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 The use of cable-driven parallel robots (CDPRs) has been steadily increasing 

across various sectors due to their expansive workspaces, impressive 

payload-to-mass ratios, and cost-effective designs. Controlling these robots, 

particularly those with substantial actuation redundancy, can present 

challenges. This research paper proposes the implementation of a fractional-

order proportional-integral-derivative (FOPID) controller to effectively 

regulate the end-effector of a planar CDPR with four actuation cables.  

The parameters of the controller are fine-tuned using the particle swarm 

optimization (PSO) algorithm to ensure optimal performance. The proposed 

controller's performance is evaluated through two numerical experiments: 

target tracking and trajectory tracking using a point-to-point approach. 

Furthermore, a comparative study is conducted to highlight the controller's 

performance, comparing the proposed FOPID controller with both the 

classical PID controller and an optimized PID controller. The achieved 

results demonstrate that the proposed controller exhibits superior 

performance in terms of tracking accuracy and smoothness of control signals 

when compared to the other controllers under investigation. As a result, the 

proposed controller design represents a substantial advancement in control 

performance and can be regarded as a promising control strategy for CDPRs. 
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1. INTRODUCTION 

Cable-driven parallel robots (CDPRs) are a unique category of robotic mechanisms that stand out 

due to their reliance on cables for establishing a connection between a fixed base and a movable platform. 

With advantages surpassing other parallel robot designs, CDPRs offer a spacious workspace and substantial 

payload capacity by routing cables outside the workspace to support loads [1], [2]. Their heightened accuracy 

and precision are achieved through the manipulation of controlled cables with superior resolution. Moreover, 

CDPRs exhibit remarkable dexterity and flexibility, configuring cables in diverse arrangements tailored to 

specific tasks and environments [3], [4]. The applications of cable-driven parallel robots span various 

domains, including manufacturing [5], medical robotics [6], entertainment [7], and aerial robotics [8]. 

Excelling in tasks like pick-and-place operations [9], assembly [10], and inspection and monitoring tasks 

[11], [12], CDPRs prove to be versatile and efficient in a multitude of scenarios. 

https://creativecommons.org/licenses/by-sa/4.0/
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Nevertheless, challenges arise with cable-driven parallel robots concerning cable elasticity, precise 

calibration and maintenance, and the need for more intricate modeling and control compared to robots 

employing rigid-link mechanisms. To unlock the full potential of cable-driven parallel robots in diverse 

applications, the research paper commences by incorporating a more adaptable structure for the conventional 

PID controller. This novel approach, grounded in fractional calculus, is known as a fractional-order 

proportional-integral-derivative (FOPID) controller [13], [14]. 

The introduction of fractional calculus traces back to Leibniz, who first proposed the concept in a 

1,684 letter to Tschirnhaus. This notion revolved around the differentiation and integration of functions with 

non-integer orders. Despite its initial introduction, fractional calculus required a substantial period for 

comprehensive study and development. In recent years, there has been a growing emphasis among 

researchers on topics related to fractional calculus. This increased focus has led to the identification of a 

diverse array of applications spanning multiple disciplines, such as physics [15], [16], engineering [17], [18], 

and neuroscience [19]. 

In the field of robotics, fractional calculus finds application in refining the control of robotic 

systems, leading to enhanced precision and efficiency in tasks like grasping, manipulation, and navigation. 

An illustration of such application is seen in the use of the conventional integer-order controller, such as 

the PID controller, in which a more advanced version called the FOPID has been developed [14]. The 

FOPID controller introduces additional parameters, specifically an integral-order parameter 𝜆 and a 

differential-order parameter 𝜇, providing greater flexibility and capability in controlling complex systems 

compared to the classical PID controller. To meet the specified requirements for controller design, 

researchers employ a variety of algorithms to fine-tune parameters in FOPID controllers. These algorithms 

include bat optimization (BA), cuckoo search (CS), fruit fly optimization (FFO), particle swarm 

optimization (PSO), among others. However, certain researchers opt to utilize approximation techniques 

and toolboxes to streamline the implementation and practical application of fractional-order controllers. 

