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 Software requirements are the most critical phase focused on documenting, 

eliciting, and maintaining the stakeholders’ requirements. Risk identification 

and analysis are preemptive actions designed to anticipate and prepare for 

potential issues. Usually, this classification of risks is done manually, a 

practice that the personal judgment of the risk analyst or the project manager 

might influence. Machine learning (ML) techniques were proposed to 

predict the risk level in software requirements. The techniques used were 

logistic regression (LR), multilayer perceptron (MLP) neural network, 

support vector machine (SVM), decision tree (DT), naive bayes, and random 

forest (RF). Each model was trained and tested using cross-validation with 

k-folds, each with its respective parameters, to provide optimal results. 

Finally, they were compared based on precision, accuracy, and recall 

metrics. Statistical tests were performed to determine if there were 

significant differences between the different ML techniques used to classify 

risks. The results concluded that the DT and RF are the techniques that best 

predict the risk level in software requirements. 
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1. INTRODUCTION 

Software development involves a group of interconnected activities ranging from planning where the 

objectives and scope of the project are established, specification of requirements to determine the needs and 

expectations of the users, conceptualization of the solution through the design, writing the source code, and finally 

deployment and maintenance to ensure the availability of the solution, up-to-date and free of errors. Software 

requirements are the most critical phase focused on documenting, eliciting, and keeping the stakeholders’ 

necessities [1]. Frequently, successfully discussing and securing stakeholders’ main requisites is a critical factor in 

creating a high-quality software system [2]. However, in the software development life cycle (SDLC), there is a 

risk of imprecise processes that can lead to the potential failure of the software. These alarming processes are 

called software risks. If these risks are not identified in time, it may lead to project failure [3].  

The standish group report [4] has continually pointed out the software industry’s frequent high 

failure rates. The report said that only 16.2% of projects were successful, completed on time and budget, and 

had all expected features. Most projects (approximately 52.7%) exceeded budget, missed deadlines, and 

missed some promised features. This results in 31.1% of projects being categorized as failures, indicating 

they were either abandoned or canceled. Some factors influencing whether a project succeeds or fails include 

executive engagement, precise requirement definitions, efficient project management, and active involvement 

of the end user. 

https://creativecommons.org/licenses/by-sa/4.0/
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Risk identification and analysis are preemptive actions designed to anticipate and prepare for potential 

issues. It implies identifying potential risks, evaluating their likely impact and frequency, and formulating 

strategies for mitigation or contingency plans to tackle them proactively [5]. Risks can be categorized using 

different criteria, including their origin, type, or impact on the project [6]. Usually, this classification of risks is 

done manually, a practice that the personal judgment of the risk analyst or the project manager might influence 

[7]. That process can introduce biases and variability in risk management, leading to inconsistent risk 

evaluations and unpreparedness for critical issues. An inappropriate identification of risks can have a relevant 

significance, especially in software requirements, because misunderstood or poorly managed requirements can 

lead to software failing to meet its intended use, causing cost overruns, delays, or even project failure [8]. 

With the vast possibilities offered by artificial intelligence (AI), machine learning (ML) techniques 

can provide good support to improve risk classification. With the analysis of enormous amounts of data to 

uncover patterns and trends, these techniques offer a more unbiased and systematic approach to risk 

evaluation. These techniques can be trained with historical data from software projects to recognize risk 

indicators and thus prevent future issues with better precision than manual methods. Also, they can adapt and 

learn over time, and as more data is processed, more abilities will be acquired to predict and classify risks, 

becoming a fundamental tool for project teams. 

This research aims to conduct a comparative analysis of several ML techniques to determine the 

best solution that automates the classification of risks in software development projects, reducing subjectivity 

and improving consistency in risk assessment. A solution implemented with ML techniques can provide early 

warnings and actionable recommendations, enhancing decision-making and contingency planning in software 

project management. This paper is organized as follows: Section 2 introduces related work; section 3 details 

the materials and methods used in this study. Then, section 4 describes the results and discussions. Finally, 

section 5 presents conclusions and future work. 

 

 

2. MATERIALS AND METHODS 

The materials and methods used to conduct this research are presented below. Works related are 

presented to analyze other authors on the prediction of risks associated with software requirements. The 

theoretical foundations of ML and the classification methods that will be used are presented. In addition, the 

tools, programming languages, and code libraries used in the development of the comparison of risk 

classification methods associated with software requirements are presented. 

