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Abstract 
Connecting wind power to the power grid has recently become more common. To better manage 

and use wind power, its strength must be predicted precisely, which is of great safety and economic 
significance. In this paper, the short-term power prediction of wind power is based on self-adaptive niche 
particle swarm optimization (NPSO) in a neural net. Improved PSO adopts the rules of classification and 
elimination of a niche using a self-adaptive nonlinear mutation operator. Compared with the traditional 
method of maximum gradient, NPSO can skip a local optimal solution and approach the global optimal 
solution more easily in practice. Compared with the basic PSO, the number of iterations is reduced when 
the global optimal solution is obtained. The method proposed in this paper is experimentally shown to be 
capable of efficient prediction and useful for short-term power prediction. 
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1. Introduction 

Wind power is a renewable energy source that is becoming increasingly popular for 
application in the grid because of its environmentally friendly and low-cost properties. However, 
because the power fluctuates with the wind strength, connecting wind power to the grid is 
challenging. To make the use of wind power reasonable and reduce its negative effects on the 
power grid, scientists in many countries have been working to develop methods to predict the 
power of the wind generators, which is of great importance to the economical distribution and 
operation of the power grid. Denmark was among the first countries to develop a system of 
power prediction for wind power [1]. Prediktor is the wind power work prediction system 
developed by Ris National Laboratory of Denmark, which mainly applies physical models [2]. 
ANEMOS, a research project sponsored by the European Union, combines physical and 
statistical methods [3]. The eWind is a system developed by AWS Truewind in America [4]. The 
highly precise mathematical models of atmospheric physics and adaptive statistical models are 
combined; the velocity of the wind and the power of the wind power plants have been 
investigated in studies based on time serials and neural networks [5-7]. The back propagation 
(BP) neural network is the mostly widely used neural network. The classic BP learning law is 
typically used in BP neural networks to determine network connection weights. However, this 
technique is slow in practice and may lead to a local optimal solution. In this paper, the short-
term power prediction of the wind power is based on self-adaptive niche particle swarm 
optimization (NPSO) in a neural network. Improved PSO adopts the rules of classification and 
elimination of a niche and uses a self-adaptive nonlinear mutation operator. Compared with the 
traditional method of maximum gradient, NPSO can skip a local optimal solution and approach 
the global optimal solution more easily in practice. Compared with the basic PSO, the number of 
iterations is reduced when the global optimal solution is obtained. The method proposed in this 
paper is experimentally shown to be capable of efficient prediction and useful for short-term 
power prediction. 
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2. Theoretical Basis for Improved Self-Adaptive PSO 
2.1. Theoretical Basis for Basic Particle Swarm Optimization 

In 1995, J. Kennedy and R. C. Eberhart developed PSO [8, 9], which aims to simulate a 
simple social system, such as a bird flock searching for foods, to study and explain complex 
social behavior. In basic PSO, every candidate solution is compared to a bird searching the 
space and is called a particle. The position and velocity of a particle is denoted as 

i i1 i2 iDX ( , x , ,x )x ggg   and  i i 1 i2 iDV ( ,  , , )v v v ggg , respectively. At the initial stage, a swarm of 
particles is randomly selected. Then, the swarm is updated according to the best known 
positions of individual particles and the entire swarm. The equations defining the position and 
velocity of the particles are shown below: 

 

id id 1 1 id id

2 2 id id

id id id

v (k+ 1) = w v (k) + c r (p (k ) - x (k ))

+ c r (g (k ) - x (k ))

x (k+ 1) = x (k ) + v (k )      (1) 
 

in i e n d m a x m a x e n dw = (w w )(k k ) / k + w      (2) 
 
In Equations (1) and (2), p is the best known position of a particle and g is the best 

known position of the entire swarm; i = 1,2···n; D is the dimension of a particle; k is the k-th 
iteration; d is the d-th dimension; kmax is the maximum number of iterations; w is the inertia 
weight; wini is the initial inertia weight; wend is the final inertia weight; c1 and c2 are learning 
factors; and r1 and r2 are uniform random numbers in the range [0, 1].   

 
2.2. Adaptive Niching Particle Swarm Optimization 

Basic PSO may lead to premature convergence to a local optimum, thus affecting the 
quality of the solution. The probability of prematurity can be reduced by mixing basic PSO with 
other algorithms or by adopting a comprehensive strategy. Niche technology simulates 
ecological balance, i.e., a species evolves to establish a surviving niche in a larger environment, 
which reflects the evolutionary rule of survival of the fittest. Goldberg and Richardson described 
niche technology based on a sharing mechanism in [10] and Brits et al., described NPSO in 
[11]. The following formulae are based on adaptive NPSO: 

 

id id 1 1 id id

2 2 id id 3 3 id id

id id id

v (k+1) = wv (k) + c r (p (k) - x (k)) +

c r (g (k) - x (k)) + c r (p (k) - x (k))

x (k+1) = x (k) + v (k)     (3) 
 

ini end end
max

k
w = (w - w ) exp(-1 / [1 + (1 + )] + w

k      (4) 
 
In Equation (3) and (4), ͞pid is the best known position of a sub-swarm; c3 is the learning 

factor; and r3 is a uniform random sequence in the range [0, 1]. The diversity selection of the 
swarm regulates the adaptability of individual particles by reflecting the sharing functions among 
them, upon which the later evolutionary process is selected, to create an evolved environment 
and to realize swarm diversity.The adaptive mutation operator adopts an adaptive non-linear 
decreasing inertia weight function[12]. The decreasing velocity of the inertia weight is 
accelerated in the first iteration of the algorithm to achieve a more efficient solution. 

