
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 36, No. 2, November 2024, pp. 983~993

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v36.i2.pp983-993 983

Journal homepage: http://ijeecs.iaescore.com

Applying inductive logic programming to automate the function

of an intelligent natural language interfaces for databases

Hanane Bais1, Mustapha Machkour2
1Laboratory of LAMIGEP, EMSI Marrakech, Marrakech, Morocco

2Department of Computer Sciences, Ibn Zohr University, Agadir, Morocco

Article Info ABSTRACT

Article history:

Received Dec 13, 2023

Revised Jul 6, 2024

Accepted Jul 14, 2024

 One of the foundational subjects in both artificial intelligence (AI) and

database technologies is natural language interfaces for databases (NLIDB).

The primary goal of NLIDB is to enable users to interact with databases

using natural languages such as English, Arabic, and French. While many

existing NLIDBs rely on linguistic operations to meet the challenges of

user’s ambiguity existing in natural language queries (NLQ), there is

currently a growing emphasis on utilizing inductive logic programming

(ILP) to develop natural language processing (NLP) applications. This is

because ILP reduces the requirement for linguistic expertise in building NLP

systems. This paper outlines a methodology for automating the construction

of NLIDB. This method utilizes ILP to derive transfer rules that directly

translate NLQ into a clear and unambiguous logical query, which

subsequently translatable into database query languages (DQL). To acquire

these rules, our system was trained within a corpus consisting of parallel

examples of NLQs and their logical interpretations. The experimental

results demonstrate the promise of this approach, as it enables the direct

translation of all NLQs with grammatical structures similar to those already

present in the trained corpus into a logical query.

Keywords:

Artificial intelligence

Database

Inductive logic programming

Linguistic operations

Natural language processing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Hanane Bais

Laboratory of LAMIGEP, EMSI Marrakech

Marrakech, Morocco

Email: H.bais@emsi.ma

1. INTRODUCTION

Intelligent natural language interfaces for databases (NLIDB) [1] is an active research area in the

field of natural language processing (NLP) and artificial intelligence (AI) [1], [2]. NLIDB's main objective is

to improve human-database interaction by supporting users in information extraction from databases by

writing simple queries in natural language [3], [4] without requiring expertise in database query languages

(DQL) [5]. In order to convert natural language queries (NLQ) into a clear logical interpretation, the majority

of NLIDBs have up to now depended on linguistic expertise [6], [7]. But using linguistic analyses to create

NLP systems is still a very difficult and involved process and, NLIDB systems based on linguistic

approaches utilize techniques of syntactic and semantic analysis to understand the structure and meaning of

NLQ. Additionally, these systems often rely on predefined grammatical rules and semantic models to

translate NLQ into database queries. These systems often require domain-specific or language-specific rules,

it may make their maintenance expensive and difficult. One efficient method to automate the process of

development of NLP systems is the using of the inductive logic programming (ILP) [8]. NLIDB systems

based on programmation logique inductive (PLI) employ machine learning techniques to induce rules from

examples of NLQ and their corresponding DQL equivalents. Furthermore, these PLI-based systems aim to

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 983-993

984

automate the construction of the natural language interface by learning rules directly from data, thus reducing

reliance on manual linguistic rules. Additionally, PLI-based systems may exhibit greater adaptability to

various domains or languages since they learn from data rather than predefined rules. Moreover, by learning

from data, PLI systems can reduce dependency on prior linguistic analyses, potentially enhancing the

robustness and accuracy of translations. For that, we propose in this paper a new method based on supervised

machine learning to automate the function of NLIDB. This method consists to learn rules that map directly the

NLQ into a logical interpretation. To induce such rules, the proposed system trained within a corpus

composed of parallel examples of NLQs and their logical interpretations. Normally to generating the transfer

rules, we need enormous human effort. But, the richness of the predicate logic (first order logic) used in ILP

[8], [9] we offer helpfully provide advantages during the developing of our interface.

One of the greatest advantages of the proposed interface is its ability to function independently of the

database domain and model [10]. And, it may offer greater adaptability, reduced linguistic dependency, and

automation of interface construction. However, they often require labeled datasets for learning and may

necessitate expertise in machine learning for implementation.