 

2.1.  Related work 

Ensuring and meeting software requirements is critical to delivering a high-quality software system. 

Failures in software projects often arise when stakeholders’ needs, budgets, or timelines are unmet.  

A significant characteristic of most software project developments is their high failure rate. Such failure rates 

can be traced back to unforeseen events during the SDLC process, leading to substantial software losses in 

numerous organizations. The term "risks" refers to these unknown occurrences that arise from different risk 

variables that are present in the numerous activities that make up the software development lifecycle.  

A successful software development process depends on early risk prediction in the requirements, as late risk 

recognition can have a negative impact on the project's quality, schedule, and money. We have identified that this 

problem is broadly mentioned in the studies analyzed in this section [3], [9]-[13]. As the initial phase of the SDLC, 

accurately forecasting risks in software requirements can enhance the software’s productivity and quality. 

The objective presented in [9] focused on assessing various ML models and proposing an ensemble 

classifier named ABMJ. This classifier merges AdaBoostM1 and J48 to predict risks in software 

requirements. The intention behind this model was to enhance the precision of risk prediction over other 

existing ML methods. Thus, the model developed was compared with several ML algorithms, including the 

random forest (RF), average one dependency estimator (A1DE), multilayer perceptron (MLP), Naive Bayes 

(NB), cost-sensitive decision forest (CSF), support vector machine (SVM), and J48 decision tree (J48).  

An available risk dataset from the Zenodo repository, comprising 13 attributes and 253 instances, was 

utilized for its evaluation. Evaluation techniques such as 10-fold cross-validation and diverse performance 

indicators like recall, precision, Matthew’s correlation coefficient (MCC), F-measure, and accuracy were 

employed. 

The ABMJ model outperformed others, achieving an impressive 97.63% accuracy, unlike the MLP, 

which showed the least effectiveness with an accuracy of just 62.06%. These findings indicate that the ABMJ 

model is significantly more efficient in predicting software requirements risks than the other tested 

techniques. Using a combined ensemble model featuring AdaBoostM1 and J48 represented a novel approach 

to risk prediction for software requirements. Moreover, the proposed model’s high accuracy underscored its 

viability for real-world applications. A limitation mentioned in the research is the threats to internal and 

external validity, especially regarding the applicability of the results to different datasets or contexts.  
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Regarding the main objective in [10], the requirement risk dataset served as the basis for a new 

approach that the authors presented and assessed, utilizing tree-family machine learning (TF-ML) techniques 

for predicting software requirement risks. This study employed various TF-ML techniques, such as forest by 

penalizing attributes (Forest-PA), J48, decision stump (DS), REP-Tree (REP-T), RF, hoeffding tree (HT), 

credal decision tree (CDT), CS-Forest, random tree (RT), and logistic model tree (LMT). A risk dataset from 

the Zenodo repository contains 13 characteristics and 299 occurrences. The study implemented test scenarios 

assessment measures (like, root mean square error (RMSE), mean absolute error (MAE), root relative 

squared error (RRSE), relative absolute error (RAE), recall, precision, MCC, F-measure, and accuracy). 

Moreover, each model calculates incorrectly classified instances (ICI) and correctly classified instances (CCI). 

The findings indicated that specific techniques outperformed others in various test scenarios, mainly 

the CDT and Forest-PA. The metrics with values of 4.498% for RAE, 0.0126 for MAE, 23.741% for RRSE, 

and 0.0888 for RMSE highlighted the superiority of specific TF-ML techniques in risk prediction. 

Furthermore, each recall, accuracy, and F-measure accomplished 0.980 results. The paper comprehensively 

compared different TF-ML techniques, offering valuable insights into their effectiveness in risk prediction in 

software requirements. The results were specific to the dataset used from the Zenodo repository, which may 

limit the generalization of the findings to other datasets or real-world scenarios. Some techniques did not 

perform well in specific test scenarios, which might indicate a need for further optimization or modification 

of these approaches for particular contexts. 

