
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 1, April 2024, pp. 463~471

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i1.pp463-471 463

Journal homepage: http://ijeecs.iaescore.com

Performance evaluation of adaptive offloading model using

hybrid machine learning and statistic prediction

Siwoo Byun1, Seok-Woo Jang1, Joonho Byun2

1Department of Software Engineering, Anyang University, Anyang-shi, South Korea
2Department of Artificial Intelligence, Sogang University, Seoul, South Korea

Article Info ABSTRACT

Article history:

Received Dec 11, 2023

Revised Dec 29, 2023

Accepted Jan 3, 2024

 We introduce fast sensor diagnosis and focuses on intelligent offloading

skills to enhance the sensor data screening efficiency. This study proposed

the adaptive offloading model based on statistics-based prediction feedback

and sensor candidate filtering. For the statistics-based filtering, sliding

sensor grids and compounded sensor context were devised. This study also

proposed hybrid prediction model using support vector machine (SVM) and

k-nearest neighbors (KNN) machine training for the adaptive offloading.

Therefore, the sensor information that is highly likely to be the cause of the

actual device faults can be selected and transmitted, resulting in improved

offloading performance. The test results through Google Colab show that the

fault prediction accuracy of proposed models is 95%.

Keywords:

Adaptive offloading model

Compound sensor context

Fault diagnosis

Machine learning

Pattern matching This is an open access article under the CC BY-SA license.

Corresponding Author:

Siwoo Byun

Department of Software Engineering, Anyang University

Samduk-ro, 37th Street, Anyang-shi, Kyongki, 430714, South Korea

Email: swbyun@anyang.ac.kr

1. INTRODUCTION

Fault diagnosis involves using data from various internet of things (IoT) sensors to identify the

cause of a fault, and IoT data is required to analyze abnormal symptoms [1]−[4]. However, as IoT devices

continue to become smaller and more complex, the process of fault diagnosis is becoming slower and slower

[5]−[7]. Therefore, in order to cope with the explosion of IoT sensor data, the importance of fast fault

diagnosis is gradually increasing [8]−[10], which should be preceded by efficient offloading.

Example 1 (Failure of a robot arm): industrial robot arms have problems such as motor failure, joint

bearing failure, controller failure, and gear reducer failure due to long operation time and heavy workload as

shown in Figure 1. For example, when the torque was increased to 30 degrees in the forward direction of the

joint and then moved 10 degrees in the reverse direction, the accumulation of metal fatigues lead to a large

vibration in the gear reducer. These vibrations cause serious errors in the welding or assembly process. The

joint part is shaken heavily by forward and reverse torque and acceleration and deceleration loads, resulting

in abnormal noise. If detection software responds quickly to the failure of the robot arm, it improves

production accuracy.

Edge computing [11]−[13] is advanced skill that minimizes congestion and security issues in

centralized data centers. It can provide effective IoT services to end users by processing tasks as locally as

possible to reduce traffic and latency. By processing tasks as locally as possible, it can provide effective

services to users.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 463-471

464

Figure 1. Example of a robot arm failure

2. METHOD

Fault diagnosis takes a long time because of the long computation time required for offloading.

For fast troubleshooting, error-indicating sensor data contributes to the pre-screening of worthless data.

Reducing sensor data computation results in fast fault analysis [6], [10].

2.1. Statistics-based filtering

The time required to detect the error pattern is proportional to the type of sensors, so each error

should be compared with the input data by fast filters. The statistics-based filtering scheme is based on sensor

candidate filtering and fast sliding window [14]-[16]. For example, by using fast pattern matching and

prediction scores to minimize the number of sensor candidates, the diagnosis of a fault can be carried out

more quickly.

In this study, the fault prediction scores are periodically calculated by sliding grid window protocol.

A scalable sensor grid was developed using the simple sliding window protocol. The grid scale of the cooling

fan is one tenth as shown in Figure 2.

