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This study investigates the use of k-nearest neighbors (k-NN) for classifying
occupant positions in under-actuated zones, aiming to enhance ventilation
control. The focus is on evaluating different data preprocessing techniques,
particularly cumulative moving average (CMA), Kalman filtering (KF), and
their combination, to boost the k-NN model's reliability and accuracy. The
research uses received signal strength indicator (RSSI) data in a controlled
setting. The methodology involves dividing the dataset into training and
testing subsets and using root mean squared error (RMSE) to determine the
best k value for model validation. The study performs a comparative analysis
of the k-NN model's performance with both original and preprocessed RSSI
data, focusing on metrics such as accuracy, precision, recall, F1-score, and
RMSE. The findings emphasize the significant impact of the combined
CMA-KF preprocessing technique in improving the model's accuracy and
reliability. Specifically, this approach achieved an accuracy of 98.58%.
The RMSE values are particularly noteworthy, exhibiting a perfect fit

(RMSE of 0) for training data and a remarkably low RMSE of 0.119 for
testing data, confirming the model's high accuracy and predictive capability.
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1. INTRODUCTION

Indoor air quality (IAQ) is a significant determinant of human health and wellbeing. Poor IAQ can
lead to various health concerns, including respiratory problems, allergies, asthma, and respiratory diseases [1].
The primary cause of IAQ problems is indoor pollution sources that release gases or particles into the air.
Inadequate ventilation can raise indoor pollution levels by not bringing in enough outside air to dilute
pollutants [2]. Therefore, it is essential to understand and control common pollutants indoors to reduce the
risk of indoor health concerns. One of the critical factors that affect IAQ is ventilation. The use of mechanical
ventilation systems is a common method to distribute fresh air uniformly and efficiently to all occupants in
a building [3], [4]. However, certain areas within buildings, known as under-actuated zones, may not have
well-controlled air distribution systems, resulting in variations in cooling load and poor climate control,
which may negatively affect IAQ and energy efficiency. The under-actuated zones in buildings are areas
where the ventilation system is not capable of controlling the air exchange rate. These areas can have poor air
quality, which can negatively affect the occupants' health. The issue with under-actuated zones is that the
ventilation system may not be able to deliver fresh air to all occupied areas due to limited capacity or poor
control [5].
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Several studies have been conducted on the topic of IAQ and ventilation systems in both fully-
actuated and under-actuated zones. These studies have explored various approaches to improving 1AQ,
including occupant position-based ventilation classification using machine learning algorithms and wireless
sensor. Miao et al. [6] offers a real-time occupancy monitoring system based on machine learning methods to
decrease building energy use. The authors classified occupancy data using the k-nearest neighbor (k-NN)
technique. The paper describes the system's deployment and assessment in an office building utilizing a
wireless sensor network. The findings shown that the system can detect occupancy reliably and minimize
energy usage by managing heating, ventilation, and air conditioning (HVAC) systems based on occupancy
data. The study emphasizes the potential of machine learning algorithms, such as k-NN, to optimize HVAC
systems based on occupancy patterns in order to create energy-efficient buildings. Study by Jin et al. [7]
proposes a wireless sensor network-based system for detecting occupancy and monitoring energy use in
residential construction. The authors proposed a rule-based occupancy detection system that determines the
occupancy state of each room in a building using data collected from a wireless sensor network. They also
used occupancy data to assess a building's energy consumption patterns and created an energy management
system to optimize energy use. This study examines the possibilities of wireless sensor networks for
occupancy detection and energy management in residential buildings, which can lead to enhanced energy
efficiency and cost savings.

The research of Simma et al. [8] discussing real-time occupancy estimation using Wi-Fi Networks
to Optimize HVAC Operation, explained about the performance of energy on infrastructure in the US is quite
high but has not been able to adjust occupants. Although the topic seems to overlap some with our research
concept, we differentiate ourselves by focusing on measuring variations in ventilation performance, data
management processes, and grouping classifications in ventilation systems based on occupant detection data.
Anand et al. [9] study recommends an occupancy-based energy management solution for commercial
building HVAC systems. This study employs clustering algorithms for occupancy categorization and
decision trees for occupancy prediction. The authors utilized occupancy data to improve the functioning of a
building's HVAC systems by altering the temperature and ventilation rates based on occupancy patterns. This
study offers a simulation-based evaluation of the proposed system, demonstrating that the system can achieve
considerable energy savings while preserving interior thermal comfort.

