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 The electrocardiogram (ECG) is one of the most significant methods of 

diagnostics for determining heart rhythm disorders. For this study, raw ECG 

signals from the Physio Bank database are subjected to an important pre-

processing step that uses empirical mode decomposition (EMD) on signal 

denoising and distortion elimination. Establishing functioning spiking neural 

networks (SNN) involves figuring out the neuron’s state through its activity 

level, challenging due to its resemblance to the human brain’s data 

processing, yet appealing due to factors like improved unsupervised learning 

methods, with ten parameters chosen for the learning algorithm of SNN.  

A comprehensive set of 15 different time-domain features and 10 Cepstral 

domain features is precisely extracted to train the SNN classifier.  

An extensive study is conducted to analyse the learning parameters that 

affect SNN performance, significantly influencing result accuracy. Through 

a two-classification process, the differentiation between normal and 

abnormal ECG patterns can be achieved in this study. A maximum testing 

accuracy of 91.6667% and a maximum training accuracy of 99.1667% have 

been attained by the process. These results demonstrate the competency of 

the system in distinguishing between distinct ECG classes, particularly  

in identifying normal and abnormal cardiac rhythms through ECG 

classification. 
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1. INTRODUCTION  

Electrocardiogram (ECG) pattern recognition, crucial for diagnosing and monitoring heart diseases, 

provides insights into the heart’s electrical activities [1], [2]. Despite advancements, accurately and 

efficiently interpreting ECG signals is challenging due to their inherent complexity and variability.  

Rafie et al. [3] have argued that traditional computational techniques often struggle to address these 

challenges, prompting the exploration of more advanced solutions. Relevant literature has highlighted 

significant contributions to neural network applications and machine learning algorithms in biomedical signal 

processing, as reviewed by Zemouri et al. [4]. These studies have laid the groundwork for ECG pattern 

recognition, noting achievements in improved accuracy and processing speed according to Siontis et al. [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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However, challenges in generalizing across diverse patient datasets and the need for substantial 

computational resources are often encountered, according to several recent studies [6], [7]. 

Current methodologies have limitations in processing noisy data, consuming high power, and 

recognizing complex ECG patterns, underscoring the need for innovative approaches to improve the 

robustness and efficiency of ECG pattern recognition systems, thus introducing a novel application of spiking 

neural networks (SNNs) in ECG pattern recognition. Amiri et al. [8] inspired by the neural processing of the 

human brain, SNNs promise to enhance the accuracy and efficiency of pattern recognition tasks. Leveraging 

the temporal dynamics of SNNs aims to address the limitations of traditional neural networks, providing a 

more efficient and scalable solution for ECG analysis as argued by Zheng et al. [9]. Heart disease was among 

the top global health threats in 2019, according to the World Health Organization (WHO) as demonstrated by 

Yan et al. [10]. The non-invasive method of ECG serves as a significant tool for detecting cardiovascular 

disease, primarily identifying abnormal heartbeats within several recent studies [11], [12]. Continuous ECG 

monitoring on wearable devices has been proven lifesaving by detecting users’ heartbeat abnormalities, 

increasing chances for initial intervention according to Xiaoxue et al. [13]. This work presents a set of ECG 

classification methods using SNN to classify heartbeats into normal and abnormal categories, aiming to 

investigate the performance of the SNN algorithm, develop a classification algorithm based on ECG data, 

and verify its performance through confusion tables and mean average precision. 

SNNs, as the third generation of neural networks, offer a significant advantage in energy efficiency 

over convolutional neural networks (CNNs) by mimicking the way biological networks process information 

through spikes. Lower energy consumption makes SNNs ideal for applications in edge computing, robotics, 

and wearable devices where power efficiency is crucial as demonstrated in Yan et al. [10]. Guo et al. [14] 

SNNs, capable of operating with fewer layers and employing a dynamic weight model, efficiently 

approximate real-valued functions and provide faster computing options. Sodhro et al. [15] the innovative 

approach enhances the performance of low-power systems, particularly in sectors requiring energy-efficient 

intelligent systems, such as ECG classification in power-constrained wearable technology. The structure of 

this work includes a methodology section detailing the development and implementation of the SNN-based 

approach, a results section highlighting improved performance in ECG pattern recognition by SNNs with 

reduced computational demands, a discussion comparing the approach with existing methods and 

emphasizing its advantages and real-world healthcare applications, and a conclusion summarizing the 

contributions and future research directions, emphasizing SNNs’ potential to revolutionize ECG pattern 

recognition. 

