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 Distributed storage systems play a pivotal role in modern data-intensive 

applications, with Hadoop distributed file system (HDFS) being a prominent 

example. However, optimizing the efficiency of such systems remains a 
complex challenge. This research paper presents a novel approach to 

enhance the efficiency of distributed storage by leveraging multi-agent 

systems (MAS). Our research is centered on enhancing the efficiency of the 

HDFS by incorporating intelligent agents that can dynamically assign 
storage tasks to nodes based on their performance characteristics. Utilizing a 

decentralized decision-making framework, the suggested approach based on 

MAS considers the real-time performance of nodes and allocates storage 

tasks adaptively. This strategy aims to alleviate performance bottlenecks and 
minimize data transfer latency. Through extensive experimental evaluation, 

we demonstrate the effectiveness of our approach in improving HDFS 

performance in terms of data storage, retrieval, and overall system 

efficiency. The results reveal significant reductions in job execution times 

and enhanced resource utilization, there by offering a promising avenue for 

enhancing the efficiency of distributed storage systems. 
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1. INTRODUCTION 

In today’s data-driven era, the efficient management of vast amounts of data is imperative for the 

success of a wide range of applications, from scientific research to business analytics. Distributed storage 

systems, such as the hadoop distributed file system (HDFS), have emerged as critical components in 

addressing the scalability and fault-tolerance requirements of these applications. HDFS is primarily designed 

for distributed data storage management, and its main objective is fault tolerance and balanced data 

distribution across different cluster nodes. HDFS does not natively have built-in functionality for dynamic 

decision-making to determine which network path is the most optimal. Fluctuations in the network can make 

this assessment complex, requiring sophisticated mechanisms to adapt to real-time variations in network 

connectivity. On the other hand, prioritizing machines with the highest computing capacity poses challenges 

in accurately determining node performance. Workload variability can make it difficult to predict actual node 

performance, which can lead to sub-optimal decisions when selecting machines for specific tasks. Combining 

these two issues, the need to find solutions that optimize the management of large files while considering 

performance variations between nodes becomes crucial. An approach that enables dynamic, intelligent 

allocation of storage tasks according to specific node performance could alleviate these challenges and 
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significantly improve storage efficiency in HDFS. However, optimizing the performance and resource 

utilization of such distributed storage systems remains a challenging task. Recent research efforts have 

explored various strategies to enhance the efficiency of distributed storage systems [1]. Previous studies have 

proposed solutions ranging from load balancing algorithms to data replication strategies, all aimed at 

improving the overall system performance [2]. 

Building upon the foundation laid by previous research on distributed storage systems, such as the 

seminal work on HDFS by Shvachko et al. [3] which laid the groundwork for modern distributed file 

systems, and the research on agent-based systems by Wooldridge [4] showcasing the potential of agents in 

decentralized decision-making. Another innovative algorithm has been introduced with a dual focus on 

optimizing resource provisioning in Hadoop MapReduce [5], [6] prioritizing both performance and energy 

efficiency. This algorithm shows promise in enhancing resource utilization and reducing execution times. 

However, these approaches often overlook a critical dimension: the dynamic nature of node performance in 

distributed environments. 

Recognizing this gap, our research focuses on a novel paradigm to optimize HDFS using  

multi-agent systems (MAS) [7]-[9] which provides a decentralized decision-making framework capable of 

adapting to real-time variations in node performance. This study investigated the effects of dynamic storage 

task allocation by intelligent agents on performance optimization. While earlier studies have explored various 

aspects of distributed storage systems, they have not explicitly addressed the impact of intelligent agents in 

dynamically allocating storage tasks to nodes based on their performance profiles. This approach represents a 

departure from traditional centralized approaches and holds the potential to effectively mitigate performance 

bottlenecks while optimizing resource utilization in distributed storage environments. 

Incorporating MAS into the Hadoop framework holds promise for boosting performance [10].  

This approach utilizes multiple agents’ collective capabilities to improve task handling and system 

coordination [1], [11], potentially optimizing resource allocation and load balancing, consequently leading to 

a noticeable boost in the system’s overall performance [12]. MASs in Hadoop facilitate distributed data 

mining through agent protocols and message-based communication, enabling scalability and dynamic load 

balancing [13], [14]. In sum, our study suggests that higher integration of MASs into Hadoop stands as a 

promising approach with the capability to significantly enhance resource utilization, streamline coordination, 

and ultimately elevate the performance of data processing and analytical tasks within the framework [15]. 