Drira and Smith [10] presented a machine-learning-based technique for detecting occupancy in
buildings using structural vibrations. The authors employed k-NN and support vector machine (SVM)
methods to classify occupancy data based on building structure vibrations. The findings show that the
proposed system properly detects occupancy and surpasses the standard infrared-based occupancy detection
system in terms of accuracy and reliability. This study emphasizes the potential of machine learning
algorithms for occupancy identification in buildings utilizing nonintrusive sensors, such as structural
vibrations, which can provide a cost-effective and reliable solution for occupancy monitoring. Zhang et al. [11]
presents a machine learning-based technique for building occupancy prediction to optimize energy
management. For occupancy prediction, the authors employed the k-NN and decision tree algorithms. This
study describes the deployment and assessment of the proposed system in an office building using a wireless
sensor network. This study emphasizes the potential of machine learning algorithms, such as k-NN and
decision trees, for building occupancy prediction and energy management, which may lead to greater energy
efficiency and cost savings.

Although the studies described above address the optimization of ventilation systems based on
occupancy information, they do not directly address the categorization of ventilation strategies based on
occupant position in under-actuated zones. Under-actuated zones are characterized by low ceiling levels and
reduced volume, and they are controlled by systems with mechanical ventilation [12]-[14]. HVAC systems
with mechanical ventilation are used to control the indoor air parameters in these zones, but they may not be
optimized for energy efficiency or IAQ [15]. An efficient method to classify the position of occupants based
on ventilation can help optimize the ventilation and IAQ in under-actuated zones by adjusting the HVAC
system settings based on the occupancy status of each zone. This can lead to improved 1AQ, reduced energy
consumption, and increased occupant comfort and productivity. It is necessary to have an efficient method to
classify the position of occupants based on ventilation in order to optimize ventilation and 1AQ in under-
actuated zone.

According to prior research, the k-NN approach is the most often used method for occupant position
classification based wireless signal. This machine-learning technique categorizes data points based on their
similarities to other data points. The parameter ‘k’ which represents the number of nearest neighbors
considered, plays a crucial role in the performance of the k-NN algorithm [16]. Selecting an appropriate
value for 'k' is essential to achieve optimal results. When ‘k’ is set to a small value, the k-NN algorithm
becomes more sensitive to outliers, potentially leading to erroneous classifications [17], [18]. However,
setting 'k' to an excessively large value may cause the neighborhood to include an uneven distribution of data
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points from different classes. This can impact the ability of the algorithm to make accurate classifications by
introducing noise from unrelated data points. Based on distance computations, the k-NN approach finds the
nearest neighbors. If the characteristics are not scaled, those with greater scales may dominate those with
smaller scales [19]. Scaling ensures that every feature contributes equally to distance computations,
eliminating bias and guaranteeing that characteristics are compared equitably [20]. In k-NN, feature scaling
can lead to an improved speed and more accurate results. By bringing the features to a similar scale, the
outliers and extreme values had less influence on the distance calculations. Moreover, the challenge of
imbalanced data distribution is a notable concern in k-NN classification [21]. Imbalanced data occur when
one class is significantly overrepresented compared to others, which is a common scenario in real-world
applications such as fraud detection, rare disease diagnosis, and anomaly detection [22]. The presence of
imbalanced data can adversely affect the k-NN classification process because the algorithm may exhibit biased
behavior toward the majority class. Consequently, this can lead to suboptimal performance in accurately
predicting instances from a minority class [23]. Hence, it is essential to address the issue of an imbalanced data
distribution before initiating the classification process to ensure fair and accurate predictions.

In the context of classification based on wireless signal data, a key challenge is the variance in the
received signal strength indicator (RSSI). This variance is closely tied to the multipath fading effect, which
stems from signal reflections, diffractions, and interference, resulting in fluctuations in the signal strength at
the receiver end [24]. The presence of multipath fading introduces signal variations that manifest as
fluctuations in RSSI measurements received by wireless devices. Given that the RSSI is a pivotal metric for
assessing signal strength, its variability can lead to a range of issues, including unreliable connectivity,
decreased data rates, and even dropped calls or data sessions [25]. Prior research has explored the utilization
of filter techniques to counteract the negative effects of multipath fading on classification [26]. These
techniques aim to mitigate the influence of multipath fading and enhance the quality of the RSSI
measurements for more accurate classification outcomes.