 

 

2. RELATED WORK 

This section explains the significance of ECG and heart anatomy in diagnosing cardiac conditions, 

emphasizing the accuracy of ECG pattern recognition. It also discusses the architecture of SNNs, 

highlighting their energy-efficient information processing inspired by biological neural networks. Finally, the 

potential applications of SNNs are explored, highlighting their adaptability in fields ranging from medical 

diagnostics to the development of energy-efficient wearable technologies. This discourse serves to illustrate 

the groundbreaking possibilities that SNNs present in improving healthcare outcomes through enhanced ECG 

analysis. 

 

2.1.  Electrocardiogram 

An ECG can be used to diagnose cardiac disease as demonstrated in Khan et al. [16]. Because of its 

non-invasive nature, it’s commonly used to identify cardiac problems. By visually reviewing recordings of 

ECG signals, trained cardiologists can discover abnormalities as demonstrated in Corradi et al. [11]. It gives 

information on the electrical activity of the heart in the heartbeats of patients in several recent studies [12]. 

ECG is gathered from cardiac muscle depolarization to repolarization by electrodes put on the patient’s skin 

that record electric changes during the cardiac cycle according to Zheng et al. [17]. Several recent studies [18] 

have argued that heart monitoring on small devices, especially wearable devices, is now possible because of 

automated ECG diagnosis. The standard ECG waveform, featuring the P wave, QRS complex, and T wave, is 

depicted in Figure 1. Through the waveform’s size and shape, information on cardiac illness or dysfunction is 

provided. The P wave arises from the depolarization of the atrium. When there is ventricular depolarization, 

the QRS complex is generally the primary and distinct waveform that is produced as demonstrated in Rana 

and Kim [19]. 
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Figure 1. Normal beat [19], [20] 

 

 

2.2.  Heart anatomy 

During a normal cardiac cycle, an electrical impulse is emitted by the sinus node. This impulse is 

then passed in order through the atria, atrioventricular node, and ventricle. Irregular sources of electrical 

impulses can lead to abnormal cardiac rhythms according to [21]. Electrode insertion on the skin of a person 

detects that electricity and produces a voltage-time readout that produces an ECG. The ECG signal gives 

human heart information which includes heart position and relative chamber size, origin and propagation of 

impulse, rhythmic heart and conduction, myocardial ischemia size, and location, electrolyte concentration 

changes, and heart effects according to Aziz et al. [12]. 

 

2.3.  SNN architecture 

In Figure 2, the architecture of the SNN, the third generation of neural networks, is depicted, 

showing how information is processed through spike signal propagation and timing, with synapses forming 

weighted connections between neurons to facilitate learning via spike-time-dependent plasticity (STDP).  

The STDP rule is used to determine how much each pre-synaptic spike contributes to the total weight change 

as demonstrated in several recent studies [22]. Binary spikes are the data transferred between layers for the 

SNN according to Liu et al. [23]. Utilizing a learning algorithm designed for multi-class tasks and extending 

the learning rule to handle multiclass classification efficiently. This compact architecture ensures comparable 

performance on multi-class classification problems. 

 

 

 
 

Figure 2. Architecture of SNN [19] 

 

 

In Figure 3, it is illustrated that input spike timings are derived from real-valued data, where the 

strength of receptive field (RF) neurons in population encoding is translated into spike times. Synapses define 

the strength of neural connections, utilizing a time-varying weight model to enhance the dynamics of learning 

algorithms, including the STDP rule for weight adjustment. Sumi and Harada [24] a positive change in 

weight is called long-term potentiation (LTP) and a negative change in weight is for LTD. For classification 

tasks, SNNs are employed, where artificial neural networks, through machine learning, learn from events and 

make decisions by comparing them to similar past occurrences. In addition, artificial neural networks have 

the potential to execute several tasks at the same time as demonstrated in [25]. 
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Figure 3. Mechanism of SNN [25] 
 

 

2.4.  Potential applications 

Recent advancements in medical technology have shifted towards enabling continuous health 

monitoring outside the hospital, notably through wearable devices for daily use, allowing for easy tracking of 

vital signs like ECGs at home or on the go. Wearable ECG devices such as the Apple Watch and the Xiaomi 

Mi Bunny Smart Watch now can identify heart issues in real-time as demonstrated in Yan et al [10]. 