For additional details, readers are referred to [20]. Consequently, in the field of robotics, a diverse range of 

robots, such as parallel robots [21], [22], serial robot manipulators [23]−[25], cable-driven continuum 

robots [26], flexible-link robot manipulators [27], and mobile robots [28], [29], have been successfully 

controlled. Notably, the FOPID controller's application to cable-driven parallel robots has not been 

explored extensively. In an effort to address this gap, the present paper aims to employ the FOPID 

controller, coupled with the PSO algorithm, to precisely tune the parameters essential for effective control 

of the end-effector of a four-cable planar CDPR. 

The structure of this paper unfolds as follows: In section 2, a comprehensive overview of the 

kinematics and dynamic modeling of a four-cable planar CDPR is presented. In section 3 delves into the 

development of the FOPID controller and outlines the process of tuning its parameters using PSO. Advancing 

to section 4, the simulation results are presented, including target tracking and trajectory tracking using the 

point-to-point technique, to demonstrate the efficacy and capabilities of the proposed controllers. 

Culminating the discussion, section 5 wraps up the present work and provides insights into potential avenues 

for future research. 

 
 

2. MATHEMATICAL MODELING OF THE CDPR 

2.1.  Description and design of the CDPR 

This paper concentrates on the investigation of a quadruple-cable planar CDPR, as depicted in 

Figure 1, where the schematic design is illustrated in Figure 1(a). The utilization of four flexible cables is a 

key aspect of this robotic system, allowing for the control of the end-effector's motion in a two-dimensional 

space. The robot's framework incorporates both a fixed platform and a mobile platform, intricately 

interconnected by a set of cables. These cables, securely affixed to the moving platform, are guided through 

pulleys to the stationary platform, forming a crucial part of the robot's mechanical design. To empower the 

robot in executing predetermined trajectories or fulfilling assigned tasks, the integration of motors becomes 

essential. Figure 1(b) illustrates a simplified schematic representation of a cable routing system commonly 

employed in CDPRs. The functionality of these motors is vital for propelling and regulating the motion of the 

cables. 

Commencing our pursuit of the specified control and tracking objectives, we initiate by introducing 

the mathematical model that governs the dynamic behavior of the CDPR under examination. The crucial 

details of this model, including geometric parameters and symbols, are comprehensively outlined in Table 1. 

To provide additional clarity, some of these parameters are visually represented in Figure 1, offering a 

tangible connection between the mathematical framework and its corresponding geometric components. 
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(a) (b) 

 

Figure 1. Quadruple-cable planar CDPR (a) schematic diagram of the planar four-cable CDPR and  

(b) schematic representation of the 𝑘 −th cable routing system 
 

 

Table 1. Nomenclature of CDPR 
Symbols Parameters 

𝑎𝑘  Attachment points of the cable to the pulley 

C𝑘 Viscous damping coefficient for the shaft 

J𝑘 Inertia moment of the pulley 

𝐿 Length of the CDPR's workspace side 

ℓ𝑘 Cable length 

m Mass of the end-effector 

r𝑘 Pulley radius 

T𝑘 Cable tension 

𝑿 = {𝑥, 𝑦}T Generalized Cartesian coordinates 

Θ𝑘 Pulley rotation angle 

𝜃𝑘 Cable angle measured with respect to the 𝑥 −axis 

τ𝑘 Motor torque 

 

 

2.2.  Dynamic modeling 

To formulate the equations of motion for the considered CDPR, a fundamental starting point is the 

calculation of dynamic models for both the end-effector and each of the actuation motors. Employing a two-

dimensional state-space representation with generalized cartesian coordinates 𝑋 = {𝑥, 𝑦}T, the end-effector's 

dynamic model for the CDPR is concisely articulated using Euler-Lagrange’s method as (1): 

 

(
m 0
0 m

) {
�̈�
�̈�
} − {

0
mg
} = {

Q𝑥
Q𝑦
} (1) 

 

where m represents the mass of the end-effector, �̈� and �̈� denote the acceleration components of the end-

effector in the 𝑥 −axis and 𝑦 −axis directions, respectively, and g is represents the acceleration constant. Q𝑥 

and Q𝑦 signify the resultant force components of the four cable tensions in the 𝑥 −axis and 𝑦 −axis for the 

CDPR, respectively. 