Naseem et al. [11], the primary aim of the study was to evaluate several ML methods for forecasting 

risks in software specifications. The paper aimed to identify the most effective classifier for this purpose. The 

study utilized a set of ML classifiers, including A1DE, NB, K-nearest neighbor (KNN), decision table, 

composite hypercube on iterated random projection (CHIRP), cost-sensitive decision forest, decision 

table/Naive Bayes hybrid classifier, J48 DT, CDT, and RF. These techniques were evaluated using the risk 

dataset from Zenodo, applying various evaluation metrics such as RRSE, RMSE, CCI, RAE, MAE, recall, 

precision, MCC, F-measure, precision-recall curves area (PRC area), and receiver operating characteristic 

area (ROC area). 

The model consisted of four main components: risk identification, risk analysis, risk prioritization, 

and requirement risk dataset. The study revealed that CDT and the Decision Table/Naive Bayes Hybrid 

Classifier techniques performed exceptionally well regarding accuracy and error rates. Specifically, CDT 

showed remarkable performance with the lowest error rates across various metrics. CDT demonstrated strong 

performance with notable overall accuracy, a higher CCI, and lower MAE and RMSE. The experimental data 

showed the results of MAE at 0.0126, RMSE at 0.089, RAE at 4.498%, and RRSE at 23.741%. The 

precision, recall, and F-measure each reached 0.980, with MCC at 0.975 and an overall accuracy of 97.993%. 

Additionally, in terms of CCI, CDT was the most effective. 

The extensive comparison of various ML techniques provided valuable insights into risk prediction 

in software development. A comprehensive set of evaluation metrics ensured a thorough and multi-faceted 

assessment of the classifiers. However, the study’s applicability was limited to the dataset used, which may 

affect the generalizability of the findings to other datasets or real-world scenarios. Specific techniques did not 

perform as well in some test scenarios, indicating potential limitations in their adaptability or effectiveness in 

particular contexts. Other assessment measures, such as mean magnitude of relative error (MMRE) and 

pairwise relative distance (PRED), can be used for validation. 

Mamman et al. [12] underscores the increasing complexity and duration of modern software 

systems, indicating that escalating failure rates in software projects are a significant concern. These failures 

lead to substantial revenue losses for software organizations. Just 9% of software projects in worldwide 

organizations are finished on schedule and under budget, making this problem even more severe. These 

projects frequently fall short of fulfilling all of the original specifications. Thus, US-based technology 

businesses realize about 42% of the functional criteria defined in software projects. These risk concerns can 

be resolved with the use of the subjective risk management (SRM) technique. Its usefulness is constrained, 

nevertheless, by its dependence on human judgment, which increases the possibility of errors because it 

depends on the knowledge and expertise of an expert. Furthermore, because knowledge cannot be simply 

transferred between several teams working on a software project, the SRM approach is not repeatable. 

As a result, the authors presented rule-based methods for estimating risks in software specifications. 

In particular, they created the nested dichotomy-based fuzzy unordered rule induction algorithm (FURIA) 

and its variations. Fuzzy rules are combined with an effective rule-stretching method for classification in 

FURIA, a rule-learning system. Because these fuzzy rules provide dynamic limits in categorization tasks, 

they are more flexible than standard rules. The authors examined models for their predictive capabilities in 

existing studies of software risk prediction and other ML techniques. This included rule-based models like 

partial decision tree (PART), rough set (RS), and RIPPER, along with ML-based models such as SVM, 
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KNN, decision tree (DT), A1DE, NB, and RF. For the evaluation, a benchmark dataset was used to compare 

these proposed models with pre-existing ML and rule-based models. 

The outcomes showed that the FURIA models performed better than other rule-based and ML 

models, as well as the basic FURIA model, particularly the ones with nested dichotomy variants. In various 

testing conditions, these models showed improved accuracy, F-measure, and MCC levels. With an accuracy 

of 97.99%, an F-measure of 0.980, and an MCC of 0.975, FURIA produced the greatest results in the 

performance study when compared to rule- and ML-based models. Furthermore, the FURIA-FCS version 

achieved the greatest results with an accuracy of 98.62%, an F-measure of 0.987, and an MCC of 0.983 when 

compared to its nested subset selection dichotomy counterparts. Rules and ML-based models were surpassed 

by the suggested fuzzy induction models. Furthermore, datasets with fuzziness and imprecise values may be 

handled by these models. The study's reliance on a specific dataset, however, might limit how broadly the 

findings can be applied to other datasets or situations. Furthermore, there may be challenges with the 

interpretability and practical use of the presented models due to their complexity. 