Wearable devices, focusing on health functions, have not received full food and drugs administration (FDA) 

approval as medical equipment, and consultation with a doctor is deemed essential for medical treatment. 
 

 

3. METHOD 

ECG data, sourced from the PhysioNet databases and inclusive of various cardiac conditions and 

healthy controls, was pre-processed to enhance signal quality and consistency. This preprocessing involved 

band-pass filtering, normalization, and segmentation into individual heartbeats. For ECG pattern recognition, 

an SNN architecture was specially designed, this architecture featured input, hidden, and output layers with 

leaky integrate-and-fire neurons, effectively emulating biological information processing and efficiently 

capturing the temporal dynamics of ECG signals. 

The SNN was trained using a specific learning algorithm and modified to suit the specificities of 

ECG signal processing. Parameters were meticulously selected based on parameter selection of the number 

of RF neurons in the population encoding scheme RF, the interval between presynaptic spikes (pre (ms)), the 

interval between postsynaptic spikes (post (ms)), the desired postsynaptic firing time (desired post (ms)), 

time-step precision (precision), the weight update rate of learning (∆w), the sigma of a weight kernal that 

changes with time (σ (ms)), the time constant of the spike response function (𝜏 (ms)), the maximum number 

of epochs (epoch), and STDP learning window of time constant (STDP (ms)), ensuring optimal network 

performance. The training involved a supervised learning approach with cross-validation to prevent 

overfitting, with performance metrics including accuracy, sensitivity, and specificity. 

Experiments were conducted using MATLAB to ensure reproducibility, with the dataset divided 

into training and testing splits of 60%-40%, 70%-30%, and 80%-20% respectively. These experiments 

allowed for the comparison of results against established benchmarks for ECG pattern recognition. Chosen 

for their unique ability to process temporal sequences in ECG signals, SNNs demonstrated computational 

efficiency and performance accuracy advantages over traditional neural networks, a capability underpinned 

by recent advancements in neuromorphic computing. The methodology, designed to be transparent and 

replicable, was effectively applied to utilize innovative SNN technology for ECG pattern recognition. This 

approach addressed identified gaps, beginning with ECG pattern recognition, and including meticulous 

preprocessing, simulation, and fine-tuning of the SNN algorithm to optimize weight adjustments, culminating 

in a comprehensive analysis of simulation outcomes when training and testing results were unsatisfactory. 
 

3.1.  Heartbeat dataset 

Utilizing the Physionet database, this study analysed 200 ECG signals, including 80 ‘normal’ and 

120 ‘abnormal’, through empirical mode decomposition (EMD) for signal quality enhancement, extracting 

300 features per signal to train the SNN for precise classification. Despite efforts to enhance SNN accuracy 

with an additional layer, the most significant improvements came from EMD-based feature refinement, 

underscoring its effectiveness in preprocessing for accurate ECG pattern analysis. This streamlined approach 

not only optimized the classification process but also demonstrated the potential of EMD in advancing ECG 

signal interpretation. 
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3.2.  Pre-processing 

Figure 4 shows the block diagram for pre-processing in Figure 4(a) and for the proposed method in 

Figure 4(b). In these methods, noise and distortions were initially removed from both normal and abnormal 

datasets using EMD, and weight models from IMF1 to IMF10 were selected for the SNN’s learning 

algorithm. The ECG training and testing datasets were divided into three groups of 60%-40%, 70%-30%, and 

80%-20% to accommodate the effects of low or high-frequency noise that can influence QRS detection and 

feature extraction during recording. This division allows for a thorough analysis of various ECG datasets, 

helping to identify the most suitable features for each diagnostic system by eliminating noise primarily 

caused by artifacts and addressing individual differences in peak and waveform shapes through further 

examination and preprocessing of the 12-lead ECG signals. 
 
 

  

(a) (b) 
 

Figure 4. Block diagram for (a) pre-processing and (b) proposed method 
 

 

3.3.  Extraction and selection of features 

For this work, 25 features were extracted, including 15-time domain features such as mean, standard 

deviation, and skewness, along with 10 cepstral domain features that include coefficients of the mel 

frequency cepstral and gammatone cepstral features (MFCC+GTCC). These features are processed through 

multiple operations such as fourier transform, filter bank application, and discrete cosine transform, which 

are executed in sequence. This combination of time-domain and cepstral features captures both statistical 

properties and spectral characteristics, offering benefits for various machine learning applications such as 

classification, clustering, or regression. 
 