Ensuring equilibrium in the CDPR's end-effector requires acknowledging that the cumulative 

external forces from the cables (T𝑘, with 𝑘 = 1,… ,4) must precisely balance the resultant external force Q =

{Q𝑥 , Q𝑦}
T
. This critical relationship is succinctly formalized through (2): 

 

Q = W(𝑋)T (2) 

 

where the matrix W(𝑋) serves as a linkage, delineating the intricate connection between cable tension and 

resultant external forces. The expression for this matrix is provided as (3): 

 

W(𝑋) = − [
c(𝜃1) c(𝜃2) c(𝜃3) c(𝜃4)

s(𝜃1) s(𝜃2) s(𝜃3) s(𝜃4)
] (3) 

 

where c(. ) and s(. ) denote cos(. ) and sin(. ), respectively. 𝜃𝑘, with 𝑘 = 1,… ,4, represents the cable angle of 

cable 𝑘 measured with respect to the 𝑥 −axis (see Figure 1). This angle can be represented as a function of 

the generalized coordinate, as (4): 
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𝜃𝑘 = tan
−1 (

𝑦−𝑎𝑘,𝑦

𝑥−𝑎𝑘,𝑥
) (4) 

 

where 𝑎𝑘,𝑥 and 𝑎𝑘,𝑦 denote the attachment point cartesian coordinate of the cable to the pulley. 

The dynamic behavior of each actuation motor can be defined according to [30], as in (5): 

 

J𝑘Θ̈𝑘 + C𝑘Θ̇𝑘 = τ𝑘 − r𝑘T𝑘 (5) 

 

where, for each actuation motor 𝑘, Θ𝑘 represents the rotation angle of the pulley, J𝑘 is the rotational inertia 

associated with both the rotor and the motor's pulley, and C𝑘 denotes the rotational viscous damping 

coefficient of the motor shaft. It is crucial to highlight that the model in this study exclusively examines the 

motion of the motors in isolation, disregarding external disturbances. This simplified model provides a 

foundational basis for analyzing the response characteristics of the motors. 

Due to the constraint that cables can exert tensions only in the positive direction, signifying their 

inability to push, the relationship between cable tension, motor torque, and angular motion can be expressed 

as in (6) [30]: 

 

T𝑘 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (
1

r𝑘
(τ𝑘 − J𝑘Θ̈𝑘 − 𝐶𝑘Θ̇𝑘)) (6) 

 

where the term “𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(. )” indicates that we consider only the positive values of each vector component 

and set any originally negative components to zero. As a matter of simplicity, we refrain from using this 

symbol in the subsequent developments. 

Assuming that the angles of the pulleys are zero when the terminal member's position is at the center 

of the polygon X = {0, 0}𝑇, the correlation between the rotation angles of the pulleys and the changes in the 

cable lengths can be expressed by the following equation. This initial condition serves as a starting point for 

the pulley angles, streamlining the formulation of the relationship between pulley rotations and the 

corresponding variations in cable lengths. 

 

Θ𝑘(𝑥, 𝑦) =
1

r
(ℓ𝑘

𝑖𝑛𝑖𝑡 − ℓ𝑘
𝑎𝑐𝑡) (7) 

 

where ℓ𝑘
𝑖𝑛𝑖𝑡  and ℓ𝑘

𝑎𝑐𝑡 , with 𝑘 =  1, … ,4, represent the initial and actual length of cable 𝑘, respectively. These 

lengths can be mathematically expressed as (8), (9) (see Figure 1(a)). 