This paper presents the culmination of our research efforts in the realm of distributed storage 

efficiency enhancement through MAS. Through an empirical evaluation, we evaluate our approach against 

existing methods and demonstrate its effectiveness, particularly in terms of reducing job execution times, 

resource utilization, and overall system performance. Our contribution not only extends the existing body of 

research on distributed storage optimization but also opens new horizons for addressing the evolving 

challenges of managing distributed data efficiently. In the following sections, we will first offer an overview 

of the related work. Then, we will dive into the specifics of our MAS-based approach, conduct a thorough 

analysis of our experimental results, and finally, explore the implications of our findings for the broader 

context of optimizing distributed storage systems. 

 

 

2. RELATED WORK 

Several research papers have made substantial contributions, each aimed at bolstering the 

performance, resource allocation, and fault tolerance of these distributed computing frameworks [16].  

This section delves into key research papers, providing insight into their contributions while also addressing 

the inherent limitations associated with their respective approaches. Rasooli and Down [17] presented an 

adaptive scheduling algorithm, tailored to address the unique challenges posed by dynamic and 

heterogeneous Hadoop systems. The primary aim is to enhance the mean completion time of submitted jobs. 

This adaptive approach is invaluable for accommodating varying workloads and resource availability, yet it 

may confront challenges in effectively handling extreme workload fluctuations and in preserving the delicate 

balance between resource allocation and job execution times. Looking ahead, a hybrid scheduling algorithm 

has been introduced within the Hadoop MapReduce framework [18]. It places particular emphasis on the 

optimization of data locality rates and job completion times. While this research strives to strike a balance 

between resource utilization and job execution durations, it may encounter challenges in situations marked by 

highly dynamic and unpredictable data processing workloads. 

Focusing on the central concern of data locality in Hadoop, dynamic schedulers have been 

introduced to optimize makespan and communication for MapReduce tasks involving replicated inputs [19]. 

These dynamic scheduling strategies show promise in augmenting the system’s overall performance and 

resource utilization. Nevertheless, their effectiveness might be influenced by irregular data access patterns or 

the administration of extensive clusters accommodating diverse workloads. Moving forward, An innovative 

algorithm has been presented for enhancing the scheduling of MapReduce tasks on Hadoop [20], 
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demonstrating substantial performance enhancements. Nonetheless, its appropriateness for exceptionally 

dynamic and diverse settings, along with the possible resource overhead during implementation, requires 

thoughtful evaluation. 

With a focus on fault tolerance and failure handling, an evaluation has been conducted to assess the 

performance of Hadoop’s schedulers when faced with failures [21]. While this examination delves into 

potential avenues for improving Hadoop’s performance and resource allocation strategies in the event of 

unforeseen failures, it also underscores the need for additional exploration into the scalability of these 

strategies and their potential influence on the overall system performance. A study has been conducted on 

data placement policies in Hadoop, presenting a modified approach to enhance system performance, 

especially in environments characterized by heterogeneity [22]. However, striking a harmonious balance 

between optimizing data placement and accommodating real-time data access patterns may present its own 

set of challenges. In the wider landscape of cloud computing data centers, an exploration has been conducted 

concerning the optimization of software architecture by integrating Hadoop and MapReduce [23].  

This research offers valuable insights into the interplay between these frameworks and cloud computing. 

A modeling-based optimization approach is presented to improve the performance of Hadoop [24]. 

It promises a reduction in execution time and provides information on the selection of execution techniques 

and parameters. However, limitations may arise due to the complexities involved in creating and maintaining 

accurate models, especially in dynamic computing environments. One study examines different job 

scheduling algorithms to improve MapReduce job execution in Hadoop [25], offering insights into 

approaches that can be used to improve job scheduling. While this work has enriched the field of Hadoop and 

distributed computing, its limitations highlight the need for innovative solutions to address the multiple 

complexities of modern data-intensive applications and distributed systems, as presented in this article. 