This study proposes a k-NN method to classify occupant position-based ventilation in under-
actuated zones. Signal data from a wireless access point was utilized for the classification of occupant
position-based ventilation. This study utilizes Shannon atrophy to identify imbalanced data and root mean
square error (RMSE) to determine the number of neighbors (k). The investigation extends to data
preprocessing techniques, specifically focusing on RSSI filter techniques. This study employs three distinct
filter techniques: cumulative moving average (CMA), Kalman filter (KF), and a hybrid approach combining
CMA with KF. These techniques are employed to counteract the effects of multipath fading, which lead to
RSSI variance. By applying these filter techniques, this study aims to enhance the quality of the RSSI
measurements and subsequently improve the accuracy of the k-NN classification. Min-max normalization
was used to bring the features to a common scale, ensuring fair and unbiased comparisons in the distance
calculations of the k-NN algorithm. Hyperparameter tuning is another critical aspect that the study engages
with, seeking to optimize the performance of k-NN classification. This involves the selection of
hyperparameters, such as the number of neighbors (k) and wsix assignments, aiming to fine-tune the
algorithm to improve the performance. The core analysis involved a comparative examination of
classification accuracy under various scenarios. This comparison encompasses both the dataset with original
RSSI and dataset with RSSI processed using the filter techniques. This study assesses the impact of these
techniques on the accuracy of k-NN classification, ultimately determining the most effective approach for
accurately classifying occupant positions based on their ventilation requirements within under-actuated zones.

2. METHOD

The dataset employed in this research, integral to understanding under-actuated zones, was
meticulously derived from RSSI data. This rich dataset, focusing on indoor location determination through
Wi-Fi signal measurements, is publicly accessible at [27]. The dataset at its core is centered on Wi-Fi signal
data collected from strategically positioned access points within a two-story building configuration, offering
a diverse range of measurement scenarios. To prepare for in-depth analysis, the dataset underwent
a comprehensive data cleansing process. During this initial step, six distinct areas representing ventilation on
the building's first floor were carefully selected, as detailed in Table 1. This meticulous selection process was
crucial to ensure the relevance and accuracy of the data for its intended analyses. Additionally, a significant
update was introduced by incorporating a new variable termed 'distance.' The calculation of this variable was
done with precision using the provided coordinates of the Wi-Fi access points, thereby introducing a vital
spatial dimension to the data. Each area contains multiple timestamps, reflecting the frequency of RSSI
measurements taken within each respective area.
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Table 1. Zone area observed
Area  Coordinate (X, Y) Distance  Total timestamps

Zone 1 22,17 28 317
Zone 2 19,17 26 289
Zone 3 18,17 25 309
Zone 4 23,35 42 400
Zone 5 23,34 41 400
Zone 6 32,33 46 400

The methodology employed in the research followed a well-structured and comprehensive approach.
The process commenced with extensive data preparation, which involved refining the dataset using various
filtering techniques. To enhance the dataset's suitability for advanced analysis, a significant augmentation
process was applied. This included the addition of new columns containing RSSI filter values obtained
through three distinct methodologies: CMA, KF, and the combination of CMA with KF (CMA-KF) as the
proposed method. This stage provided a strong foundation for the subsequent phases of the study. Moving
forward, the research conducted a thorough examination of data imbalances and feature scaling to ensure that
the dataset was well-prepared for the upcoming classification tasks. During the classification stage, the
primary focus centered on the utilization of the k-NN method. This phase played a crucial role as it aimed to
identify the positions of occupants, with a specific emphasis on their ventilation requirements—an essential
aspect for understanding indoor environmental quality. To enhance the effectiveness of the classification
process, hyperparameter tuning was employed. This entailed fine-tuning various parameters of the k-NN
algorithm to achieve optimal performance, a critical step in guaranteeing accurate and reliable classification
results. The third and final stage of the study was dedicated to conducting a comprehensive assessment of the
classification performance. This evaluation extended beyond the original dataset with RSSI values and also
encompassed the dataset enriched with the RSSI filters.

2.1. Received signal strength indicator filter

The RSSI filtering is used to increase the accuracy and reliability of wireless communication
systems, particularly in range-based localization [28]. RSSI is typically measured in decibels (dB) and
indicates the power level of the signal as it arrives at the receiver. By reducing the short-term variations
caused by interference, multipath propagation, and other variables, it provides a more steady and reliable
indication of the true signal intensity. In this study, filtering techniques such as the CMA, KF, and CMA with
KF was used.

2.1.1. Cumulative moving average

The CMA is a type of moving average filter that can be used to smooth out and minimize the noise
in the RSSI signal [29]. The CMA filter is a quick and easy approach to compute the average of a series of
RSSI values over time. The filter operates by summing the RSSI values over a specific time and dividing
them by the number of values in the period. When the current RSSI values are added, the oldest value is
subtracted from the total, and the new average is computed [28]. CMA has the advantage of significantly
accounting for past data by accounting for the most recent data point. Initialize the filter with the first RSSI
value, set cumulative_sum to this value, and set the count to one. Then, for each new RSSI value received,
update the cumulative_sum by adding the new value, increment the count, calculate the new CMA by
dividing the cumulative_sum by count, and use this CMA value as the smoothed RSSI value. These
procedures are repeated for consecutive RSSI measurements to maintain a running average that smooths out
variations and provides a more reliable depiction of the signal intensity over time.