Figure 2. Example of scaled sensor grid

The followings are the pseudo codes of sensor-grid sliding window manager and adaptive offloading

manager as shown in Code 1:

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Performance evaluation of adaptive offloading model using hybrid machine learning and … (Siwoo Byun)

465

Code 1. Pseudo code for adaptive sensor offloading
Procedure Sensor-Grid Sliding Window Manager()

#Input snapshot of sensor data;

#Output fault prediction hit results;

Begin

Wait until next sliding interval;

Move sliding window;

For (all sensor item, sitem-i, in the sliding window;; i++) {

hit-score=0;

k=0;

For (all sensor data, sdata-j in sitem-i;; j++) {

if (sdata-j is not a faulty signature)

continue;

Grid-Scaling sdata-j to sd-j for pattern matching;

if (sd-j is matched to the sensor value in labeled fault pattern)

hit-score++;

else

hit-score--;

k++;

}

fault-hit-ratio[i]=hit-score/k*100;

}

Make {Sensor-Context} with fault-hit-ratio[];

Send {Sensor-Context} to Adaptive Offloading Manager;

End;

Procedure Adaptive Offloading Manager() {

#Input stream of sensor data, Sensor-Context

#Output minimized stream of sensor data,

Begin

Read stream of sensor data;

For (all sensor item, sitem-i, in the input stream; i++) {

if (sitem-i is not in Sensor-Context)

continue;

// Sensor Data Offloading

For (all sensor data, sdata-j in sitem-i; j++) {

Grid-Scaling sdata-j to sd-j for pattern matching;

if (sd-j is matched to fault pattern) {

insert sd-j into output stream of sensor data;

}

}

End;

2.2. Machine learning-based filtering

The goal is to enhance the efficiency of offloading through the hybrid use of machine learning

models such as support vector machine (SVM) [17], [18] and k-nearest neighbors (KNN) [19], [20], and

a SVM and KNN-based machine learning (SKML) model was proposed in this study. The support vector

classifier (SVC) algorithm is a member of the SVM group and is used for categorical variables. It is a

classification algorithm that classifies two or more pieces of data and is expected to have high generalization

performance [17], [21].

The KNN algorithm is a popular method for classification purposes because of its low training

effort. The principle is to identify the k labels that are closest to the value you want to learn or predict, and

then take the most frequent label as the value. In other words, it assumes a similarity between the new case

data and the existing cases, and places the new case in the most similar category [19]-[24].

The SKML utilizes the filtering of candidates by relevance learning and can reduce the subsequent

transmission and computation burden. It is effective in selecting candidates with high relevance, except for

candidates with low relevance prior to decision tasks. The best prediction model among (Statistics, SVM, and

KNN) is called as selected prediction model in this study. This selected model will be transmitted to the

adaptive offloading manager at regular intervals. To make machine learning more effective, we considered a

technique that uses an artificial intelligence boosting algorithm to learn and robustly extract useful fault

signature features. This extraction task uses fault signature features from the input stream and an AdaBoost [21]

learning algorithm. AdaBoost is a boosting algorithm that combines several weak classifiers with poor

classification performance to build a strong classifier with good classification performance. Typically, a weak

classifier refers to a classifier with a classification error greater than 50% and a strong classifier refers to a

classifier with a small classification error. AdaBoost algorithms are used in image and pattern processing

because of their ease of implementation and high performance.

The AdaBoost training algorithm generates a set from the original data using the error of the hypothesis,

then uses it to learn a new hypothesis again and construct a data set from the learned hypotheses. In addition, the

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 463-471

466

AdaBoost algorithm focuses on data that is difficult to classify by reducing the weight of data correctly predicted

by the hypothesis and increasing the weight of data incorrectly predicted according to the hypothesis errors.

The AdaBoost algorithm has the advantage that learning errors are less than the upper bound of theoretical errors,

and generalization errors are reduced along with learning errors. However, our experiments did not show any

significant difference from the proposed technique, so we have excluded it from this experiment.

The following code 2 is for SKML training and testing. The load_data() is a function to load data from an

Excel file and select columns specified by col. The KNN() and SVM() are functions to train classification models

using X_train and Y_train. The Train_and_Test() is a function to split data into training and test sets. The main() is

a function to iterate over different combinations of columns for training, load data, compute accuracy, and store the

mean accuracy for each combination in a dictionary.