 

 

3. BACKGROUND 

Within the realm of Hadoop, there exists a remarkable system tailored to quench the insatiable thirst 

for storage that big data applications possess-the HDFS for short [26], [27]. Picture HDFS as a sprawling, 

distributed giant, capable of seamlessly expanding to meet your data storage needs. It’s not just a file system; 

it’s a juggernaut of distribution, scalability, and resilience, custom-made to thrive in the world of budget-

friendly hardware. Now, let’s journey through the annals of time, more than a decade since Hadoop’s 

inception. During this epoch, the HDFS technology has been a phoenix, perpetually reborn and refined. 

Certain facets of HDFS have undergone substantial transformations, evolving to tackle the unique and 

formidable challenges that Hadoop and big data bring to the table. These advancements are nothing short of 

remarkable in their relentless pursuit of enhancing the Hadoop ecosystem 

 

3.1.  HDFS storage architecture 

HDFS  is a pivotal component in the field of distributed data storage, playing a fundamental role in 

the efficient management and retrieval of large-scale data across distributed clusters [28]. HDFS employs  

a unique architecture designed for fault tolerance, scalability, and high availability. At its core, HDFS divides 

large data files into smaller blocks, distributing them across a cluster of commodity hardware.  

This distributed approach ensures that data is both redundant and accessible, even in the face of hardware 

failures. HDFS relies on a master-slave architecture, comprising two main components: the NameNode and 

DataNodes. The NameNode serves as the central coordinator, storing metadata and namespace information, 

while DataNodes store the actual data blocks. Additionally, HDFS utilizes a replication strategy, replicating 

data across multiple DataNodes to ensure data durability and availability. As a result, HDFS has become the 

cornerstone of many big data applications, enabling researchers and organizations to harness the power of 

distributed computing for processing and analyzing vast datasets. Understanding the intricacies of HDFS 

storage architecture is crucial for optimizing the performance and reliability of such data-intensive  

research endeavors. 

 

3.2.  DataNode selection in HDFS 

HDFS is an astute decision-maker when it comes to selecting DataNodes for storing data. It relies 

on two fundamental principles to guide its choices, each contributing to the efficiency of data storage and 

retrieval [29]. One of HDFS’s foremost considerations is minimizing network traffic. Imagine it as a traffic 

controller for data, orchestrating the flow in the most efficient manner possible. To achieve this, HDFS 

favors DataNodes based on their proximity to the client. In simpler terms, it selects DataNodes that are 

physically closer to where the data is needed, effectively reducing the need for data to traverse long and 

congested network routes. By doing so, HDFS significantly optimizes data access speeds and, at the same 

time, alleviates the network’s burden. In addition to its network-savvy approach, HDFS is also resource-
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conscious. It carefully evaluates the capabilities of potential DataNodes in terms of the resources required to 

handle data storage tasks. These resources encompass factors such as available disk space and processing 

power. By ensuring that selected DataNodes possess the necessary resources, HDFS guarantees the efficient 

execution of data storage processes without encountering capacity-related bottlenecks. However, it’s crucial 

to acknowledge that HDFS doesn’t consistently pursue the absolute optimal DataNode for every task.  

This approach, while pragmatic, can be seen as a trade-off between efficiency and resource maximization.  

By not obsessively seeking the absolute best DataNode for each task, HDFS may occasionally fall short of 

squeezing every last drop of resource efficiency from the system. 

 

 

4. METHOD AND SYSTEM DESIGN 

In contrast to the conventional HDFS, which primarily relies on proximity and resource availability 

for task assignment, our research presents a novel approach that seeks to enhance the task allocation process. 

HDFS simply selects machines that are geographically close to the client and possess adequate resources for 

task execution, our system deploys a more sophisticated methodology. Our proposed system, in contrast, 

goes beyond mere proximity considerations. It employs an intricate selection mechanism that prioritizes 

machines with the most optimal network route to the client. It is important to note that geographical 

proximity alone does not guarantee the shortest data transmission route. Therefore, our system takes into 

account not just the physical closeness of machines but also their network efficiency in reaching the client. 

Furthermore, our system doesn’t stop at network optimization, it also incorporates a performance-oriented 

component. After identifying machines with the most efficient network routes, it further refines its selection 

by prioritizing those machines that exhibit the highest computational performance capabilities. This dual-

stage selection process ensures that tasks are allocated to machines that not only minimize data transmission 

overhead but also maximize computational efficiency, and enhance overall system performance. 