 
2.3. The Main Steps of the Improved PSO Algorithm 

The main steps of the improved PSO algorithm are as follows: 

Step 1:  Start. 
Step 2:  Generate the initial population by chaotic iteration. 
Step 3:  Initialize parameters. 



TELKOMNIKA  ISSN: 2302-4046  

Short-Term Prediction of Wind Power Based on an Improved PSO Neural… (Hong  Zhang) 

4975

Step 4: Select a particle randomly and divide all of the particles evenly into m small 
niche subpopulation based on adaptive functions. 

Step 5: Establish the initial velocity of the particles randomly.  
Step 6: Set the initial position of the present particle as the individual historical optimal 

value, pbx; set the historical optimal value of the optimal individual in each subpopulation as the 

population historical optimal value, p bx; and set the historical optimal value of all of the 
particles as the overall historical optimal value, gbx. 

Step 7: When k is less than the maximum number of iterations, the following cycle of 
operations is performed for each subpopulation: 

a) Calculate the inertia weight, threshold value, and calibration coefficient. 
b) Update the velocity and position of every particle within each subpopulation. 
Step 8: Adopt a niche elimination strategy. 
Step 9: Determine whether the convergence conditions are met; if so, stop the 

calculation and output the results; if not, go to Step 6.   
Step 10: End. 
The flow chart in Figure 1 illustrates the main steps of the improved PSO algorithm. 

 
 

 
Figure 1. Flowchart of the Improved PSO Algorithm 

 
 

2.4. Testing the Improved PSO Algorithm Using Standard Test Functions 
To test the performance of the improved PSO algorithm, two standard testing functions 

are selected: the 2-D Rosenbrock function and 2-D Rastrigin function. Standard testing 
functions are commonly employed in the optimization literature to evaluate the efficiency of new 
algorithms [13, 14]. The two standard testing functions have numerous local optima and a global 
minimum that is very difficult to locate.  

 
2.4.1. The 2-D Rosenbrock Function 

The 2-D Rosenbrock function is given by Equation (5): 
 

2 2 2
1 2 2 1 1f ( x ,x ) = 1 0 0 ( x - x ) (1 x )               (5) 

 
 

Figure 2. Graph of the Rosenbrock Function Figure 3. Graph of the Rastrigin Function 
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For the 2-D Rosenbrock function in this paper, the global minimum is fglobal = 0 as x = 
(1,1), but the valley in which the minimum lies has steep edges and a narrow ridge. The tip of 
ridge is also steep. Figure 2 illustrates the main characteristics of the 2-D Rosenbrock function. 

 
2.4.2  The 2-D Rastrigin function 

The 2-D Rastrigin function is given by Equation (6): 
 

2 2
1 2 1 2 1 2g(x ,x )=x x 10[cos (2 x ) cos (2 x )] 20    

  (6) 
 
For the 2-D Rastrigin function employed in this paper, the global minimum is fglobal = 0 

when x = (0,0). There are many local minima arranged in a lattice configuration, as shown in 
Figure 3. Figure 3 illustrates the main characteristics of the 2-D Rosenbrock function. The global 
minima of the 2-D Rosenbrock function and 2-D Rastrigin function can be located by simulation 
computation based on the improved PSO algorithm. Thus, the model based on the improved 
PSO can be used in practice. 

 
 

3. Neural Network Model Based on Self-Adaptive Niche PSO 
3.1. Theoretical Basis for the Basic Neural Network 

 

 
Figure 4.  Artificial intelligence neural network. 

 

 
    Figure 5. Learning process of the NPSO neural system 

 
 

Since the insightful study of the neural network in the 1980s [15-16], neural networks 
have been widely applied to the industrial field. The artificial intelligence neural network is a 
complex nonlinear system. The artificial neural network is also a nonlinear mapping system with 
good self-adaptability and can be used to identify any complicated state or process. Figure 4 
describes a simple artificial intelligence neural network. The basic principle of the neural 
network model to process information is that the input signal X(i) acts on the intermediate node 
(the hidden layer), leading to a result from the output node, which utilizes a non-linear 
transformation and generates an output signal Y(k) by adjusting W(ij), the value relating to the 
input nodes and hidden layer nodes.T(jk), the value relating to the hidden layer nodes, the 
output node, and their respective values, is reduced by repetitive learning training; the network 
parameters (weights and threshold values) relating to the minimum error are determined. The 
training continues until the error reaches the threshold value. The BP neural network model is 
expressed in Equation (7):   
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j i j i j

k j k j k

O f ( W X q )

Y f ( T O q )

   

   
          (7) 

                                         
Where f is the activating function and q is the neural cell threshold. Figure 5 illustrates the 
performance of prediction based on the improved PSO neural network. 
 