 

ℓ𝑘
𝑖𝑛𝑖𝑡 = √𝑎𝑘,𝑥

2 + 𝑎𝑘,𝑦
2  (8) 

 

ℓ𝑘
𝑎𝑐𝑡 = √(𝑥 − 𝑎𝑘,𝑥)

2
+ (𝑦 − 𝑎𝑘,𝑦)

2
 (9) 

 

In a broader context, when all four pulley radii are equal (r𝑘 = r), the dynamic behavior of the four 

actuation motors can be formulated as: 

 

T =
1

r
(τ − JΘ̈ − CΘ̇)                                        

=
1

r
(τ − J (

𝑑

𝑑𝑡

∂Θ

∂X
Ẋ +

∂Θ

∂X
Ẍ) − C

∂Θ

∂X
Ẋ)

 (10) 

 

such that: 
 

∂𝚯

∂𝐗
= −

1

r

[
 
 
 
𝑥−𝑎1,𝑥

ℓ1
𝑎𝑐𝑡

𝑦−𝑎1,𝑦

ℓ1
𝑎𝑐𝑡

⋮ ⋮
𝑥−𝑎4,𝑥

ℓ4
𝑎𝑐𝑡

𝑦−𝑎4,𝑦

ℓ4
𝑎𝑐𝑡 ]

 
 
 
 (11) 

 

By substituting (2) and (10), along with the first and second derivatives of the rotation angles of the pulleys 

as given in (7), into (1) and simplifying, the resulting dynamic model of the CDPR can be succinctly (12): 

 

M(𝑋)Ẍ + N(X, �̇�)�̇� + K = W(𝑋)τ (12) 
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where the components of the matrices outlined in (11) can be computed as (13). 

 

{
 

 M(𝑋) = mr +W(𝑋)J
∂Θ

∂X
                            

N(X, �̇�) = W(𝑋) (J
𝑑

𝑑𝑡

∂Θ

∂X
+ C

∂Θ

∂X
)          

K = [0 −mg]T                                              

 (13) 

 

To model and analyze the input-output dynamics of the considered CDPR, it is crucial to represent 

the dynamic model in state space. The fourth-order Runge-Kutta method is subsequently employed for 

numerical computation. Introducing state variables as defined in (14) allows the dynamic model from (12) to 

be expressed in a compact form, as shown in (15); 

 

{
𝑆1 = 𝑥(𝑡) , 𝑆3 = 𝑦(𝑡)

𝑆2 = �̇�(𝑡) , 𝑆4 = �̇�(𝑡)
 (14) 

 

�̇�(𝑡) = 𝑓(𝑆, 𝑡) + ℎ(𝑆, 𝑡)𝑈(𝑡) (15) 

 

where 𝑆(𝑡) represents the vector of state variables, while 𝑓(𝑆, 𝑡) and ℎ(𝑆, 𝑡) as nonlinear functions, and 𝑈(𝑡) 
as the command vector. 

 

 

3. CONTROLLER DESIGN 

3.1.  Fractional-order PID controller structure 

The fractional-order PID controller, denoted as PI𝜆D𝜇, serves as a generalized version of the 

classical PID controller, replacing the ordinary integral and derivative components with fractional operators 

represented by 𝜆 and 𝜇, respectively [14]. These parameters can assume any arbitrary real number, typically 

chosen from the range of 0 to 2. The inclusion of these parameters enhances the controller’s flexibility, 

leading to improved performance and increased robustness for the controlled system. Figure 2 visually 

depicts the relationship between PID and FOPID controllers as influenced by the values of the two 

parameters 𝜆 and 𝜇. 
 

 

 
 

Figure 2. Relationships between conventional integer-order controllers and fractional-order controllers 

dependent on the two parameters 𝜆 and 𝜇 
 

 

In the context of the considered CDPR operating within a two-dimensional working space, the 

employment of two FOPID controllers is essential. One controller is specifically tailored for tracking the 

𝑥 −input, while the other is dedicated to tracking the 𝑦 −input as shown in Figure 3. To exploit the 

geometrical symmetry of the cable-based robot, deliberately choosing similar coefficients for both controllers 

is critical. Hence, the expression of the control law in the time domain along the 𝑥 −axis and 𝑦 −axis can be 

succinctly stated as in (16): 
 