The rest of the paper is organized as follows. Some previous systems are cited first. An overview of

ILP is presented. Afterward, the architecture of the proposed system is presented. Then, we will present the

experimental results of using ILP on the NLIDB. Finally, we conclude and suggest some possible future

research directions.

2. RELATED WORK

Research into NLIDB began in the late 1960s and early 1970s [11]. From that time, the majority of

NLIDBs have utilized linguistic skills to convert NLQs into a logical representation [12], [13]. Nevertheless,

this approach typically requires considerable time, and hand-crafted parsers often struggle with robustness

issues (e.g. it generalizes feebly on novel sentences) [14]. That’s why there is an increasing focus on using

ILP technique to construct automate NLP systems [15]. The application of the ILP for developing NLP is not

a new topic. ILP has been used in many NLP domains like part-of-speech tagging [15], morphological

analysis [16] and word segmentation [17]. Concerning the application of ILP in the realization of NLIDBs,

there have been some contributions.

The initial contribution of the application of ILP for developing NLIDB is a system called Chill

[18]. Chill is an acquisition system for parsers aimed at developing an automated NLIDB. It achieves parser

acquisition by acquiring search-control rules using a logic program that embodies a shift-reduce parser.

Employing ILP techniques, Chill learns relational control knowledge. Starting with a broad framework to

construct suitable logical forms, Chill can be trained on a corpus containing natural language sentences

paired with their corresponding database queries. Consequently, it enables parsers to translate NLQs into

database queries [19].

The second contribution is proposed by Tang. Tang presented a machine learning approach to semi-

automate the realastion of NLIDB [20]. He introduced a 'meta' ILP learning approach, which combines the

strengths of various ILP learners to induce a semantic parser. This approche outperforms the use of a single

learner. One of the problems with all ILP contributions in ILBD is that they do not demonstrate any domain

independence. Furthermore, all the exiciting NLIDBs are designed for a specific database model. This

requires reconfiguration with each new domain and model [21]. The problem of applying ILP for NLIDB

independence from the database model has never been a research subject. In this paper, we propose

leveraging ILP to automate the operation of NLIDB systems. This method involves acquiring rules that

directly translate user queries presented in natural language into a clear interpretation expressed in XML

format: the XML logical query (XLQ).

The primary advantage of our system over others is that it does not require reconfiguration for a

different database. This is achievable through the use of a machine learning-based method, enabling it to

enhance its knowledge base during execution and consequently adapt to multiple domains. In general,

whenever our system transitions to a new domain, this method provides it with the associated concepts.

Furthermore, it’s worth noting that the proposed interface is not specific to a particular database model. This

adaptability is attributed partly to the complete separation between the linguistic processing phase of the natural

language input and the query generation phase in NLIDB, and partly to the formalization of logical queries into

XML, which ensures portability across different models. Finally, our proposed system benefits from his

experience in inducing automatically rules that directly map all NLQs with grammatical structures similar to

those already present in the trained corpus into a logical query.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Applying inductive logic programming to automate the function of an intelligent natural … (Hanane Bais)

985

3. PROPOSED METHOD

The performance level of a NLIDB varies considerably. The most robust systems operate within a

limited domain and model. Transitioning from an NLIDB built for a particular domain or model to another

one requires reconfiguration. To reduce the cost of this configuration. Often, one of the solutions used in this

research is based on linguistic operations.

Our method consists of proposing a generic NLIDB that use ILP and operates independently of

database domain and model. By using the ILP, our system can automatically map the natural language to an

unambiguous logical interpretation. Furthermore, the proposed interface is not specific to a particular

database domain. This capability is due to the complete separation between the database knowledge module

and other modules. Also, the formalization of logical queries in XML, which provides portability to different

models. The Figure 1 displays the proposed architecture of our system.

Figure 1. The architecture of system

As shown in Figure 1, we can divide the proposed architecture into three modules:

− The rules induction module: using the supervised machine learning technique to induce NLQ-XLQ rules

− The translation based induced rules module: application of the appropriate NLQ-XLQ rule to create the

XLQ

− Database knowledge module: translating the XLQ into DBQ

 In the following, we explain in-depth the functioning of each module.