3.2. The Steps of the Prediction Algorithm Based on Self-Adaptive NPSO Neural Network 

The main steps of prediction algorithm based on the self-adaptive NPSO neural network 
are as follows: 

Step 1: Start. 
Step 2: Input the initial values and target values of the samples. 
Step 3: Initialize the coupling weight values and thresholds. 
Step 4: Convert connection weights and thresholds to particles. 
Step 5: Divide the initial population into several small niche subpopulations. 
Step 6: Calculate the adaptive values of the particle swarm. 
Step 7: Determine the best known positions of the individuals, sub-populations, and 

overall population.  
Step 8: Adjust the adaptability and inertia weight and update the velocity and position of 

the particles. 
Step 9: Judge whether the niche update conditions are met. If not, go to Step 6. 
Step 10: Run the niche optimization rules. 
Step 11: Judge whether the maximum time is reached. If not, go to Step 6. 
Step 12: Determine the coupling value and threshold. 
Step 13: End. 
The flow chart in Figure 6 illustrates the main steps of the prediction algorithm based on 

the self-adaptive NPSO neural network. 
 

  
Figure 6. Flow Chart of the Prediction Algorithm Based on the Self-adaptive NPSO Neural 

Network 
 
 

4. Predictive Analysis of the Neural Network Based on Self-Adaptive NPSO 
The power prediction model is established by the neural network based on self-adaptive 

NPSO (improved PSO). The power of a wind generator in Dongtai (Jiangsu, China) was 
predicted in 2008 based on the meteorological data and data for the power generated by the 
wind generator in the previous months. The predictive models for the neural network are based 
on PSO, NPSO, and Traingdm. First, the original data related to wind speed and wind power 
must be processed and normalized by advanced mathematical methods [17]. For example, the 
model will observably decrease systematic error when the origin data have been processed by 
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the Kalman filter described in the literature [18]. All predictive models are trained beforehand. 
Figure 7 illustrates the main characteristics obtained from different prediction models 3 h ahead. 
Figure 7(a) illustrates that  higher wind powers generally correspond to higher wind speeds. 
Figure 7(b) presents the measured power and forecasted power based on PSO, improved PSO, 
and Traingdm. Comparing the results of the three methods, the forecasted wind power curve 
based on the improved PSO is the closest to the measured power in Figure 7(b). Figure 7(c) 
presents the relative error from different predictions. The minimum relative error of the forecast 
wind power is obtained by the improved PSO method. 
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Figure 7.  Main Characteristics Obtained from the Three Different Predictions. (a) Wind speed 
and wind power. (b) The measured power and forecasted power based on PSO, improved PSO, 
and Traingdm. (c) Relative error from different prediction models based on PSO, improved PSO, 

and Traingdm. (d) Frequency and probability from different prediction models based on PSO, 
improved PSO, and Traingdm 
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Figure 7(d) illustrates the frequency and probability from different prediction models 
based on PSO, improved PSO, and Traingdm. The probability of a relative error of less than 0.1 
for the improved PSO method is greater than those of PSO and Traingdm. Thus, the prediction 
accuracy of the improved PSO method is better than those of PSO and Traingdm. The absolute 
error, relative error, mean absolute error, mean relative error, standard deviation, relative 
standard deviation, and interval probability in this paper are illustrated by Equation (8)[19]. From 
Figure 7, the statistical data indicate that the prediction power based on improved PSO is better 
than those based on PSO and Traingdm. 

 
a b s o lu t e  e r r o r  =  |  f o r e c a s t  ( ) -m e a s u r e  ( ) |

|  f o r e c a s t  ( ) -m e a s u r e  ( ) |
m e a n  a b s o lu t e  e r r o r  

n
|  f o r e c a s t  ( ) -m e a s u r e  ( ) |

r e la t i v e  e r r o r  =
m e a s u r e  ( )

r e la t i v e  e r r o r  
m e a n  r e la t i v e  e r r o r  =

n

s t a n d a r d  d e v i a t i

i i

i i

i i

i



n n
2

i= 1 i= 1

n

i= 1

1
( f o r e c a s t  ( ) - f o r e c a s t  ( ) )

n
o n

n -1
s t a n d a r d  d e v i a t i o n

r e la t i v e  s t a n d a r d  d e v i a t i o n
1

f o r e c a s t  ( )
n

f r e q u e n c y ( c o u n t s )
i n t e r v a l  p r o b a b i l i t y =

n

i i

i





 



        (8) 

 
                        

4. Conclusion 
In this paper, a predictive model for neural networks based on self-adaptive NPSO is 

established. Using model analysis, experiments, and comparison with predictive models based 
on other algorithms, the model is shown to be more precise than the other two models 
considered; furthermore, it has the lowest absolute variance, demonstrating its effectiveness. 
The reliability of the model is significantly related with the precision of the weather forecast, With 
computers becoming increasingly powerful, the predictive method of the neural network based 
on hybrid multi-algorithms will be most useful in the future.  
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