{
𝑈𝑥(𝑡) = 𝐾P𝑒𝑥(𝑡) + 𝐾I𝐷

−𝜆𝑒𝑥(𝑡) + 𝐾D𝐷
𝜇𝑒𝑥(𝑡)

𝑈𝑦(𝑡) = 𝐾P𝑒𝑦(𝑡) + 𝐾I𝐷
−𝜆𝑒𝑦(𝑡) + 𝐾D𝐷

𝜇𝑒𝑦(𝑡)
 (16) 

 

where the coefficients 𝐾P, 𝐾I and 𝐾D correspond to the proportional, integral, and derivative components, 

respectively. The control signals in the time domain for the 𝑥 −axis and 𝑦 −axis is denoted as 𝑈𝑥(𝑡) and 
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𝑈𝑦(𝑡), respectively. The operator 𝐷(.) is a comprehensive operator that combines both integration and 

differentiation, commonly utilized in fractional calculus. The errors along the 𝑥 −axis and 𝑦 −axis is denoted 

as 𝑒𝑥(𝑡) and 𝑒𝑦(𝑡), respectively. 

 

 

 
 

Figure 3. Schematic illustration of the utilized FOPID controllers for controlling the four-cable CDPR 

 

 

3.2.  PSO algorithm and parameters tuning 

Within the realm of optimization algorithms presented in the literature for refining FOPID 

controllers, a notable approach is the PSO algorithm. First proposed by Kennedy and Eberhart in 1995 [31], 

this population-based search technique takes inspiration from the collective behavior observed in animals 

such as birds, bees, and schools of fish, collaborating when searching for food. The PSO algorithm's ability to 

mimic such cooperative behavior has proven effective in optimizing the parameters of FOPID controllers, 

contributing to their enhanced performance in various applications. 

In the PSO algorithm, an individual solution to the optimization problem is designated as a particle, 

while the entire group of solutions is identified as a swarm. At the outset, particles are randomly distributed 

within the search space of the problem. Each particle, denoted as 𝑝, is defined by a position vector x𝑝
𝑖𝑡𝑒𝑟  and a 

velocity vector v𝑝
𝑖𝑡𝑒𝑟 . The quality of these particles is assessed according to the value of the cost function. As 

the algorithm progresses, each particle remembers the best position it has reached, denoted as 𝑝𝑏𝑒𝑠𝑡, while 

the best position discovered by all particles within the swarm is referred to as 𝑔𝑏𝑒𝑠𝑡. The velocity and 

position of each particle 𝑝 between iterations 𝑖𝑡𝑒𝑟 and (𝑖𝑡𝑒𝑟 + 1) are determined according to the following 

equations. Understanding the roles of individual particles, their personal best positions, and the swarm's 

overall best position is essential for comprehending how the PSO algorithm collectively converges towards 

optimal solutions as (17), (18): 
 

v𝑝
𝑖𝑡𝑒𝑟+1 = 𝑤v𝑝

𝑖𝑡𝑒𝑟 + 𝑐1𝜌1(𝑝𝑏𝑒𝑠𝑡 − x𝑝
𝑖𝑡𝑒𝑟) + 𝑐2𝜌2(𝑔𝑏𝑒𝑠𝑡 − x𝑝

𝑖𝑡𝑒𝑟) (17) 

 

x𝑝
𝑖𝑡𝑒𝑟+1 = x𝑝

𝑖𝑡𝑒𝑟 + v𝑝
𝑖𝑡𝑒𝑟+1 (18) 

 

where v𝑝
𝑖𝑡𝑒𝑟  represents the velocity of the particle, x𝑝

𝑖𝑡𝑒𝑟  denotes the position of the particle, 𝑤 is the inertia 

weight, 𝑐1 and 𝑐2 are fixed constants, 𝜌1 and 𝜌2 are random numbers uniformly distributed in the range [0, 1], 
𝑝𝑏𝑒𝑠𝑡 signifies the local best position, and 𝑔𝑏𝑒𝑠𝑡 stands for the global best position. The inertia 𝑤 and the 

coefficients 𝑐1 and 𝑐2 influence the algorithm's behavior to achieve desired outcomes. 