2.1.2. Kalman filter

KF is a popular approach for removing noise from RSSI signals and improving wireless
communication system accuracy [30]. The KF is a state estimator that uses noisy observations to estimate
unobserved variables. This is a recursive method that considers the history of the measurements. The KF
linear models, which means that the transition from one state to the next and the translation from state to
measurement must be linear transformations [31]. The approach begins by initializing the initial state
estimate x_0 and the initial error covariance P_0. Subsequently, a prediction phase forecasts the upcoming
state estimate, x_k|k-1, based on the system dynamics using matrices F and B, while forecasting error
covariance, P_k|k-1, encapsulating system uncertainty with regard to process noise via matrix Q. The update
step, which is critical for improving accuracy, involves calculating the Kalman gain, K_k, which gauges the
measurement reliability and adjusts the state estimate based on the difference between the observed
measurement, z_k, and the predicted measurement, H * x_k|k-1, accounting for measurement noise using
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matrix R. The smoothed RSSI value emerges as the updated state estimate, x_k|k, as the KF iterates through
these steps for subsequent RSSI inputs. The KF adeptly refines RSSI estimations using this approach,
accommodating to dynamic wireless signal conditions while guaranteeing optimal accuracy and robustness in
data processing.

2.1.3. Proposed method

The present study intends to employ a combined filtering technique that merges the advantages of
CMA and KF to enhance the accuracy and dependability of RSSI measurements. The CMA is a swift and
efficient method of averaging a series of RSSI values, enhancing the signal by diminishing short-term
fluctuations resulting from interference or multipath propagation. It achieves this by continuously updating
a cumulative sum with new RSSI values, taking into account the most recent data point. This running average
effectively eliminates erratic variations, presenting a more stable depiction of the signal's strength. On the
other hand, the KF is a more complex state estimator that refines the RSSI signal by considering the history
of measurements and making predictions based on linear models. It begins with an initial estimate and error
covariance, and then enters a cycle of prediction and updating. In each cycle, it adjusts the state estimate
based on new observations while accounting for potential noise in the measurements, resulting in a refined
and optimized RSSI reading. The process commences by applying the CMA to the RSSI dataset, followed by
feeding the resulting CMA values into the KF. This hybrid approach seeks to leverage the promptness and
straightforwardness of the CMA with the forecasting and optimizing capabilities of the KF, culminating in
a doubly smoothed RSSI value.

2.2. Analyze imbalance data

The number of classes in the output variable is determined by the number of ventilations. In this
study, a corner room with three ventilations is used. Analyzing unbalanced data assists in assessing the
significance of attributes for various classes. When the data are skewed, models may overrely on traits that
correlate with the majority class while ignoring those that are relevant for minority classes [22]. Shannon
entropy is a measure of the uncertainty or information content of a random variable and can be used to
analyze class imbalance in a dataset [32]. The entropy of random variable X is defined as follows:

HX) = = Xp(x) .logp(x) @

P(x) denotes the probability of the result x. In the context of datasets, particularly those used in machine
learning and statistics, entropy is a crucial concept for understanding the balance and diversity of class
distribution. When the entropy number is low, it implies that the dataset's class distribution is strongly
skewed towards one or a few classes. This skewness is an indicator of imbalance in the dataset. For instance,
in a binary classification problem, if a significant majority of data points belong to one class with only
a small fraction representing the other, the dataset will exhibit low entropy. Such an imbalance can lead to
biased models that perform well on the majority class but poorly on the minority class, as the model's
exposure to the minority class is limited. Conversely, a high entropy number suggests a more uniform
distribution of classes, indicating a balanced dataset where classes are more evenly represented. In this
scenario, each class in the dataset has a similar probability of occurrence, leading to a higher degree of
uncertainty or randomness, which is what entropy measure. High entropy in a dataset is generally desirable
for machine learning purposes, as it means that the model is exposed to a more diverse set of examples from
each class, enabling it to learn more generalized patterns.

2.3. Feature scaling

The variables in the data have different units; therefore, the data were transformed to have the same
units. The second step was to transform the data using the feature-scaling method. Feature scaling is
a technique used to standardize the independent features present in data in a fixed range. This was performed
to ensure that all features contributed equally to the model and to prevent features with larger values from
dominating the model. Min-maxing is a statistical technique used to rescale numerical values into the (0,1)
range [33]. Xmax and Xmin are the maximum and lowest values of the feature, respectively. When the value
of X is the highest number in the column, the numerator equals the denominator; hence, the value of X' is 1.
If the value of X is between 0 and 1, then the value of X' is between 0 and 1. The min-max normalization
procedure preserves the correlations between the original data values. The formula for min-max is as (2).