4. METHOD

4.1. Rule induction module

In this module, we address the using of the supervised machine learning technique to induce NLQ-

XLQ rules. Before the induction of these rules, our system trained parallel corpus of a set of NLQ paired with

XLQ. The rule induction module tacks NLQ paired with the XLQ as input then it applies ILP technique to

produce NLQ-XLQ rules as output. We should mention that the negative example of NLQ paired with XLQ

will not be accessible and that it’s intractable to use the closed world assumption to explicitly generate negative

examples given the large number of possible NLQ and XLQ. Furthermore, it is agreed that to acquire language,

children are exposed to modest if any negative feedback [22]. That’s why it’s essential to propose a

method to learning without explicit negative examples [23]. Fortunately, numerous ILP methods have been

proposed learning only from positive examples; this is possible if the target predicate represents a function

(which is our case) or if the training. Example is in some sense complete. The Figure 2 displays the function of

rule induction module

As shown in Figure 2, the first step in the process of inducing NQL-XLQ rules is the partition of the

NLQ (tokenization) [24]. In this phase, our system divides the NLQ into tokens to simplify the NLQ and deal

with a token rather than an entire sentence. After the tokenization step, the part of speech tags applied to

recognize the grammatical structure of the NLQ. Figure 3 shows the output of tokenization and part of speech

tags of the NLQ:

Give name of all client where age >25

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 983-993

986

Figure 2. Process of inducing NQL-XLQ rules

Figure 3. Tokenization of NLQ

We have developed a specific method for labeling the XLQ based on the placement of words within

it. Here are some examples of the labels we suggest:

− R_S_O1= the initial object within the select fraction of the query;

− AT1_R_S_O1= the first attribute of the initial object in the select part of the query.

The result of labeling the XLQ corresponding to the NLQ in the Figure 4 is shown in next figure:

Figure 4. Labeling the XLQ

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Applying inductive logic programming to automate the function of an intelligent natural … (Hanane Bais)

987

A prerequisite step for the induction of NLQ-XLQ rule is the word-to-word alignment [25]. In this

phase, the result of the part of speech tags of NLQ and labeling of XLQ is used to identify the equivalent words

of the NLQ and the XLQ. In Figure 5, we display the result of word-to-word alignment.

Figure 5. Word-to-word alignment

To induce the NLQ-XLQ rules, the next step is to apply the unification between the NLQ and XLQ

sequences. The XLQ is identified through the application of the labeling function, while the NLQ is

identified by its grammatical structure. The NLQ-XLQ rule aligns the NLQ ‘s grammatical structure with the

structure of XLQ, as depicted in Figure 6.

Figure 6. Induction of the NLQ-XLQ

The next equation represents the global of the NLQ-XLQ rule:

∑𝑛
𝑗=0 (𝑊𝑗: 𝐺𝐶𝑗) → ∑𝑙

𝑘=0 (𝑊𝑗: 𝐸𝑘)

with:

GCj: is the grammatical category of the token Wj in NLQ;

n: number of tokens in NLQ;

Ek: is the label of the fractions Fj in XLQ;

l: number of fractions in XLQ;

WJ: the order of word in NLQ.

The induced NLQ-XLQ rule from example 1 is the following:

𝑊0: 𝑉𝐵 + 𝑊1: 𝑁𝑁 + 𝑊2: 𝐼𝑁 + 𝑊3: 𝑁𝑁 + 𝑊4: 𝐷𝑇 + 𝑊5: 𝑁𝑁 + 𝑊6: 𝐽𝐽𝑅 + 𝑊7: 𝐶𝐷
→
𝑊3: 𝑅 𝑆 𝑂𝐼 + 𝑊 𝐼: 𝐴𝑇 𝐼 𝑅 𝑆 𝑂𝐼 + 𝑊 5: 𝐴𝑇 𝐼 𝑅 𝐶 𝑂𝐼 + 𝑊 6: 𝑆 𝑅 𝐶 𝑂𝐼 + 𝑊 7