Akumba et al. [13], the main objective was to use supervised ML methods, namely the Naive Bayes 

classifier, to create a predictive risk model. The purpose of this approach was to forecast the degree of risk in 

software projects and to pinpoint the essential components that raise that risk. Using a dataset from Zenodo, 

the Naive Bayes classifier approach was used and assessed with an emphasis on software requirement risk 

prediction. This dataset was employed in the requirement-gathering stage to estimate risks. There were 299 

data instances total, with one target variable and 12 variable characteristics. 

The model’s confusion matrix revealed accurate predictions across different risk levels: four (4) data 

points correctly identified as Catastrophic, eleven (11) as High, eighteen (18) as Moderate, thirty-three (33) 

as Low, and seven (7) as Insignificant. The model achieved an accuracy rate of 98%, with a 95% confidence 

interval and a Kappa value of 97%. This high degree of accuracy in classifying various risk levels was  

a significant accomplishment of the model. In conclusion, the software development lifecycle's requirement-

gathering phase saw accurate risk level prediction from the model. It offers the ability to forecast outcomes 

for further stages, such as design, coding, testing, and maintenance. This skill would be useful in determining 

the main factors influencing risk in different software projects. However, the study was constrained by the 

dataset, which might have an impact on how well it applies to various software projects with various features. 

In addition to the problem described at the beginning of this section, a significant point raised in [3] is 

that many datasets used in research are focused on effort estimation. However, these datasets lack specific risk 

attributes such as risk category, magnitude, impact, dimensions of risk, probability, and priority. To date, no 

dataset includes these risk attributes specifically for software requirements. The study’s objective was to 

develop a detailed risk dataset encompassing attributes of software requirements and risks, along with their 

interrelations, essential for forecasting risks in future software projects. This dataset aimed to aid in predicting 

risks associated with new software requirements through data mining classification methods. Rather than creating a 

new predictive model, the research concentrated on building and validating a dataset for such predictions. 

The technique was divided into three primary stages: filtering, validation of the dataset by IT 

specialists, and risk-oriented data collecting. The dataset included risk factors that were determined by IT 

professionals and literature, as well as specifications from software requirement specification (SRS) papers of 

several open-source projects. Project category, requirement category, risk category, impact, dimension, 

likelihood, priority, influencing the number of modules, fixing length, fix cost, and risk level were the 

requirements risk attributes. The experimental results indicated that the use of normalized and standardized 

filters did not enhance the accuracy of the KNN classification technique on the proposed dataset. In contrast, 

the discretize filter achieved a correct classification rate of 76.25% for the instances, 17% higher than other 

filters. Additionally, this filter demonstrated a relatively low MAE of 0.11 and an RMSE of 0.280. 

Creating a specialized dataset for software requirement risk prediction is a significant contribution, as 

such datasets are scarce in this field. The proposed dataset comprised categorical data, leading to unchanged 

accuracy levels when subjected to normalization and standardization. Conversely, the discretize method transforms 

numeric attributes into ordinal ranges, thereby enhancing the precision of classification in terms of accuracy.  

A limitation of the study is that it focuses on dataset development and does not provide an in-depth analysis of the 

predictive models or their performance using this dataset, which limits its scope. The reliance on open-source 

project data and expert opinions may introduce biases or limitations in the dataset, affecting its generalizability. 

 

2.2.  Theoretical background 

The theoretical foundations of this research are framed in AI, ML, and different ML methods for 

classification. The main concepts are presented below, and the automatic learning techniques will be described. 

The main characteristics of the techniques LR, DT, SVM, RF, and MLP as neural networks are described. 
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2.2.1. Machine learning 

Also known as Expert Systems, it is a branch of AI [14] that aims to develop techniques that enable 

computers to learn and generalize from previously provided data sets. These techniques are used when there 

is a large volume of data, making it challenging for a human to analyze and draw conclusions. It involves the 

development of algorithms that enable machines to iteratively learn from data, adapting their behavior to 

evolving patterns and information. 

 

2.2.2. Logistic regression 

It is a statistical technique involving multiple variables [15] that allows us to analyze the relationship 

between a group of independent variables and a dichotomous dependent variable. It can only take two values, 

typically zero and one, where zero represents absence, and one represents presence. In other words, the 

dependent variable is discrete, in contrast to the group of independent variables, which can be both quantitative 

and qualitative. The underlying function is exponential, which helps better represent certain phenomena. 