X~ Xmin
X = — 2
scaled Xmax— Xmin ( )
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2.4. Classification using k-NN

k-NN classification is a well-known non-parametric classification approach that incorporates the
simplest algorithm in problem solving and is capable of grouping items in a certain class based on similarities
and differences [34]. k-NN classification utilizes the principle of locating the neighbors (k) and
categorization based on similarity. The initial technique is to add additional points to the training data to be
utilized as a categorization of test data. The method for determine neighbors (k) using the RMSE. The RMSE
calculates the average difference between the anticipated and actual values of a statistical model [34]. This is
the standard deviation of the residuals in mathematics. The gap between the regression line and data points is
represented by residuals. The RMSE measures the variance of these residuals, indicating the degree to which
the observed data cluster around the expected values. Low RMSE values imply that the model fits the data
well and provides more accurate predictions. The data obtained in the previous process are carried out using
split datasets for the sharing of training data and testing data. This study using 80% data calculation for
training data and 20% for testing data. The ratio 80% for training and 20% for testing are a commonly used
ratio in many fields of machine learning [36]. Ecludian distance was used to calculate the closest distance
between the training and test data using [37].

2.5. Hyperparameter tuning

Hyperparameter tuning is an important optimization technique in machine learning algorithms,
particularly for k-NN [38]. A grid search is essential for selecting the best hyperparameter configuration,
which includes the value of 'k’ and the wsix scheme used in k-NN [39]. The wsix scheme specifies the
proportional wsix assigned to neighbor contributions, while the k value denotes the number of nearest
neighbors evaluated during prediction. Performing hyperparameter tuning using grid search includes multiple
steps: First, an exhaustive parameter grid is defined, with k values ranging and wsix scheme options (uniform
and distance). Second, the dataset is partitioned into training and validation sets, allowing for the evaluation
of model performance under various hyperparameters. The fundamental grid search procedure comprises
iteratively training k-NN models on the training data using various k and wsix scheme combinations, then
analyzing their performance on the validation set using relevant evaluation measures. This continual
examination across the parameter grid provides information about the most effective hyperparameter
arrangement. Choosing the best hyperparameters entails determining the combination that produces the best
validation set performance. Finally, the hyperparameters chosen (k value and wsix scheme) are used to train
a final k-NN model on the entire training dataset.

2.6. Performance measurement

Several k-NN classification performance measurements include the accuracy, precision, recall, F1
score, RMSE training, and RMSE testing [40]. The accuracy of the k-NN classifier was determined as the
proportion of correctly classified instances divided by the total number of examples in the dataset. This
provided a comprehensive overview of the performance of the model. To provide a detailed overview of the
classifier performance, the confusion matrix displays the number of true positives, true negatives, false
positives, and false negatives. It assists in examining the model's ability to effectively categorize instances
and detect potential issues, such as misclassification of specific classes. Precision is defined as the proportion
of correctly predicted positive cases (true positives) out of all projected positive instances (true positives +
false positives), and reflects the model's ability to prevent false positives. The proportion of correctly
predicted positive cases (true positives) out of the total number of actual positive instances (true positives +
false negatives) was calculated using recall. It assesses the model's ability to identify all positive situations
while avoiding false negatives. The F1 score is the harmonic mean of the accuracy and recall values, and
provides a balanced assessment that considers both metrics.

3. RESULTS AND DISCUSSION

The dataset utilized in this study encompassed a total of 2,115 records, which were distributed
across six distinct areas based on their respective distances. This rich collection of data was efficiently stored
in a comma-separated value (CSV) file format, facilitating ease of manipulation and analysis. The study was
composed of four experimental scenarios, each delving into different aspects of data processing and analysis.
The initial phase of experimentation focused on the application of filtering techniques to the RSSI data,
a crucial metric in wireless networks. This phase involved computing the CMA filter and the KF, as well as
exploring their combined application. The aim was to smooth out the noise and enhance the reliability of the
RSSI data, setting a strong foundation for more accurate analyses. Subsequently, the study's focus shifted
towards analyzing the imbalanced nature of the dataset through Shannon Entropy. This approach quantified
the extent of imbalance in data distribution across various classes, providing critical insights for further data
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preprocessing. The third phase involved feature scaling of the dataset via min-max normalization. This
process adjusted the range of data feature values, ensuring that all features were on a uniform scale, a critical
step for the effective application of machine learning algorithms. The fourth phase of the study entailed
a comprehensive evaluation of the k-NN algorithm's performance. Hyperparameter tuning was applied to the
k-NN algorithm to optimize its performance, enhancing its suitability for classification tasks in this context.
This comparison aimed to determine the most effective data preprocessing technique for improving the
accuracy and efficiency of k-NN in the context of wireless network signal strength. The last phase is
comparative of measurement between original RSSI with CMA, KF, and CMA-KF.