The PSO algorithm offers several advantages, including its straightforward implementation and the 

ability to achieve rapid convergence with minimal parameter tuning. While these strengths make PSO a 

popular choice, it is crucial to acknowledge that, as with many optimization algorithms, there is no guarantee 

of converging to the desired solution. To address the risk of the algorithm getting stuck in local minima, a 

population regeneration technique has been incorporated into the PSO algorithm [32], [33]. With these 

considerations in mind, the fundamental steps of the PSO algorithm utilized for fine-tuning the FOPID 

controller parameters are outlined in Algorithm 1. Subsequently, Algorithm 2 provides the structure for 

tuning FOPID controller parameters using the PSO algorithm. 
 

Algorithm 1. Particle swarm optimization 
1:  Input: PSO parameters, number of iterations (max _𝑖𝑡𝑒𝑟). 
2:  Initialize: Randomly place particles and set their initial velocities within the search 

space. 

3:  Set: 𝑖𝑡𝑒𝑟 (iteration counter) to 0. 
4:  while the stopping criteria are not fulfilled, repeat the following steps: 

5:  for each particle 𝑝 in the swarm, do: 
6: Evaluate the cost function for the current position. 

7: end for 
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8:  Select the global best position (𝑔𝑏𝑒𝑠𝑡) from the entire swarm. 

9:  for each particle 𝑝 in the swarm, do: 
10:  Select the best position (𝑝𝑏𝑒𝑠𝑡) for particle 𝑝 based on its own history. 
11:  Update the position of particle 𝑝 based on Equations 13 and 14. 
12:  end for 

13:  Increment 𝑖𝑡𝑒𝑟 by 1. 

14:  if 𝑖𝑡𝑒𝑟 reaches the maximum allowed iterations (𝑖𝑡𝑒𝑟_𝑚𝑎𝑥), then: 
15:  Reinitialize the particles and their velocities randomly within the search space. 

16:  Reset 𝑖𝑡𝑒𝑟 to 0. 
17:  end if 

18:  end while 

19:  Output: The best position found, 𝑝. 

 

Algorithm 2. Tuning FOPID controller parameters with PSO 

Here, the cost function to be minimized for tuning the FOPID controller parameters is defined as the square 

error between the two outputs along the x-axis and y-axis. 
1:  Input: PSO parameters, number of iterations (max _iter). Parameters range of FOPID 

controller, convergence criteria. 

2:  Initialization: Randomly distribute the particles within the search space and 

initialize them with their initial velocities. 

3:  for iteration = 1:max _iter 
4:  for particle = 1: swarm _size 
5:  Update particle's velocity and position. 

6:  Evaluate cost function for new position. 

7:  Update the best position. 

8:  Update the global best position. 

9:  end 

10:  if convergence criteria is met. 

11:  Break; 

12:  end 

13:  Output: Optimized FOPID parameters. 

 

 

4. NUMERICAL EXPERIMENTS AND ANALYSIS 

To assess the performance and effectiveness of the proposed FOPID controller, two simulation 

scenarios were conducted. The first simulation focuses on target tracking, investigating the impact of the two 

non-integer parameters, 𝜆 and 𝜇. In this scenario, a comparative study was conducted to highlight the 

controller's performance, comparing it with both the classical PID controller and an optimized PID controller. 

The second scenario is dedicated to circular trajectory tracking. These simulations were performed using the 

MATLAB software. The essential parameters for the simulation of the robotic system are outlined in Table 2 

[30], while the optimal controller parameters are provided in Table 3. In both simulation scenarios, a 

sampling time of 0.01 seconds was employed. 