 

2.2.3. Decision tree 

This tree-based model [16] allows for the classification of cases into groups or the prediction of the 

value of a dependent variable based on a set of independent variables. It provides a more graphical way to 

represent the alternatives or events that arise from choosing an option, ultimately providing the most accurate 

probabilistic outcome. All of this can be observed visually through a process in which it is assumed that the 

participating sets are disjoint, meaning that all input objects are directed to a single membership group. 

 

2.2.4. Support vector machine 

These [17] belong to the class of linear classifiers, using hyperplanes to create a separation in the 

original space if the input cases are linearly separable or in a transformed space. They differ from other ML 

methods for generating separation or classification because they focus on minimizing structural risk. The 

goal is to find a hyperplane equidistant from the closest examples belonging to separate classes. The training 

elements located on the boundary of the separation are called support vectors. SVMs often exhibit high 

generalization capacity and help prevent overfitting. 

 

2.2.5. Random forest 

It is an ensemble ML method [18] that allows for regression and classification. It consists of a set of 

DTs constructed using bagging, whose variation is controlled based on the training data. In the classification 

process, each tree individually casts its vote for the predicted class, and the final decision is the class with the 

majority of votes. 

 

2.2.6. Neural networks - multilayer perceptron 

It is a neural network [19] that can have one or many hidden layers between its output and input 

layers, in which the connections always keep the direction of going from a lower layer to a higher one. The 

neurons in the same layer are not connected. Additionally, the number of features for the issue pattern is 

equal to the number of neurons in the input layer. The number of classes is equal to the number of neurons in 

the output layer. The primary objective is to optimize the network until it has sufficient parameters and strong 

generalization for the classification or regression job, taking into account the number of layers, neurons in 

each layer, and connections. 

 

2.2.7. Naive Bayes 

The Naive Bayes classifier [20] is a statistical classifier based on probabilities that depend on 

frequencies of values in a given dataset. Probability is an intrinsic characteristic of the data based on this 

dataset. This algorithm is based on Bayes’ Theorem and assumes independence between input variables. 

 

2.3.  Tools 

ML practitioners commonly leverage powerful tools to streamline the development and deployment 

of models. Utilizing tools in ML enhances efficiency by providing standardized frameworks, collaborative 

environments, and streamlined processes, empowering practitioners to focus on model development, 

experimentation, and deployment without being encumbered by manual complexities. The tools used in this 

work are presented below. 

 

2.3.1. Python 

Python is a high-level, general-purpose programming language with great ease of use. Verdhan [21], 

it is detailed that it has a great variety of useful libraries for data loading, processing, and visualization, in 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Comparing machine learning techniques for software requirements risk prediction (Yasiel Pérez Vera) 

513 

addition to libraries capable of executing ML algorithms for classification, prediction, and clustering. It’s a 

versatile and widely adopted programming language due to its extensive libraries and frameworks tailored for 

data manipulation, analysis, and model implementation. 

 

2.3.2. Google Colab 

Google Colab is a cloud-based Jupyter Notebook environment in various web browsers. As 

mentioned in [22], Colab allows us to write and execute Python or R code for applications in AI, enabling 

tasks such as developing and training neural networks and other algorithms. It also facilitates code sharing 

with multiple users, ensuring simultaneous code editing. 

 

2.3.3. Scikit Learn 

Scikit-Learn is an open-source library that is under constant development and improvement. The 

authors in [23] say that this library provides multiple ML algorithms, for example, for supervised and 

unsupervised learning and other multiple scientific tools that have made it an essential tool for developing ML 

applications. It simplifies the implementation of various algorithms for tasks such as classification, regression, 

and clustering, fostering accessibility and ease of experimentation in the field. 

 

2.4.  Proposed research framework 

The present work has two main stages: the first is the risk level prediction model, and the second is the 

comparative analysis of classification methods. The proposed research framework is demonstrated in Figure 1. 

The first stage is developing the risk classification model associated with software requirements. The following 

methods were chosen for classification: DT, LR, RF, SVM, Naive Bayes, and Neural Network - MLP. 