To enable our system to benefit from its experience and translate a large number of NLQs directly

into XLQs, we use a technique that helps to create extensions of the NLQ-XLQ rules. With this method, our

system can add new rules to the rules to the existing ones without needing to prepare the example that will

induce these rules. The extension rules represent instances of the induced rules. The extension of the induced

NLQ-XLQ is created using the grammar shown in Figure 7. The Figure 8 displays the extension of the NLQ-

XLQ rule induced from example 1:

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 983-993

988

Figure 7. Grammar for the extension of NLQ-XLQ rule

Figure 8. Extension of the NLQ-XLQ

4.2. Translation based induced rules module

The module for translation based on induced rules operates through four steps. Initially, it segments

the NLQ into tokens. Next, it utilizes the part-of-speech tags of these tokens to determine their grammatical

structure. Subsequently, the system searches for an NLQ-XLQ rule that matches the grammatical structure of

the NLQ among the previously induced NLQ-XLQ rules. Finally, our system uses the adequate NLQ-XLQ

rule for the generating the corresponding XLQ. The Figure 9 shows the translation based induced rules

process.

Figure 9. Translation based induced rules

The next example displays how the induced rule can be used to translate The NLQ input into an XLQ

output.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Applying inductive logic programming to automate the function of an intelligent natural … (Hanane Bais)

989

Input NLQ: show addresses of students whose marks=14

1) The part of speech tags of input NLQ is displays in Figure 10.

Figure 10. Part of speech tags result of input NLQ

2) Search the NLQ-XLQ rule whose left side matches the grammatical structure as the input NLQ

− Left part of needed NLQ-XLQ rule:

𝑊0: 𝑉𝐵 + 𝑊1: 𝑁𝑁𝑆 + 𝑊2: 𝐼𝑁 + 𝑊3: 𝑁𝑁𝑆 + 𝑊5: 𝑊𝑅𝐵 + 𝑊6: 𝑁𝑁 + 𝑊7

− Corresponds NLQ-XLQ rule:

𝑊0: 𝑉𝐵 + 𝑊1: 𝑁𝑁 + 𝑊2: 𝐼𝑁 + 𝑊3: 𝑁𝑁 + 𝑊4: 𝐷𝑇 + 𝑊5: 𝑁𝑁 + 𝑊6: 𝐽𝐽𝑅 + 𝑊7: 𝐶𝐷
→
𝑊3: 𝑅 𝑆 𝑂𝐼 + 𝑊 𝐼: 𝐴𝑇 𝐼 𝑅 𝑆 𝑂𝐼 + 𝑊 5: 𝐴𝑇 𝐼 𝑅 𝐶 𝑂𝐼 + 𝑊 6: 𝑆 𝑅 𝐶 𝑂𝐼 + 𝑊 7

3) The generated XLQ is shown in Figure 11.

Figure 11. The output XLQ

4.3. Database knowledge module

The objective of this module is to translate XLQ into DBQ by mapping each element of the XLQ

to its corresponding clause in the DQL. Our system operates independently of the database model (XML

and relational). For relational databases, the system generates an SQL query, while for XML databases, it

generates an XPATH query.

The generation of DQL involves three steps, each handling a specific part of the DBQ. First, the

system processes the XLQ to extract attribute names for constructing the SELECT clause. Next, it

constructs the FROM clause by identifying table names within the XLQ. Finally, the system extracts

selection conditions from the XLQ to build the WHERE clause. Concatenating the results of these steps

produces the DBQ. During each DQL construction step, our system verifies the validity of table and

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 983-993

990

attribute names retrieved from the XLQ against the database dictionary. If they are invalid, a mapping table

containing synonyms of the names of table and attribute is utilized. This feature allows users to write NLQ

without requiring precise knowledge of database table and attribute names. After the generation of the

DBQ, the system submits it to the database management system (DBMS) and presents the result of SQL

queries in tabular form or XML format for XPATH queries. An example of DQL generation is illustrated in

Figure 12.

