579, respectively. In this model,
the two linear models are written as (3) and (4).

ŷi = 4.943889− 0.1180935xi (3)

ŷi = 3.555212− 0.2269237xi (4)

After that, (1)-(4) are compared by evaluating predictive performance on training and test data set.

3.3. Accuracy evaluation
To evaluation the prediction performance of selected models, model performance is measured using

the coefficient of determination (R2), MAE, and RMSE. Tables 3 and 4 summarize the findings of the perfor-
mance metrics for estimating the number of components k = 2 based on its relevance on the accuracy of the
parameter estimation models.

Table 3. Performance metrics (R-Squared, MAE, and RMSE) of the FX models for training and test data
Equation R2 MAE RMSE
Equation (1)
Train 0.347770 0.014018 0.148211
Test 0.274452 0.014026 0.153503
Equation (2)
Train 0.757507 0.05844 0.134729
Test 0.289443 0.13528 0.188063
All 0.332153

Table 4. Performance metrics (R-squared, MAE, and RMSE) of the RD models for training and test data
Equation R2 MAE RMSE

Equation (3)
Train 0.321076 0.011077 0.151784
Test 0.313210 0.046520 0.114250

Equation (4)
Train 0.664368 0.070090 0.143313
Test 0.538800 0.127640 0.185254
All 0.325803

For training data performance, (2) and (4), (R2 = 0.76 and R2 = 0.66) are better than test data
performance (R2= 0.29 and R2 = 0.54) in (1) and (3). All training data performances in FXM and RDM are
stronger than test data while test data in (3) and (4) (R2 = 0.31 and R2 = 0.54) for RDMs are better than test
data in (1) and (2) (R2 = 0.27 and R2 = 0.29) for FXM. Overall, the performance metrics of the FXM and
RDM models are the same because their averages are so close. However, the model will use for prediction in
the future and the test data are considered. Therefore, the best performance predictor model is RDM.

A detailed explanation of the individuals that make up different subpopulations within a sample can be
obtained through the use of FMR. The illustration demonstrates that the error is relatively considerable, while
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the value of R2 in the findings of the linear regression mixture analysis is quite low in some conditions but
the models can be considered [34]. It is important to note that regression mixture modeling is not the same as
multiple-group modeling when it comes to analyzing population diversity [35]. This means FMR can represent
some distinct subgroups in the data. However, the RDM for selecting training data by a random process is a
good choice for prediction because it considers the performance of test data. The models are good because the
predictions are much closer to the actual values of the parameters, making forecasts more accurate [36].

3.4. Agricultural and methane emissions predictors
Table 5 shows that there are two different groups based on the crop production index and methane

emissions data. In (1) and (2) list Cambodia, Canada, France, Germany, Italy, Japan, Myanmar, New Zealand,
Philippines, Spain, Thailand, the United Kingdom, and Vietnam in Group 1 (Equation 3). Group 2 includes
Austria, Finland, Greece, Laos, Norway, Portugal, Sweden, Switzerland, and Denmark. Comparatively, the
methane emissions from Group 1 are quite considerable, but those from Group 2 are quite low. In Group 2,
crop production has a small negative effect on methane emissions, but the emissions are still low compared
to Group 1. On the other hand, methane emissions are almost stable in Group 1. In the past, agriculture had
a big negative effect on methane emissions in most countries in Group 1. Because of this, they have tried to
fix the problem [37], [38]. The effect of climate change on crop production is of particular interest, not only
because crops are an important source of food all over the world, but also because recent intensification of crop
production, especially in Asia, releases methane, which contributes to global warming. Only Laos has small
emissions of methane, which is in Group 2 because of the small size of agricultural land. However, the pattern
of methane emissions in Laos is rising.

In Group 1, which includes countries in Asia such as Thailand, Vietnam, Cambodia, and Philippines,
as well as Japan, approximately 90 percent of the world’s agricultural area, including rice fields, is located in
monsoon Asian countries. Consequently, during the 1990s, CH4 emissions from agricultural fields in these
countries have been intensively measured [39]-[41]. Group 2 is comprised almost mainly of countries that
are members of the European Union. This group is charged with implementing a policy that was recently
passed and is intended to encourage activities that have no impact on the environment. Therefore, it would be
beneficial for countries all around the world to severely reduce their CH4 emissions.

Table 5. The two groups of 22 countries divided by the finite mixture regression model
Group 1 Group 2

Cambodia Australia
Canada Finland
France Greece

Germany Laos
Italy Norway
Japan Portugal

Myanmar Sweden
New Zealand Switzerland
Philippines Denmark

Spain
Thailand

UK
Vietnam

4. CONCLUSIONS
To address the research question regarding relationship between crop production and methane emis-

sions index, the FMR and EM algorithm successfully classified 22 countries into two groups based on crop
production and methane emissions. This classification reveals that the choice of algorithm and the nature of the
training data significantly impact predictive accuracy. The RDM was found to be more effective than the FXM
in modeling these complex relationships. However, this prediction model depends on the type of data. This
study highlighted the application of agricultural data to estimate emissions of methane in two different groups
of countries with random training data. The research suggests that mixture models, like the Gaussian process,
could further enhance prediction accuracy in time series data. This advancement is particularly pertinent in
agricultural studies, where large and diverse datasets are vital. The study underscores the need for extensive
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data collection to improve model training and prediction capabilities. These findings have broad implications
for environmental research, highlighting the critical role of advanced statistical methods in understanding and
mitigating the impacts of agricultural practices on the environment. In the future work, the findings suggest
that mixture models can improve predictions from nonparametric regression models in time series data such as
Gaussian process. In addition to this, it is important to be concerned about the larger collection of training data.
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