The second stage refers to the comparative analysis of the results obtained from each classification 

method. Each classification method is evaluated using the risk dataset to compare and choose the most 

suitable classifier in this stage. The comparison uses precision, recall, and accuracy metrics to determine the 

quality of each classification method. Finally, rigorous statistical tests are carried out to determine if there are 

significant differences between the classification methods used. It allows for choosing the best risk 

classification methods associated with software requirements. 
 

 

 
 

Figure 1. Proposed research framework 
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3. RESULTS AND DISCUSSION 

In this section, the process followed by applying the six ML techniques to predict the risk level of 

software requirements is presented. The analysis of the data and the source of the dataset are shown. Then, 

the data-cleaning process is carried out. The parameters of each of the ML techniques used are presented. 

Finally, the results obtained are compared. 

 

3.1.  Data analysis 

The dataset analyzed for risk level prediction in software requirements was obtained from the 

Zenodo platform [24]. The dataset authors presented the process of obtaining, validating, and using it [3]. 

The dataset has 13 columns representing 12 input features and one output feature, which in this case is the 

level of risk to be predicted. It has 299 rows or instances of risks associated with software requirements. 

Table 1 shows the description of the features of the dataset used. 

 

 

Table 1. Description of the dataset features 
Feature Description Type 

Requirements Textual description of the software requirement. Text 

Project 

Category 

The category of the software project can take the following values: enterprise system, 

management information system, safety-critical system, and transaction processing system. 

Categorical 

Type The category of the software requirement can take the following values: functional, not 

functional. 

Categorical 

Requirement 
Category 

The category of the software requirement can take the following values: usability, functional, 
performance, reliability & availability, supportability, security, interfaces, constraints, safety, 

and standard. 

Categorical 

Risk Target 
Category 

The target category of the risk can take the following values: quality, budget, personal, 
schedule, functional validity, performance, project complexity, people, team, planning & 

control, availability, requirement, resource user, time dimension, cost, organizational 

environment, business, design, overdrawn budget, unrealistic requirements, process, and 
software. 

Categorical 

Probability Percentage that indicates the probability of occurrence of a risk. Numeric 

Magnitude of 
Risk 

The magnitude of the risk for the project can take the following values: extreme, very high, 
high, medium, low, very low, and negligible. 

Categorical 

Impact The impact of the risk for the project can take the following values: high, catastrophic, 

moderate, low, and insignificant. 

Categorical 

Dimension of 

Risk 

The risk dimension for the project can take the following values: organizational requirements, 

project cost, complexity, schedule, planning and control, software requirement, estimations, 

requirements, user, project complexity, planning and control, organizational environment, and 
team. 

Categorical 

Affecting No of 

Modules 

The number of software modules that affect the occurrence of a risk. Numeric 

Fixing Duration Number of days required to fix the software if a risk occurs. Numeric 

Fix Cost Percent of project cost needed to fix the software if a risk occurs. Numeric 

Priority Priority with which a risk must be considered on a scale from 0 to 100. Numeric 
Risk Level Risk levels are grouped into five categories on an ascending scale from 1 to 5. That is the output 

variable. 

Numeric 

 

 

3.2.  Data cleaning 

Once we have loaded the corresponding data, we analyze the influence between the features. To do 

this, we verify through the correlation matrix, as shown in Figure 2. The correlation matrix indicates, for 

example, that variables such as “Probability” and “Priority” have the highest degree of correlation with our 

target variable “Risk level”, while, conversely, variables like “Type” or “Requirement Category” are among 

those with the lowest correlation. 

We continue with the verification and treatment of missing data and outliers. In the dataset, no 

empty data was found. We used a parametric method that validates anomalous data using the interquartile 

range [25], thus excluding highly atypical data, except for categorical fields, as shown in Figure 3. As a result 

of the adjustment, we went from initially having a total of 299 rows to 221 rows. Finally, we finish with the 

data transformation phase, transforming the categorical variables into numeric data from the following 

features: project category, type, requirement category, risk target category, magnitude of risk, impact, and 

dimension of risk. The Python’s map function was used to accomplish that. 

 

3.3.  Application of algorithms 

We evaluated the algorithms described in the following table and their assigned parameters for the 

comparative analysis, as shown in Table 2. A training process with cross-validation was carried out where 

five folds were considered. Cross-validation is crucial in ML as it assesses the generalizability of a model by 
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systematically validating its performance across multiple subsets of the dataset, mitigating the risk of 

overfitting and providing a more robust estimate of its true predictive power. 