Code 2. SKML training and test codes
#Function to load data from an excel file and select columns specified by col

def load_data(col):

data=pd.read_excel('data.xlsx',usecols=col,header=8)

SensorDataBlock=data.loc[0:BlockSize]

Select sensor data block

 return SensorDataBlock

Function to train an SVM model using X_train and y_train,

def KNN(Xtr,Xtst,ytr,ytst): #KNN-2

 clf = neighbors.KNeighborsClassifier(n_neighbors=3)

 clf.fit(Xtr, ytr)

 y_pr = clf.predict(Xtst)

 acc = accuracy_score(ytst, ypr)

 return acc

def SVM(Xtr,Xtst,ytr,ytst): #SVM-1

 svm=SVC()

svm.fit(Xtr,ytr)

Train the model using X_train and y_train

 ypr=svm.predict(Xtst) #Predict labels for X_test

 return ytr,ypr

Function to split data into training and test sets,

def Train_and_Test(data):

 data=np.array(data)

X=data[:,:-1]

 y=data[:,-1].astype(int)

 Xtr,Xtst,ytr,ytst=train_test_split(X,y, test_size=0.2)

#Train the ML model and predict labels for the test set

ytr,ypr=SKML(Xtr,Xtst,ytr,ytst)

acc = accuracy_score(ytst,ypr)

return acc

Function to iterate over different combinations of columns for training, load data,

calculate accuracy, and store the mean accuracy for each combination in a dictionary

def main():

 columns = {

 1: 's1', # x_Sensor data

 2: 's2', # y_Sensor data

 3: 's3', # z_Sensor data

 # ...

 10: 's4', # h_Sensor data

 12: 'fault_sign', # fault_sign ...
 }

 acc_dict = {}

#loop through different combinations

 for cols in ['all combination of sensor_data']:

 col_names = [columns[col] for col in cols]

 data = load_data(cols) # load data

 acc = []

 for i in range(100): # repeant N times

 accuracy=Train_and_Test(data) #accuracy

acc.append(accuracy)

 mean_acc = sum(acc) / len(acc) # mean accuracy

 acc_dict[tuple(col_names)] = mean_acc

 sorted_acc = sorted(acc_dict.items(), key=lambda x: x[1], reverse=True) #sort

 for cols, acc in sorted_acc:

 print(f"Variables: {cols}, Mean Accuracy: {acc:.4f}") # Print Analysis Results

#...

#End:=> Send (Analysis Results) with (Seleted Model) to (Offloading Manager)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Performance evaluation of adaptive offloading model using hybrid machine learning and … (Siwoo Byun)

467

3. RESULTS AND DISCUSSION

In this study, AI-Hub [25], [26] was used to verify the performance of the statistics and SKML-

based. In Table 1, the vibrations of the motor are classified as normal up to 10 and as fault warning above 10.

Failures are mainly caused by old bearings and mounting misalignment.

In Table 1, three sensor types denoted as s1, s2, and s3 mean the value of detailed directional

vibration. The fault sign means the degree of fault and is classified as normal, warning, and danger for

symptom analysis. The three types of vibration sensors are x-axis, y-axis, and z-axis, which are arranged in

the Table 1.

Table 1. Sample values of sensor data
Sensor s1:x Sensor s2:y Sensor s3:z Sensor s4:humidity
4.003906 1.641602 3.563477 51
3.803711 0.720703 4.324219 76

2.962891 0.360352 4.524414 50.9

2.522461 1.28125 5.084961 76.8

1.561523 2.522461 5.245117 50.9

3.1. Experimental software and dataset

The experimental system used MS-Windows64-I7 and CoLab with 16G memory and 1.5TB hdd.

The experimental data consists of 100 pieces per block. The number of detailed iterations per block is 20

times. The original file configuration is (date, filename, data label, label_no, motor spec, period, sample rate,

data length, {time, data} array). The extract data from the configuration is {time, data}.

− Experimental system: MS-Windows64-I7, 16G, 1.5TB, CoLab.

− Experimental data: 2 sets (100 pieces per block).

− Number of experiments: Number of detailed iterations per block: 20 times.

− Original file configuration: (date, file name, data label, label_no, motor spec, period, sample rate,

data length, {time, data} array).

− Extract data: {time, data} values to the experiment.

3.2. Test results of statistcs-based prediction

Table 2 compares the fault prediction for each sensor type tracked by the proposed sliding window.

Comparing each sensors, it is most effective to preferentially use s2 sensor for best fault prediction.

Additionally, better performance can be obtained by adding s2 sensor in the experiment. That is, the fault

prediction accuracy increased from 66% to 89% by compound context of (s2,s3). This also means that most

of the unnecessary data among the original sensor data can be removed except missed data of 11%. As a

result, effective filtering using compounded sensor contexts and adaptive offloading with sliding grids can

significantly reduce the number of sensors involved in fault prediction and minimize the amount of sensor

data to be processed.