3.1. Analyze imbalanced data

The dataset under analysis exhibited a notably skewed class distribution, characterized by six
distinct classes that demarcate different levels of distance-based ventilation. This skewness, or non-
uniformity, is particularly significant as it reflects the varying degrees of ventilation distances, each class
representing a unique category in this spectrum. The disparities in class representation are vividly detailed in
Figure 1, which serves as a crucial graphical illustration of the dataset's composition. This figure not only
quantitatively outlines the number of instances in each class but also provides a visual representation of the
disparity, making the imbalance immediately apparent and understandable even to those not deeply versed in
statistical analysis. The figure effectively elucidates the relative proportions of each class within the dataset,
offering an insightful view into the dataset's compositional heterogeneity.

400
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Figure 1. Distribution of classes in dataset

Following the visualization in Figure 1, Shannon Entropy was employed as a key metric to quantify
the extent of imbalance within the dataset. Shannon Entropy, a concept derived from information theory,
serves as a measure of uncertainty or randomness in the distribution of classes in a dataset. In this specific
analysis, the calculated Shannon Entropy value was determined to be 0.9947. This value is substantial,
pointing towards a lack of severe data imbalance in the dataset under consideration. Typically, entropy values
close to 1 indicate a high level of uncertainty, which in the context of data distribution, translates to a more
uniform spread of class instances. The significance of this high entropy value lies in its implication of
a uniform distribution of classes within the dataset. It suggests that the dataset was characterized by
a relatively equitable representation of instances across the various classes.

3.2. Performance of k-NN classification

Prior to selecting an optimal k-value for the k-NN algorithm, the sample data underwent a validation
process using the root mean squared error (RMSE). The initial step involved dividing the sample data into
two distinct sets: 80% for training and 20% for testing. The training set was utilized to construct the k-NN
model, while the validation set was employed to assess the model's performance across various k-values. The
primary objective of this experiment was to compare the performance of k-NN classification between
datasets containing the original RSSI values and datasets enhanced with RSSI filters. The performance
metrics, including accuracy, precision, recall, F1 score, error rate, and processing time, are presented in Table 2.
The k-NN classification results using the original RSSI values yielded an accuracy of 90.54%. The model

Improving ventilation classification in under-actuated zones: a k-nearest neighbor and ... (Yaddarabullah)



240 a ISSN: 2502-4752

exhibited a precision of 0.91, indicating a relatively high proportion of true positive classifications among all
predicted positive instances. Similarly, the recall score of 0.91 implied a strong capability to identify true
positives from the actual positive instances. The F1-score of 0.90 reflected a balanced performance between
precision and recall. However, it is noteworthy that the RMSE for testing was 0.307, signifying the average
distance between predicted and actual distance values. These results suggest that the original RSSI values
provide a reasonable foundation for position-based ventilation classification, although there is room for
improvement, as indicated by the RMSE. The application of the CMA filter to the RSSI values led to
a significant improvement in accuracy, reaching 97.87%. This enhancement was also evident in precision,
recall, and F1-score, all of which increased to 0.98. Furthermore, the RMSE for testing decreased to 0.146,
indicating reduced prediction errors. These improvements clearly demonstrate the efficacy of the CMA filter
in reducing noise and enhancing the quality of RSSI data, ultimately resulting in more accurate occupant
position classification. Similarly, when applying the KF to the RSSI values, an accuracy of 97.87% was
achieved, with precision, recall, and F1-score all reaching 0.98, and the RMSE for testing remaining
consistent at 0.146. These outcomes reinforce the positive impact of filtering techniques on classification
performance. The KF's ability to handle dynamic systems and uncertainties appears to contribute
significantly to the improved accuracy and reliability of the model. The proposed method, which combines
both KF and CMA, yielded the highest accuracy among all techniques, reaching 98.58%. Precision, recall,
and F1-score all achieved 0.99, underscoring the model's precision and reliability in classifying occupant
positions. Moreover, the RMSE for testing dropped to 0.119, further substantiating the enhanced accuracy of the
combined approach. The combination between KF and CMA leverages their respective strengths to provide
superior classification results.