Within our research framework, we have implemented a comprehensive monitoring system to assess 

the performance of each DataNode within the distributed architecture. This monitoring mechanism involves 

the deployment of an individual agent on every DataNode. These agents continuously track various 

performance metrics, including task completion times, read/write speeds, central processing unit (CPU) 

processing speeds, core count, random-access memory (RAM) capacity, RAM speed, CPU utilization, and 

available free RAM. Subsequently, this agent transmits this critical performance data to a dedicated agent 

situated on the master node, adhering to a predefined regular reporting schedule. 

Figure 1 shows a description of the agent tasks used in our system.The master node, being the 

central orchestrator of our distributed system, features a dual-agent infrastructure to evaluate the performance 

of the DataNodes and the network. The first agent assumes the responsibility of collecting performance 

reports generated by the agents residing on the DataNodes. Upon receiving this wealth of data, the master 

node agent employs a scoring mechanism to assign a performance score to each DataNode. This scoring 

system enables the master node to classify and categorize the DataNodes based on their performance metrics, 

ensuring that resources are allocated optimally within the system. In parallel, at the same time, the second 

agent located on the master node concentrates on network performance evaluation and is responsible for 

conducting exhaustive tests on the network to assess various parameters such as latency, throughput and 

reliability of connections between the client and the various DataNodes in the cluster. To do this, the network 

agent sends test requests to each DataNode in the cluster, measuring response latency, data transfer speed and 

connection stability. These tests enable the agent to gather valuable data on the network performance of each 

node. Then, based on the results of these network assessments, the agent classifies the DataNodes according 

to their respective network performance. This classification of DataNodes according to their network 

performance enables the master node to make informed decisions about data routing and the selection of 

nodes to respond to customer requests. Thanks to this crucial network performance evaluation step, the 

HDFS system can optimize data transmission and deliver reliable, efficient user performance. 

This robust monitoring and classification system, encompassing both individual DataNode 

performance and network efficiency, contributes significantly to the intelligent resource allocation and task 

distribution within our distributed system, ultimately enhancing its overall performance and efficiency. When 

a client seeks access to a file in the system, such as in the case of file retrieval, the master node undertakes a 

comprehensive process to fulfill this client request, as schematized in Figure 2. This process involves 

identifying the most efficient machines among the selected DataNodes. This critical step is designed to 

ensure that the most efficient resources are used to meet the client’s request. To achieve this, the master node 

identifies the DataNodes hosting the required file blocks and uses the information presented by the two 

evaluation agents to predict the performance of each selected DataNode and the most efficient network 

connectivity for the client’s needs. This meticulous evaluation determines which machines can handle the 

client’s request as quickly and reliably as possible. Once these machines have been identified, the client 

receives essential information such as the addresses of these selected machines and the identifiers of the 
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corresponding file blocks. These details enable the customer to locate and access the required data seamlessly 

while ensuring optimum efficiency and maximum network performance. In this way, they ensure that the 

client can access the desired file smoothly and efficiently, contributing to overall system optimization and 

user satisfaction. 

 

 

 
 

Figure 1. Descriptive of agents tasks 

 

 

 
 

Figure 2. Procedure of DataNodes selection 
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In our study, we set up an experimental environment consisting of a NameNode, two DataNodes and a 

client. The NameNode is the central coordination point, while the two DataNodes store and manage the data 

blocks. The client acts as an external entity requesting access to files stored in the system. Each component of 

this environment is specified in hardware terms, with details such as the number of processors, the amount of 

RAM, and other essential features as shown in Table 1. This diverse configuration has been carefully crafted to 

reflect realistic conditions and enable an assessment of our system’s performance. The specific details of each 

component will be essential for interpreting the results of our experiments and understanding the impact of 

different configurations on the performance of the distributed system we are evaluating. 

As part of our comparative evaluation between Hadoop HDFS and our system, we conducted tests 

using files of various sizes, ranging from 20 MB to 1 GB. The aim of these tests was to measure and compare 

the times required to save and retrieve these files in the two systems, in order to quantify and put into 

perspective their respective performances. The screenshots presented Figures 3 and 4 illustrate our test results 

in detail, highlighting the saving and retrieval times for each file size when using our proposed system. 