 

 

 
 

Figure 2. Correlation matrix 

 

 

 
 

Figure 3. Box plot chart for outliers’ detection 
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Table 2. Description of the parameters assigned to each algorithm 
Algorithm Parameters 

Logistic regression penalty: “12”, solver: “newton-cholesky” 
Decision trees criterion = “gini", min_samples_split=2, splitter=“best” 

Support vector machine decision_function_shape=“ovr”, C=1.0, kernel=“linear” 

Random forest n_estimators=6, criterion=“gini” 
Neural network - multilayer 

perceptron 

learning_rate=“adaptive”, max_iter=500, activation=“relu”, hidden_layer_sizes=(50), alpha=1e-5, 

solver=“sgd” 

Naive Bayes priors=None, var_smoothing= 1e-9 

 

 

3.4.  Comparison of results 

The results of evaluating the five folds in the six models for precision, accuracy, and recall metrics 

are shown below. The models’ performances for the precision metric are shown in Figure 4. The DT model 

achieves the maximum at fold three. In contrast, the MLP model obtains the minimum at fold four. 

The models’ performances for the recall metric are shown in Figure 5. The DT model achieves the 

maximum at folds one, two and three. In contrast, the MLP model obtains the minimum at fold one. The 

models’ performances for the accuracy metric are shown in Figure 6. The DT model achieves the maximum 

at folds three. In contrast, the MLP model obtains the minimum at fold one. 

 

 

 
 

Figure 4. Chart of the precision metric in the five folds 

 

 

 
 

Figure 5. Chart of the recall metric in the five folds 
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Figure 6. Chart of the accuracy metric in the five folds 

 

 

The Shapiro-Wilk test was applied to the results obtained in each metric, where normality was 

verified in each case. Then, the Levene test was performed to confirm that the data had equal variances. In 

both, a tendency to pass the tests was reflected in all cases. With these two conditions met, we applied the 

Repeated Measures ANOVA test.  

It was determined that there is a significant difference in at least two means within the group of 

results for the three metrics. However, deciding where these differences are located is still necessary. 

Therefore, we apply the Student’s T-Test for paired samples with a 99% confidence interval, comparing each 

model pairwise and grouping those techniques that do not have significant differences. This forms groups 

ranging from the best results (Group 1) to the worst, as shown in Table 3. The group that yielded the highest 

results for the precision metric comprised the algorithms DT and RF. For the recall metric, the best 

algorithms are also DT and RF. Finally, for the accuracy metric, the best group is again formed by the 

algorithms DT and RF. 

From the results obtained, it can be seen that almost all models achieve good results. However, 

when compared, the DT and RF algorithms consistently appear as the best results for the three metrics. It 

indicates that both algorithms are good ML models for predicting the risk level of software requirements. The 

result is consistent with the findings in [11], where DT achieved the best results among other ML techniques 

proposed for software requirements risk prediction. 

 

 

Table 3. Description of the parameters assigned to each algorithm 

Algorithm / Metric 
Precision Recall  Accuracy 

Group Average Group Average Group Average 

Logistic regression 2 88.47% 3 82.61% 3 82.82% 

Decision trees 1 96.26% 1 95.63% 1 96.36% 

Support vector machine 2 88.69% 2 91.70% 2 90.95% 
Random forest 1 95.08% 1 94.52% 1 95.02% 

Multilayer perceptron 3 71.04% 4 67.72% 4 73.36% 

Naive Bayes 2 88.69% 2 93.10% 2 91.41% 

 

 

4. CONCLUSION 

This research conducted a comparative analysis of six ML techniques to predict the risk level in 

software requirements. ML techniques are valuable tools in various fields, including predicting risk levels. 

The proposed techniques perform the classification or prediction of the risk level in software requirements 

with good results. Despite the effectiveness of ML techniques, some yielded lower results than others. 

Precision, accuracy, and recall metrics were used to compare the techniques. The DT and RF techniques 

obtained the best results, and MLP showed the worst results. The DT technique is the one that provides the 

best results with a confidence interval of 99%, compared to the other techniques considered in the analysis. 

Given the positive results obtained with various ML techniques, in future work, we intend to conduct studies 

that delve more deeply into other branches of AI, such as deep learning.  
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