Table 2. Performance of k-NN classification

RSSI k value  Accuracy Precision Recall Fl-score RMSE training RMSE testing
Original 2 90,54 0,91 0,91 0,90 0,175 0,307
CMA 2 97,87 0,98 0,98 0,98 0 0,146
KF 2 97,87 0,98 0,98 0,98 0 0,146
CMA and KF 2 98,58 0,99 0,99 0,99 0 0,119

According to Table 2, the results demonstrate that preprocessing RSSI data with filtering techniques
significantly enhances the accuracy and reliability of occupant position classification for ventilation purposes
in under-actuated zones. The CMA filter and KF independently improve the classification results by reducing
noise and handling uncertainties, while their combination yields the best results. The consistently high
precision, recall, and F1-score values across all filtering techniques underscore the models' ability to
effectively distinguish between different occupant positions. Moreover, the decreasing RMSE values indicate
that the predicted distances align closely with the actual distances, confirming the models' proficiency. The
next experiment is comparing the performance of k-NN classification by using hyperparameter tuning.

Table 3 describes the performance result by applying hyperparameter tuning in k-NN classification.
The hyperparameters investigated include the value of k (humber of neighbors) and the weighting scheme
(uniform or distance-based). The results indicate the selected hyperparameters for each preprocessing
technique and provide insights into the impact of these selections on the classification performance. For the
original RSSI data, the hyperparameter tuning resulted in selecting k=2 with a weighted scheme based on
distance. The RMSE for testing was 0.243. This outcome suggests that considering the distances of the
nearest neighbors weighted by their inverses (distance-based) contributed to better prediction performance
compared to using a uniform weighting scheme. The low RMSE values for both training and testing indicate
that the model fits well and generalizes effectively. For the RSSI data processed with CMA filter, the optimal
hyperparameters were determined to be k=2 with a weighted scheme based on distance. The RMSE for
testing was reduced to 0.166. The improved performance compared to the original RSSI data further supports
the utility of filtering techniques in enhancing the quality of input data, resulting in more accurate
predictions.

The selected hyperparameters again highlight the efficacy of distance-based weighting in improving
prediction accuracy. The hyperparameter tuning for the RSSI data processed with a KF indicated that k=1
with a uniform weighting scheme was optimal. The RMSE for testing was 0.146. The result suggests that, in
this case, considering the closest neighbor (k=1) with equal weighting across neighbors (uniform) led to the
best prediction performance. The low RMSE value indicates that the model was able to accurately predict
occupant positions, benefiting from the KF process. For the combined preprocessing of RSSI data with both
CMA and KF, the hyperparameter tuning revealed that k=1 with a uniform weighting scheme was again the
optimal choice. The RMSE for testing reached its lowest value at 0.119. This result underlines the
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significance of the cumulative effect of preprocessing techniques in yielding highly accurate predictions. The
consistency in selecting k=1 with uniform weighting across the combined preprocessing methods suggests
that the data quality enhancement outweighs the potential benefits of considering more neighbors or using
distance-based weighting.

Table 3. Performance of k-NN classification using hyperparameter tuning

RSSI Hyperparameter settings Hyperparameter selected RMSE training RMSE testing
Original k=1-50, weights=uniform, distance k=2, weighted=distance 0 0,243
CMA k=1-50, weights=uniform, distance k=2, weighted=distance 0 0,166
KF k=1-50, weights=uniform, distance =~ k=1, weighted=uniform 0 0,146
CMA and KF  k=1-50, weights=uniform, distance k=1, weighted=uniform 0 0,119

The hyperparameter tuning results offer valuable insights into the optimal configurations for k-NN
classification when applied to RSSI data with various preprocessing techniques. These configurations include
the selection of two critical hyperparameters: the number of neighbors (k) and the weighting scheme
(uniform or distance-based). These choices significantly influence the predictive performance of the k-NN
model. One key observation across all preprocessing techniques is the preference for k=1, indicating that
relying on the nearest neighbor's information plays a pivotal role in achieving accurate predictions. This
suggests that in the context of indoor location determination and environmental quality assessment,
considering the immediate proximity of data points is crucial for precise classification. Furthermore, the
results underscore the substantial impact of data preprocessing techniques, specifically CMA and KF, on
enhancing prediction accuracy. By applying these preprocessing methods to the RSSI data, the models
exhibit improved predictive capabilities and greater reliability in their classifications. Comparing the RMSE
values across different preprocessing techniques further highlights the positive influence of data enhancement
on prediction accuracy. The consistently lower RMSE values for testing data indicate that the selected
models generalize well and provide accurate predictions even when presented with unseen data.