 

 

Table 1. Experimental environment 
Type of node No of servers Configuration 

NameNode 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system, 

OS Ubuntu 22.04.2 

DataNode 2 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system, 

OS Ubuntu 22.04.2 

DataNode 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 1,3 GB RAM system type: 64-bit operating system, 

OS Ubuntu 22.04.2 

Client 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system, 

OS Ubuntu 22.04.2 

 

 

 
 

Figure 3. Saving a 20 MB/100 MB/200 MB/1 GB file with our system 

 

 

 
 

Figure 4. Obtaining a 20 MB/100 MB/200 MB/1 GB file with our system 

 

 

5. EXPERIMENTAL RESULTS AND DISCUSS 

The obtained results from our study on enhancing hadoop distributed storage efficiency using MASs 

are promising. We conducted measurements to assess the time required for both writing and reading 

(downloading) complete files. Figures 5 and 6 illustrate the results of the write operation, while  

Figures 7 and 8 present the results of the read operation. 

Figures 5 and 6 illustrate a comparative analysis of our system, both before and following the 

integration of the MAS. The preceding figure serves as a clear testament to a notable improvement in system 

performance when operating with a MAS across the entire range of file sizes. Through the application of the 

percentage optimization formula [(initial value - new value) / initial value] * 100, consistently positive values 

were obtained, signifying enhanced performance in the presence of MAS. The aggregate percentage 
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optimization, averaging around 26.57% underscores the substantial performance enhancement observed in 

the context of the MAS scenario. 

Similar to Figure 5, Figure 6 demonstrates a consistent superiority of the system when MAS is 

employed as opposed to its absence. The integration of MAS results in a notable optimization of the reading 

operation, achieving an approximate improvement of 22%. Significantly, we attained enhanced performance 

by employing a MAS, primarily attributable to the concurrent execution of tasks. Each agent autonomously 

undertakes its assigned responsibilities and subsequently consolidates its outcomes for utilization by the 

central system. 
 
 

  
 

Figure 5. Write operation time (MAS vs no MAS) 
 

Figure 6. Read operation time (MAS vs no MAS) 
 

 

As depicted in Figure 7, HDFS exhibits superior performance for small files. However, as the file 

size increases, our system demonstrates significantly improved performance. This improvement is 

noteworthy, as it showcases the scalability and efficiency of our system when dealing with larger data 

volumes. For instance, HDFS took a respectable 2.8 seconds to pen a 20 MB file, but as the challenge scaled 

to a colossal 1,000 MB file, it required a substantial 16.8 seconds. In striking contrast, our system 

demonstrated remarkable agility, with a mere 4.4 seconds for the 20 MB file and a lightning-fast 12.3 

seconds for the 1,000 MB file. The substantial performance gain as file sizes augment highlights the 

robustness and adaptability of our system in accommodating the growing demands of big data applications. 

Turning our attention to Figure 8, we observe a similar trend. HDFS maintains its edge in performance for 

small files, thanks to its optimized mechanisms for handling such data. Nevertheless, as the file size 

continues to grow, our system consistently outperforms HDFS, underscoring its reliability and efficiency in 

handling the challenges posed by larger and more complex files. Notably, HDFS outperforms our system 

when it comes to handling smaller files. This advantage arises from the fact that smaller files do not 

necessitate the selection of the best-performing machine; instead, one can simply opt for the nearest available 

machine. 
 

 

  
 

Figure 7. Write operation time (Hadoop vs MAS-

HDFS) 

 

Figure 8. Read operation time (Hadoop vs MAS-

HDFS) 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Enhancing Hadoop distributed storage efficiency using multi-agent systems (Rabie Mahdaoui) 

1821 

6. CONCLUSION 

This research paper presents a pioneering MAS that enhances the HDFS and boasts a range of 

capabilities, including dynamic selection of DataNodes based on network and machine performance, as well 

as continuous monitoring of DataNode performance. The incorporation of intelligent agents into our  

MAS-HDFS approach not only facilitates the transparent allocation of storage tasks to nodes, but also adapts 

to real-time conditions, effectively alleviating performance bottlenecks and reducing data transfer latency. 