Table 2. Comparison of fault prediction for each sensors
Sensors Sensor s1:x Sensor s2:y Sensor s3:z ... Sensor (y,z)

Hit count 135 296 234 397

Hit-rate 29.5 65.9 52.3 88.6

Prediction levle low high mid best

3.3. Test results of hybrid prediction model

3.3.1. SVM-based prediction part

To evaluate the machine learning models of SKML. Different combinations of the three sensors are

used and correlated and uncorrelated sensors are classified by the hybrid prediction model. In the case of

predicting by SVM-based model, the final filtering of the sensor data shows the test results using different

sensor combinations, which are shown in Figure 3.

Finding the best between (xy, xz, yz) is the goal of the test. In this experiment, one sensor is not

enough, but a combination of three sensors essentially requires a lot of resource consumption. In Figure 4,

the sensor combination of x and z showed lower results in terms of accuracy, recall and F1-score compared

to the combination of x and y. In particular, the accuracy of the combination of x and z was 84%, indicating

that the combination of x and z was not a useful combination.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 463-471

468

Figure 3. Results of combining sensors x and y

Figure 4. Results of combining sensors x and z

In Figure 5, the sensor combination of y and z showed relatively higher performance in terms of

recall and F1-score compared to other sensor combinations. In conclusion, the combination of y and z was

found to be the most useful combination with 95% accuracy. Instead of (x,y,z), (y,z) is chosen as the best

choice, as the inclusion of low-relevance data hinders AI learning and error detection, and storage resources

can be reduced by 33%. It will need to be retrained using recent blocks if the optimal combination of (y,z)

has changed.

Figure 5. Results of combining sensors y and z

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Performance evaluation of adaptive offloading model using hybrid machine learning and … (Siwoo Byun)

469

3.3.2. KNN-based prediction part

This part evaluates the performance of our KNN-based module on the same sensor data in the

exactly the same way. The results showed that KNN had a slightly lower prediction than SVM as shown in

summary Table 3. Consequently, proposed SKML scheme selects superior SVM-based model of 0.95

accuracy and sends its prediction information to the adaptive offloading manager.

In addition, Figure 6 is the visualization graph of the KNN training model. Figure 6(a) is the

classification graph using sensor x. Figure 6(b) is the classification graph using the combinations of sensor x

and sensor y. Figure 6(c) is the classification graph using the combinations of sensor x, y, and z. The results

show: (y,z) is the best choice with an accuracy of 0.94, while the combination of (x,y,z) showed an accuracy

of 0.91. This means that adding less relevant sensor candidates leads to accuracy degradation and

unnecessary waste of data spaces.

Table 3. Accuracy summary of proposed (SVM and KNN)-hybrid training model
Combination x+y x+z y+z

Accuracy mark of SVM 0.89 0.84 (0.95)

Accuracy mark of KNN 0.88 0.82 0.94

(a) (b)

(c)

Figure 6. Sensor combinations of KNN part of SKML; (a) one sensor: 0.81, (b) two sensors: 0.94, and

(c) three sensors: 0.91

4. CONCLUSION

We introduced sensor data offloading issues for IoT fault diagnosis. The fast offloading model used

statistics-based prediction feedback and sensor candidate filtering. The statistics-based filtering exploits

sliding sensor grids and compounded sensor context. We also proposed a hybrid adaptive model called

SKML using SVM and KNN training feedback. The SKML model showed the better accuracy than the

statistics-based model. However, compared to SKML which requires heavy data learning, the statistics-based

model has the advantage of being able to quickly track optimal sensor combinations using light statistical

computations on the edge gateways which have limited computational resources.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 463-471

470

We evaluated the performance of SKML using CoLab and Python. In our experiments with public

datasets, we were able to increase the prediction accuracy of SKML by up to 95%. We concluded that the

proposed filtering model can reduce the overhead of sensor data computation and network transfer to remote

cloud systems. Future studies include a lightweight offloading model for industrial sensor devices and

sensor-aware intelligence for the extended SKML models.

ACKNOWLEDGEMENTS

This research was supported by NRF funded by the Ministry of Education, Science and Technology

(2022R1F1A1063659).

REFERENCES
[1] L. Ashwini, H. Lee, M. Hwang, “Implementation of IoT application using geofencing technology for protecting crops from wild

animals,” Asia-pacific Journal of Convergent Research Interchange, vol. 6, no. 6, pp. 13-23, 2019, doi: 10.21742/apjcri.2020.06.02.