3.3. Comparison of RSSI with filtering methods

Figure 2 presents a detailed analysis of RSSI measurements processed through three filtering
methods (CMA, KF, and CMA-KF). These measurements are evaluated across six distinct zones, each
representing different environmental conditions and signal strength dynamics. Starting with Zone 1,
characterized by stable signal conditions, the CMA filter demonstrates its ability to create a steady graph line
by smoothing minor fluctuations. In contrast, the KF method shows greater responsiveness to even slight
changes, resulting in more pronounced fluctuations. The CMA-KF approach in this zone strikes a balance
between smoothing and responsiveness, potentially providing the most accurate representation of the signal
variations in this stable environment. Moving to Zone 2, where signal variability is higher, and the CMA-
filtered data appears smoother but may lag behind immediate changes. Conversely, the KF-generated graph
displays more pronounced fluctuations, adapting to rapidly changing signal conditions. The CMA-KF
representation in this zone captures both the underlying trend and immediate signal changes effectively. Zone
3 represents an area prone to signal interference and obstructions, resulting in erratic RSSI readings. Here,
the CMA filter produces a generalized, smoothed trend, potentially underestimating fluctuations. The KF-
generated graph exhibits significant variability, reacting swiftly to changes. The CMA-KF approach balances
noise reduction while indicating significant signal strength changes. Zone 4, a transitional area with
predictable signal changes, shows the CMA filter slightly lagging behind, while the KF method closely
follows the signal's trend. CMA-KF effectively smooths data while adapting to expected signal changes. In
Zone 5, with weak signals and interference, CMA may oversmooth, while KF exhibits variability. CMA-KF
provides a coherent representation by mitigating noise and capturing significant trends in signal degradation.
Finally, Zone 6 presents dynamic conditions influenced by moving obstacles or varying interference sources.
The CMA filter's excessive smoothing may miss rapid changes, while KF shows responsiveness. CMA-KF
displays variability with a smoother curve, adapting to significant signal strength changes effectively.

The CMA method proves highly effective in mitigating the influence of transient fluctuations within
RSSI values. Its primary advantage lies in its ability to attenuate the impact of rapid, fleeting anomalies in the
data, a significant benefit when dealing with sudden and transient changes in RSSI readings. However,
CMA's reliance on historical data introduces a certain level of latency, potentially hindering its
responsiveness in swiftly changing signal environments. On the other hand, the KF operates dynamically,
adapting to incoming data points while considering inherent uncertainties and variances in the signal data.
This unique attribute enables the KF to provide precise estimations, especially in scenarios where the signal
may be affected by factors such as physical obstructions, interference, or multi-path fading. KF's predictive
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nature allows it to respond promptly to genuine changes in signal strength, offering a significant advantage
over CMA, which tends to exhibit delayed responses. The CMA-KF approach capitalizes on the strengths of
both CMA and KF, presenting a balanced solution that mitigates the lag associated with CMA through the
proactive adjustment capabilities of KF. This proposed hybrid method not only effectively smoothens out
high-frequency noise but also adapts to real-time environmental changes. Consequently, the CMA-KF
approach emerges as a nuanced solution that adeptly addresses the limitations of both CMA and KF,
ultimately providing a more robust and responsive filter for processing RSSI data.
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Figure 2. Measurement of RSSI with filter methods

4. CONCLUSION

In this study, we comprehensively explored the application of the k-NN classification algorithm for
occupant position-based ventilation strategies in under-actuated zones, utilizing RSSI signals. Our research
journey involved various phases, including employing preprocessing techniques and fine-tuning
hyperparameters to significantly enhance classification accuracy and reliability. Notably, we achieved a
substantial improvement in prediction accuracy through RSSI data preprocessing, specifically by applying
CMA and KF. These filters effectively smoothed signal variability, significantly enhancing data consistency.
CMA improved accuracy from the original 90.54% to an impressive 97.87%, while KF achieved a similar
accuracy of 97.87%. The most remarkable result, however, emerged from our combined use of these filtering
techniques — the CMA-KF approach, which outperformed all others with an accuracy of 98.58%. This
underscores the vital role of data quality enhancement, clearly demonstrating CMA-KF's superiority.
Hyperparameter tuning played a critical role in optimizing the k-NN model, involving adjustments to
parameters like the number of neighbors (k) and the choice of weighting scheme (uniform or distance-based).
This tailored tuning was essential due to the varying optimal configurations across different preprocessing
methods. The practical implications are extensive, particularly in implementing occupant position-based
ventilation strategies in under-actuated zones. Leveraging machine learning and historical RSSI data allows
our predictive system to accurately anticipate room occupancy changes, enabling proactive HVAC system
control for enhanced energy efficiency and indoor environmental quality. Future research should focus on
integrating advanced techniques like convolutional neural networks (CNNSs) to further improve the system's
capability. CNNs can extract intricate patterns from RSSI sensor data, enhancing occupancy predictions.
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