3.4.  Learning algorithm parameters of SNN 

In a SNN, the neuron’s state is determined by its activity level, modelled as a differential equation, 

where an input pulse temporarily increases the current state value and then gradually decreases. Establishing 

a functioning SNN is challenging, as the training process resembles the human brain’s data processing, but 

factors such as improved unsupervised learning methods make SNNs appealing. Ten parameters will be 

chosen for the learning algorithm parameters of SNN, including the number of RF neurons in the population 

encoding scheme (RF), intervals between presynaptic spikes (pre), intervals between postsynaptic spikes 

(post), desired postsynaptic firing time (desired post), time-step precision (precision), the weight update rate 

of learning (∆w), sigma of a weighted kernel that changes with time (σ), the time constant of the spike 

response function (𝜏), the maximum number of epochs (epoch), and STDP learning window of time  

constant (STDP). 
 

 

4. RESULTS AND DISCUSSION 

This study embarked on a journey to unveil the intricacies of ECG pattern recognition using SNNs. 

Prior investigations have delved into the realms of neural network applications and machine learning 

algorithms for biomedical signal processing, yet a gap persists in fully harnessing the temporal dynamics of 

ECG signals. Our research aims to bridge this divide, offering insights into the application of SNNs for 

accurate and efficient cardiac arrhythmia identification. 

Our results show significant progress in ECG pattern recognition, with a testing accuracy reaching 

91.6667% and training accuracy up to 99.2857%. These figures highlight the effectiveness of the SNN 

classifier in accurately distinguishing between normal and abnormal ECG patterns. Such performance 

confirms the classifier’s reliability and precision in analysing cardiac rhythms. 

Comparatively, our study underscores the superior performance of SNNs against traditional neural 

networks and machine learning algorithms. The employment of SNNs capitalizes on their ability to mimic 

biological neural processing more closely, resulting in enhanced efficiency and lower power consumption. 

This approach not only aligns with but also surpasses current methodologies, particularly in recognizing the 
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complex, temporal patterns inherent in ECG data. Our research thoroughly assesses SNNs in recognizing 

ECG patterns but relies heavily on pre-processed data from the PhysioNet database. It’s necessary to test the 

model on a wider variety of datasets, especially those from real-world clinical environments where data 

varies more. This step will help confirm the model’s effectiveness in different settings. 

Our research opens up exciting possibilities for improving cardiac monitoring technologies. Future 

studies might look into combining SNNs with neuromorphic hardware to create hybrid models that bring 

together different computing techniques. Such developments could extend the use of SNNs to a wider range 

of tasks in biomedical signal processing, enhancing their overall effectiveness. 

Our research demonstrates major improvements in using SNNs to recognize ECG patterns, which 

helps better identify cardiac arrhythmias and raises the accuracy standards for heart monitoring. This work 

addresses significant gaps in our scientific understanding and shows that advanced neural networks can 

substantially improve patient care. We recommend adopting these advanced technologies to develop smarter 

and more adaptive healthcare solutions. 

 

4.1.  Evaluation of the performance of ECGs 

Figure 5 shows the pre-processing signal using EMD for normal data in Figure 5(a) and for 

abnormal data in Figure 5(b). Based on Figure 5, it is observed that the blue curve exhibits a higher 

frequency for the original signal, whereas the orange curve appears smoother for the pre-processed (filtered) 

signal. Figure 6 shows the effect of the optimized parameter of SNN for three groups of training and testing 

respectively at 60%-40%, 70%-30%, and 80%-20%, and their accuracies towards the performance of 

convergence based on the parameter tuning of learning rate of weight update(∆w), the sigma of a weight 

kernal that changes with time (σ (ms)), the time constant of the spike response function (𝜏 (ms)), and a 

maximum number of epochs. Figures 6 depict learning outcomes using different training-testing data splits 

for 60%-40%, 70%-30%, and 80%-20% in Figures 6(a) to 6(i). 
 