 

 

Table 2. CDPR parameters 
Parameter 𝐿 m r J𝑘 C𝑘 g 

Value 65.8 cm 1 kg 5 cm 8 kg.cm2 1 N.cm.s 10 m/s2 

 

 

Table 3. Optimal FOPID, PID and OPID controller parameters 
Parameters 𝐾P 𝐾I 𝐾D 𝜆 𝜇 

FOPID 110 70 0.3 1.5 0.65 

PID 110 70 0.3 1 1 

OPID 70 40 2 - - 

 

 

4.1.  Target tracking 

To assess the effectiveness of the intoduced controller, the cartesian coordinates [0.3, 0.3] and 

[0.0, −0.4] (m), representing two desired points within the robot's workspace, are set as targets for the CDPR 

end-effector to reach. The tracking profiles are depicted in Figure 4, enabling a comparison with the classical 

PID controller and OPID controller. Figure 4 clearly illustrates the superior control performance of the 

FOPID controller compared to the PID and OPID controllers. Furthermore, to explore the influence of the 

FOPID parameters on control performance, specifically the integral-order 𝜆 and the derivative-order 𝜇, 
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Figures 5 and 6 present a comparison of the step response properties for the aforementioned target tracking 

[0.3, 0.3] (m) as 𝜆 and 𝜇 vary within the interval [0.25: 0.25: 1.5]. 
 

 

 
 

Figure 4. Comparison of target tracking responses among FOPID, PID, and OPID controllers 

 

 

 
 

Figure 5. Step responses for 𝜇 = 1 with varied 𝜆 values  

 

 

 
 

Figure 6. Step responses for 𝜆 = 1 with varied 𝜇 values 

 

 

4.2.  Trajectory tracking via point-to-point approach 

In the second numerical experiment, utilizing the same parameters as mentioned above, a circular-

shaped trajectory depicted in Figure 7 is employed to assess the effectiveness of the introduced controller. 

The curves of the desired and generated trajectory closely overlap in this figure, indicating the controller's 

capability to accurately track the circular trajectory. Furthermore, the necessary control signals for tracking 

the circular-shaped trajectory and the length variation in the cables are presented in Figures 8 and 9, 

respectively. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1500-1510 

1508 

 
 

Figure 7. Desired cartesian trajectory and its generated counterpart, accompanied by the errors present among 

them 

 

 

 
 

Figure 8. Control signals for tracking the circular-shaped trajectory 
 

 

 
 

Figure 9. Cable length variation during tracking of the circular-shaped trajectory 
 

 

In conclusion, the simulation results obtained underscore the superior capabilities of the introduced 

FOPID controller. Through a comprehensive comparative analysis involving classical PID and OPID 

controllers, it becomes evident that the FOPID excels in terms of both tracking accuracy and control signal 

smoothness. The enhanced performance can be attributed to the fractional order of the integral and derivative 

components, endowing the FOPID with greater flexibility and efficacy. The control signals produced by the 

introduced FOPID controller exhibit smoother characteristics and lower amplitude compared to both the PID 

and OPID controllers, indicating a substantial improvement in the precision and smoothness of the control 

signals. Furthermore, the FOPID controller achieves precise control of the studied planar CDPR end-effector, 

leading to positioning errors that are practically negligible. In summary, the FOPID controller emerges as a 

robust and effective choice for applications requiring precise control and minimal tracking errors in dynamic 

systems. 

 

 

5. CONCLUSION 

In this paper, we employ a FOPID controller tuned through the PSO algorithm to tackle the 

trajectory tracking challenge in a position control system specifically designed for a planar CDPR.  

The effectiveness of the introduced FOPID controller is assessed in target tracking and trajectory tracking via 

point-to-point technique scenarios, establishing a comparison with both the classical PID controller and the 

OPID controller. The analysis reveals that the introduced FOPID controller outperforms the PID and OPID 

controllers in both efficiency and accuracy. This superiority is particularly noteworthy in the context of 
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trajectory tracking for the planar CDPR, emphasizing the potential of FOPID control for enhancing precision 

and performance in such robotic systems. As a forward-looking aspect of this research, our intent is to 

implement the proposed FOPID controller in the context of three-dimensional operation for CDPRs. 

Additionally, we plan to explore FOPID parameter tuning using alternative optimization algorithms, further 

contributing to the optimization and adaptability of the control strategy. This research aims to broaden the 

applicability and robustness of the FOPID controller in various operational scenarios, marking a stride in 

advancing control systems for cable-based parallel robots. 
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