Figure 12. Translating the XLQ into DBQ

5. RESULTS AND DISCUSSION

The interface in Figure 13 illustrates the process of training the NLQ-XLQ corpus to induce NLQ-

XLQ rules. The interface in Figure 14 represents the translation based induced rule. The Table 1 shows the

output of translating some NLQ using NLQ-XLQ rules. We have tested with many database domains

(database of students, projects, and employees). Additionally, we have tested the functions with two models:

relational and XML databases.

Figure 13. Training the NLQ-XLQ corpus

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Applying inductive logic programming to automate the function of an intelligent natural … (Hanane Bais)

991

Figure 14. Translation based induced rules

Table 1. NLQs with aggregate function

We evaluated the performance of our system using a set of 1,000 NLQs. The results from this test

are summarized in Table 2. From Table 2, it can be seen that out of 1,000 NLQs evaluated, the system

successfully generated an SQL query for 955 of them. 95.2% of these NLQs were converted into XPATH

searches. Furthermore, 92.46% of the SQL translations were accurate, while 896 NLQs were incorrectly

converted into XPATH queries. Additionally, the evaluation shows that 94.56% of the correctly generated

SQL queries and 89.95% of the XPATH queries matched their corresponding NLQs. Table 3 illustrates the

NLQ Generated SQL Generated XPATH

Show customers SELECT * FROM customer /*/ customer /*

Students SELECT * FROM student /*/ student /*

Give all the salary of our

employees
SELECT salary FROM employee /*/employee/ salary

Ages, emails and faxes of customers
SELECT age, email, faxe FROM
customer

customers /*/ customers /email /*/ customers
/age /*/ customers /faxe dress

Give me the projects names

And customers emails

SELECT email FROM client

SELECT name FROM project

/*/client/email

/*/ project /name
Show me the customers whose

name is ‘Hanane’ or ‘Mustapha’

SELECT* FROM customer where name

in (’Mustapha’, ‘Hanane’)

/*/ customer [name= "hanane"]/*

/*/ customer [name= "Mustapha"]/*

What is the information of
customers whose age is more than

40?

Select * FROM customer where age > 40
/*/ customer [age > 40]

/age

Count the number of projects
SELECT COUNT (*) AS NB-
project

/*/count(project)

Show me the max age of clients

where age is less than 40
Select * FROM customer where age > 40

/*/ customer [age > 40]

/age

Count the number of projects
SELECT COUNT (*) AS NB-

project FROM project
/*/count(project)

Show me the max age of clients
where age is less than 40

SELECT MAX (age) AS max-age FROM
client where age < 40

max(/*/client[age
<40]/age)

Display the max mark and the min

age of students

SELECT max (mark) AS max--mark, min

(age) as min -age FROM student

max(/*/student/mark)

|min(/*/student /age)

Show the max and the min age of
customers where age > 40

SELECT max (client.age) as max-

client.age, min (client.age) as min-client.

age FROM client where age > 40

max(/*/client

[age>40]/age)min(/*/client[age

>40]/age)

Give the name of student with the
max mark?

SELECT name FROM student where

mark in (SELECT max (mark) FROM

student)

/*/student[marks=max (/*/student/
marks)]/nam

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 2, November 2024: 983-993

992

improvement in response time in second (s)when using NLQ-XLQ rules. As show in Table 3 The response

time is reduced significantly, reaching up to 93.77% in certain cases, when using ILP compared to that of

linguistic operations. Surely, this enhances the performance of our system.

To demonstrate the consistency in the use of ILP and to avoid memory overload and high CPU

usage, we studied how many rules have been generated during the training of 100 NLQs. The result obtained

is illustrated in Figure 15. From Figure 15, it can be seen that our system provides logarithmic growth during

the rule generation. This degrades newly induced rules after a certain number of training sessions, which

demonstrates the consistency of this system.