 

  
(a) (b) 

 

Figure 5. ECG pre-processing for (a) normal signal and (b) abnormal signal  
 
 

Based on Figure 6, the optimized parameters for SNNs under different training-testing splits and 

their respective accuracies. For training and testing accuracies, the accuracies vary across different splits. 

Generally, training accuracy is higher, which is expected. However, the testing accuracy shows some 

variance, notably being lower in the training testing ratio of 80:20 split. Most parameters of SNN like RF 

with the value of 15, presynaptic (pre), postsynaptic (post), desired postsynaptic (desired post) with the value 

of 0.2, time-step precision (precision) with the value of 0.01, and STDP remain consistent across different 

splits, while others like learning rate (∆w), efficacy update range (σ), Tau (𝜏), and epoch show variations.  

Effects on convergence, such as the parameter of learning rate (∆w), particularly with a higher value 

(∆w = 0.5) in the 80:20 training-testing ratio split, may cause the model to overshoot the optimal solution. 

Resulting in lower testing accuracy, with the learning rate affecting both the speed and stability of 

convergence. While a high learning rate (∆w) can lead to faster convergence, it may overshoot the optimal 

solution, as observed in Figures 6(g), 6(h), and 6(i), indicating that both excessively low and high learning 

rates can adversely affect performance, suggesting that a moderate learning rate is optimal for balancing 

training speed and convergence stability. 

Then, for the efficacy update range (σ), this parameter also increases in the training testing ratio of 

80:20 split with the value of (σ = 0.55), which affects the model’s generalization capability. For Tau (𝜏),  
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the value in the training testing ratio of 80:20 split, which affects the model’s ability to capture temporal 

dynamics in the data with the value of (𝜏 = 1, 2, and 3) respectively. This shows that the value of Tau 

influences the model’s ability to capture temporal dynamics in ECG data, which is crucial for accurately 

classifying heartbeats Then, for epochs maximum, the maximum number of epochs is consistent in most 

cases, but reduced epochs in one of the training testing ratios of 70:30 split scenarios explain the slightly 

lower training accuracy with the value of (epoch = 20). 

In addition, for STDP (Spike-Timing-Dependent Plasticity) with the value of 1.6, this remains 

constant across all scenarios, suggesting that the model’s ability to adapt its synaptic weights based on spike 

timings is unchanged. Then, for presynaptic (pre) and postsynaptic (post) parameters with the values of 

(pre=0.3) and (post=0.44) respectively, these parameters are mostly consistent but do show a minor change in 

one of the training testing ratios of 80:20 split scenarios, which could affect the model’s sensitivity to input 

and output spikes. The role of spike-timing-dependent plasticity (STDP) in adapting synaptic weights based 

on the timing of incoming spikes is highlighted as a key feature of SNNs that contributes to their biological 

realism and effectiveness in classification tasks. The optimized parameters significantly affect the model’s 

performance in both training and testing accuracies, with parameters such as learning rate (∆w), efficacy 

update range (σ), Tau (𝜏), and epoch playing crucial roles in the model’s convergence capabilities, 

highlighting the importance of parameter optimization for enhancing model performance and achieving a 

balance between training and testing accuracies across various data splits. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 

Figure 6. Convergence performance for data of: (a) 60% training-40% testing, (b) 60% training-40% testing, 

(c) 60% training-40% testing, (d) 70% training-20% testing, (e) 70% training-20% testing, (f) 70% training-

20% testing, (g) 80% training-20% testing, (h) 80% training-20% testing, and (i) 80% training-20% testing 
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5. CONCLUSION 

Cardiovascular arrhythmia diagnosis relies on characteristics of heartbeats and machine learning 

algorithms. When used in combination with an EMD ECG system, the created SNN models are capable of 

classifying multiple heartbeat types. SNN’s learning parameters have been evaluated where the value of Tau 

(𝜏), efficacy update range (σ), learning rate (∆w), and maximum number of epochs (epoch), show significant 

effects for the accuracy of the training and testing data respectively. This work achieves maximum of training 

accuracy and testing accuracy of 99.1667% and 91.25% for training testing ratio of 60:40, 99.2857% and 

91.6667% of training accuracy and testing accuracy for training testing ratio of 70:30 split, and 83.75% and 

80% of training accuracy and testing accuracy for training testing ratio of 80:20 split data respectively for the 

classification of ECG rhythms, demonstrates the capability to classify heartbeats using SNN.  
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