[2] C. Sekhar and N.Suneetha, “A study on data categorization for data analytics,” International Journal of Internet of Things and Big

Data, vol. 3, no. 1, pp. 1-6, 2018, doi: 10.21742/ijitbd.2018.3.1.01.
[3] J. Lee and H. Kim, “Design and implementation of IoT devices to foster emotions and prevent dementia for senior citizens,”

Journal of Next-generation Convergence Technology Association, vol. 5, no. 3, pp. 347-353, 2021, doi:

10.33097/JNCTA.2021.05.03.347.
[4] S. Byun, “Sensor query control for IoT data monitoring,” International Journal of Control and Automation, vol. 11, no. 9, pp.

109-118, 2018, doi: 10.14257/ijca.2018.11.9.11.

[5] H. Lee, S. Kim, S. Kang, and Y. Lim, “A fault dropping technique with fault candidate ordering and test pattern ordering for fast
fault diagnosis,” Semiconductor and Devices, vol. 46, no. 3, pp. 32-40, 2009.

[6] S. Mansfield, E. Vin, and K. Obraczka, “An IoT-based system for autonomous, continuous, real-time patient monitoring, and its

application to pressure injury management,” in Proc. International Conference on Distributed Computing in Sensor System, pp.
66-68, 2021, doi: 10.1109/DCOSS52077.2021.00024.

[7] S. Byun, “Sensor data transmission control using selective dynamic compression for mobile IoT devices,” International Journal

of Control and Automation, vol. 12, no. 8, pp. 87-96, Aug. 2019, doi: 10.33832/ijca.2019.12.8.08.
[8] Q. Li, J. Zhao, Y. Gong, and Q. Zhang, “Energy-efficient computation offloading and resource allocation in fog computing for

Internet of Everything,” China Communications, vol. 16, no. 3, pp. 32-41, 2019.

[9] S. Koo and Y. Lim, “A multi-objective computation offloading algorithm for dependent tasks based on a mobile edge computing
environment,” KIISE Transactions on Computing Practices, vol. 27, no. 2, pp. 122-127, 2021, doi: 10.5626/KTCP.2021.27.2.122.

[10] Y. Son, J. Jeong, and Y. Lee, “An adaptive offloading method for an IoT-cloud converged virtual machine system using a hybrid

deep neural network,” Sustainability, vol. 10, no. 11, pp. 1-15, 2018, doi: 10.3390/su10113955.
[11] K. Xiao, Z. Gao, Q. Wang, and Y. Yang, “A heuristic algorithm based on resource requirements forecasting for server placement

in edge computing,” in Proc. IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, pp. 354-355, 2018, doi:

10.1109/SEC.2018.00043.
[12] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey on the edge computing for the internet of things,”

IEEE Access, vol. 6, pp. 6900-6919, 2017, doi: 10.1109/ACCESS.2017.2778504.

[13] J. Anitha, W. Godfrey, “A survey of edge computing in IoT devices,” in Proc. of the International Conference on Innovative
Computing and Communication (ICICC), 2022, doi: 10.2139/ssrn.4023176.

[14] K. Xiao, Z. Gao, Q. Wang, and Y. Yang, “A heuristic algorithm based on resource requirements forecasting for server placement

in edge computing,” in Proc. Of the IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, pp. 354-355, 2018,
doi: 10.1109/SEC.2018.00043.

[15] I. Cho, H. Kwon, “Patient adaptive pattern matching method for premature ventricular contraction (PVC) classification,” Journal
of the Korea Institute of Information and Communication Engineering, vol. 16, no. 9, pp. 2021-2030, 2012, doi:

10.6109/jkiice.2012.16.9.2021.

[16] S. Byun, “Composite context-based offloading scheme for IoT fault diagnosis,” Journal of Next-generation Convergence
Technology Association, vol. 7, no. 5, pp. 762-773, 2023, doi: 10.33097/JNCTA.2023.07.05.762.