Table 2. Answered NLQ/DBQ correctly translated/DLQ matches NLQ
 SQL XPATH

Answered queries 955 (95.5%) 952 (95.2%)
Correctly generated 883 (92.46%) 896 (94.11%)

DLQ matches NLQ 835 (94.56%) 806 (89.95%)

Table 3. Improvement in response time
Type of NLQ NLQ-XLQ rule linguistic expertise %

NLQ without projection and selection 4.18 (s) 0.26 (s) 93.77

NLQ with projection and without selection 5.97 (s) 0.70 (s) 88.27
NLQ without projection and with selection 5.61(s) 1.04 (s) 81.46

NLQ with projection and selection 5.86 (s) 0.91 (s) 84.74

NLQ with aggregate functions 6.08 (s) 1.32 (s) 78.28

Figure 15. Logarithmic growth during the inducing of rules

6. CONCLUSION

This paper describes the exploitation of a supervised machine learning technique to develop an

example based transfer tool that automatically induces transfer rules from the example of NLQ paired with their

logical interpretation. We have presented a framework using ILP to learn rules that map NLQ into XLQ by a

training corpus of NLQ paired with XLQ. The results of experimentation demonstrate the ability to learn a very

important number of rules that produce a correct answer to a user’s NLQ. This approach does not require

reconfiguration when switching to a different database domain. Furthermore, it was not designed for a specific

database model. This suggests flexibility and adaptability across different database domains and models. This

flexibility can be advantageous in scenarios where it is necessary to work with different types of databases

without significant system modifications or adjustments. Moreover, our proposed interface can benefit from his

experience in the automatic induction of rules that directly map all NLQs with grammatical structures similar to

those already present in the corpus. A potential future direction is to further enhance the abilities of our system

to understand NLQ in other languages and expand our system's ability to interface with other database models.

REFERENCES
[1] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language interfaces to databases – an introduction,” Natural

Language Engineering, vol. 1, no. 1, pp. 29–81, Mar. 1995, doi: 10.1017/s135132490000005x.

[2] A. Colas, T. Bui, F. Dernoncourt, M. Sinha, and D. S. Kim, “Efficient deployment of conversational natural language interfaces

over databases,” 2020, doi: 10.18653/v1/2020.nli-1.4.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Applying inductive logic programming to automate the function of an intelligent natural … (Hanane Bais)

993

[3] R. Akerkar and M. R. Joshi, “Natural language interface using shallow parsing,” International Journal of Computer Science and
Applications, vol. 5, no. 3, pp. 70–90, 2008.

[4] M. Llopis and A. Ferrández, “How to make a natural language interface to query databases accessible to everyone: An example,”

Computer Standards & Interfaces, vol. 35, no. 5, pp. 470–481, Sep. 2013, doi: 10.1016/j.csi.2012.09.005.
[5] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of natural language interfaces to databases,” 2003, doi:

10.1145/604050.604070.

[6] R. J. Mooney, “Inductive logic programming for natural language processing,” in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 1997, pp. 1–22.

[7] G. Rao, C. Agarwal, S. Chaudhry, and N. Kulkarni, “Natural language query processing using semantic grammar,” vol. 2, pp.

219–223, 2010.
[8] N. Lavrač, S. Džeroski, and M. Numao, “Inductive logic programming for relational knowledge discovery,” New Generation

Computing, vol. 17, no. 1, pp. 3–23, Mar. 1999, doi: 10.1007/bf03037580.

[9] H. Bais, M. Machkour, and L. Koutti, “Querying database using a universal natural language interface based on machine
learning,” Mar. 2016, doi: 10.1109/it4od.2016.7479304.

[10] L. Koutti, H. Bais, and M. Machkour, “An independent-domain natural language interface for multimodel databases,”

International Journal of Computational Intelligence Studies, vol. 8, no. 3, p. 206, 2019, doi: 10.1504/ijcistudies.2019.10024284.
[11] A. Mukherjee and U. Garain, “A review of methods for automatic understanding of natural language mathematical problems,”

Artificial Intelligence Review, vol. 29, no. 2, pp. 93–122, Apr. 2008, doi: 10.1007/s10462-009-9110-0.

[12] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates, “Modern natural language interfaces to databases: composing
statistical parsing with semantic tractability,” 2004, doi: 10.3115/1220355.1220376.

[13] L. R. Tang, “Using a machine learning approach for building natural language interfaces for databases: application of advanced

techniques in inductive logic programming,” Journal of Computer Science, Informatics and Electrical Engineering, vol. 2, no. 1,
pp. 140–60, 2008.

[14] J. Sànchez-Ferreres, J. Carmona, and L. Padró, “Aligning textual and graphical descriptions of processes through ILP techniques,”

in Lecture Notes in Computer Science, Springer International Publishing, 2017, pp. 413–427.
[15] M. Eineborg and N. Lindberg, “ILP in part-of-speech tagging — an overview,” in Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 2000, pp. 157–169.

[16] K. Shaalan and A. H. Hossny, “Automatic rule induction in Arabic to English machine translation framework,” in Natural
Language Processing, John Benjamins Publishing Company, 2012, pp. 135–154.

[17] D. Kazakov and S. Manandhar, “Unsupervised learning of word segmentation rules with genetic algorithms and inductive logic

programming,” Machine Learning, vol. 43, pp. 121–162, 2001.
[18] J. M. Zelle and R. J. Mooney, “Learning to parse database queries using inductive logic programming,” Proceedings of the

national conference on artificial intelligence, pp. 1050–1055, 1996.

[19] S. Muggleton, “Inductive logic programming: issues, results and the challenge of learning language in logic,” Artificial
Intelligence, vol. 114, no. 1–2, pp. 283–296, Oct. 1999, doi: 10.1016/s0004-3702(99)00067-3.

[20] O. Al-Harbi, S. Jusoh, and N. Norwawi, “Handling ambiguity problems of natural language interface for questt tion ion answering

answering answering answering,” International Journal of Computer Science Issues (IJCSI), vol. 9, no. 17, 2012.
[21] E. A. and O. D.O, “An algorithm for solving natural language query execution problems on relational databases,” International

Journal of Advanced Computer Science and Applications, vol. 3, no. 10, 2012, doi: 10.14569/ijacsa.2012.031027.

[22] D. Kazakov, “Achievements and prospects of learning word morphology with inductive logic programming,” in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2000, pp. 89–109.

[23] M. E. Califf and R. J. Mooney, “Advantages of decision lists and implicit negatives in inductive logic programming,” New

Generation Computing, vol. 16, no. 3, pp. 263–281, Sep. 1998, doi: 10.1007/bf03037482.
[24] G. Sazandrishvili, “Asset tokenization in plain English,” Journal of Corporate Accounting & Finance, vol. 31, no. 2, pp. 68–

73, Nov. 2019, doi: 10.1002/jcaf.22432.

[25] J. Tiedemann, “Word to word alignment strategies,” in COLING '04: Proceedings of the 20th international conference on
Computational Linguistics, 2004, doi: 10.3115/1220355.1220386.

BIOGRAPHIES OF AUTHORS

Hanane Bais is a full professor of higher education, Moroccan School of

Engineering (EMSI). She received her Ph.D. degree in Computer Science from the Ibn Zoher

University, Agadir, Morocco in 2018, from Departments of Computer Science, Faculty of

Science, University Ibn Zohr, Agadir, Morocco. Member of Laboratory LAMIGEP, EMSI

Marrakech, Morocco. Her research interests include database system, natural language

processing, and artificial intelligence. She can be contacted at email: h.bais@emsi.ma.

Mustapha Machkour is a full professor of higher education, Department of

Computer Sciences, Head of the Intelligent Computing Models and Knowledge Engineering

(M3IC) Team, Ibn Zohr University, Agadir, Morocco. Member of Laboratory of Computer

Systems and Vision, Faculty of Science, Ibn Zohr University, Agadir, Morocco. Current

research interests include natural language processing, database system, logic and artificial

intelligence, and image processing. He can be contacted at email: machkour@hotmail.com.

https://orcid.org/0000-0002-7563-4820
https://www.scopus.com/authid/detail.uri?authorId=57190176708
https://orcid.org/0000-0003-4515-6589
https://scholar.google.com/citations?user=9Sd7TqsAAAAJ&hl=fr&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57218892864