[17] JavaTpoint, “Support Vector Machine Algorithm”, 2024. [Online]. Available: https://www.javatpoint.com/machine-learning-

support-vector-machine-algorithm
[18] G. V. Gopal and G. R. M. Babu, “An ensemble feature selection approach using hybrid kernel based SVM for network intrusion

detection system,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 23, no. 1, pp. 558-565,

2021, doi: 10.11591/ijeecs.v23.i1.
[19] M. Kasian and H. Kilavo, “A comparative study on performance of SVM and CNN in Tanzania sign language translation using

image recognition,” Applied Artificial Intelligence, vol. 36, no. 1, pp. 452-466, 2022, doi: 10.1080/08839514.2021.2005297.

[20] R. Chivukula, T. J. Lakshmi, S. Uday, and S. T. Pavan, “Classifying clinically actionable genetic mutations using KNN and
SVM,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 24, no. 3, pp. 167-1679, Dec. 2021,

doi: 10.11591/ijeecs.v24.i3.

[21] F. Chollet, “Xception: deep learning with depthwise separable convolutions,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, Nov 2017, doi: 10.1109/CVPR.2017.195.

[22] E. H. Ali, H. A. Jaber, and N. N. Kadhim, “New algorithm for localization of iris recognition using deep learning neural

networks,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 29, no. 1, pp. 110-119, 2023, doi:
10.11591/ijeecs.v29.i1.pp110-119.

[23] J. Byun and S. Byun, “Experiment of purpose-oriented correction filters using color weakness deep learning,” Journal of Next-

generation Convergence Technology Association, vol. 7, no. 8, pp. 1190-1196, 2023, doi: 0.33097/JNCTA.2023.07.08.1190.
[24] P. Hyun-Ae and K. R. Park, “Iris recognition based on score level fusion by using SVM,” Pattern Recognition Letters, vol. 28,

no. 15, pp. 2019-2028, 2007, doi: 10.1016/j.patrec.2007.05.017.

https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://doi.org/10.33097/JNCTA.2023.07.08.1190

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

 Performance evaluation of adaptive offloading model using hybrid machine learning and … (Siwoo Byun)

471

[25] AiHub, “Hardware failure prediction sensor data”, 2024. [Online]. Available: https://aihub.or.kr/aihubdata/data/
view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=238

[26] AiHub, “Water line leak detection data”, 2024. [Online]. Available: https://aihub.or.kr/aihubdata/data/

view.do?currMenu=115&topMenu=100&dataSetSn=138

BIOGRAPHIES OF AUTHORS

Siwoo Byun received his M.S. and Ph.D. degrees in Computer Science from

KAIST, South Korea, in 1991, and 1999, respectively. Since March 2000, he has been a

professor in the Department of Software, Anyang University, South Korea. He Holds a Ph.D.

degree with a specialization in database transaction analysis. His research areas are IoT data

processing, IoT machine learning, embedded system, big database, flash memory database,

medical healthcare and sensor pattern recognition. He is a recipient of best research scholar

award and best paper award. His new research interests include enhanced image/signal

processing, deep learning, and road facility recognition, IoT storage system, and compound

sensor offloading. He can be contacted at email: swbyun@anyang.ac.kr.

Seok-Woo Jang received his B.S., M.S., and Ph.D. degrees in Computer Science

from Soongsil University, Seoul, Korea, in 1995, 1997, and 2000, respectively. From October

2003 to January 2009, he was a senior researcher with the Construction Information Research

Department at Korea Institute of Construction Technology (KICT), Ilsan, Korea. Since March

2009, he has been a professor at the Department of Software, Anyang University, Korea. His

primary research interests include robot vision, augmented reality, video indexing and retrieval,

biometrics and pattern recognition. He can be contacted at email: swjang@anyang.ac.kr.

Joonho Byun received his B.S. degree in Electronic Engineering from Kookmin

University, Seoul, Korea, in 2022. From March 2023 to January 2024, he was an AI researcher

with the Industrial AIoT research center at Anyang University, Anyang, Korea. He is in an M.S.

at the Graduate School of Artificial Intelligence at Sogang University, Seoul, Korea. He is a

recipient of best paper award in 2023. His main research interests include computer vision, IoT,

machine learning, deep learning, and enhanced vision correction. He can be contacted at email:

cdcd1115@gmail.com.

https://orcid.org/0000-0002-4887-6875
https://www.scopus.com/authid/detail.uri?authorId=14064565500
https://orcid.org/0000-0001-5580-4098
https://www.scopus.com/authid/detail.uri?authorId=7402219157
https://orcid.org/0000-0002-4887-6875
https://www.scopus.com/authid/detail.uri?authorId=14064565500