This innovation has the potential to revolutionize the efficiency of distributed storage systems, particularly in 

the context of data-intensive applications. In addition, we envisage an interesting synergy between our  

MAS-HDFS and a random read/write enhanced HDFS (REHDFS). By combining our system with REHDFS, 

which exploits strategies such as random or load-based selection of nodes, we anticipate a substantial 

improvement in performance. This fusion of intelligent agent-driven decision making and advanced node 

selection strategies promises to further optimize data storage and retrieval, as well as system efficiency in 

distributed storage environments. Against a backdrop of ever-increasing demand for efficient data 

management, our research lays the foundations for transformative improvements in distributed storage 

systems. By maximizing the use of resources and exploiting their capabilities, we are paving the way for 

improvements in this field. 

 

 

REFERENCES 
[1] M. Sais, N. Rafalia, R. Mahdaoui, and J. Abouchabaka, “Distributed storage optimization using multi-agent systems in Hadoop,” 

E3S Web of Conferences, vol. 412, Aug. 2023, doi: 10.1051/e3sconf/202341201091. 

[2] V. Rao Chandakanna, “REHDFS: a random read/write enhanced HDFS,” Journal of Network and Computer Applications,  

vol. 103, pp. 85–100, Feb. 2018, doi: 10.1016/j.jnca.2017.11.017. 

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in 2010 IEEE 26th Symposium on Mass 

Storage Systems and Technologies (MSST), May 2010, pp. 1–10, doi: 10.1109/MSST.2010.5496972. 

[4] P. G. Balaji and D. Srinivasan, “An introduction to multi-agent systems,” in Innovations in Multi-Agent Systems and Applications 

- 1, D. Srinivasan and L. C. Jain, Eds., in Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2010, pp. 1–27,  

doi: 10.1007/978-3-642-14435-6_1. 

[5] P. P. Nghiem and S. M. Figueira, “Towards efficient resource provisioning in MapReduce,” Journal of Parallel and Distributed 

Computing, vol. 95, pp. 29–41, Sep. 2016, doi: 10.1016/j.jpdc.2016.04.001. 

[6] V. Sontakke and D. R. B, “Memory aware optimized Hadoop MapReduce model in cloud computing environment,”  

IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, Art. no. 3, Sep. 2023,  

doi: 10.11591/ijai. v12.i3.pp1270-1280. 

[7] T. J. Grant, “A review of multi-agent systems techniques, with application to columbus user support organisation,”  

Future Generation Computer Systems, vol. 7, no. 4, pp. 413–437, May 1992, doi: 10.1016/0167-739X(92)90056-H. 

[8] M. Falco and G. Robiolo, “A systematic literature review in multi-agent systems: patterns and trends,” in 2019 XLV Latin 

American Computing Conference (CLEI), Sep. 2019, pp. 1–10, doi: 10.1109/CLEI47609.2019.235098. 

[9] N. E. Khalidi, F. Benabbou, and N. Sael, “Distributed parking management architecture based on multi-agent systems,”  

IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 4, Art. no. 4, Dec. 2021,  

doi: 10.11591/ijai.v10.i4.pp801-809. 

[10] P. Sethia and K. Karlapalem, “A multi-agent simulation framework on small Hadoop cluster,” Engineering Applications of 

Artificial Intelligence, vol. 24, no. 7, pp. 1120–1127, Oct. 2011, doi: 10.1016/j.engappai.2011.06.009. 

[11] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Towards efficient multi-agent learning systems,” arXiv, May 23, 2023. 

Accessed: Nov. 29, 2023. [Online]. Available: http://arxiv.org/abs/2305.13411 

[12] V. Julian and V. Botti, “Special issue on multi-agent systems,” Applied Sciences, vol. 13, no. 2, Art. no. 2, Jan. 2023,  

doi: 10.3390/app13021021. 

[13] K.-C. Jim and C. L. Giles, “How communication can improve the performance of multi-agent systems,” in Proceedings of the 

fifth international conference on Autonomous agents, in AGENTS ’01. New York, NY, USA: Association for Computing 

Machinery, May 2001, pp. 584–591, doi: 10.1145/375735.376455. 

[14] M. Oprea, “Applications of multi-agent systems,” in Information Technology, vol. 157, R. Reis, Ed., in IFIP International 

Federation for Information Processing, vol. 157, Boston: Kluwer Academic Publishers, 2004, pp. 239–270,  

doi: 10.1007/1-4020-8159-6_9. 

[15] G. D. Fatta and G. Fortino, “A customizable multi-agent system for distributed data mining,” in Proceedings of the 2007 ACM 

symposium on Applied computing, in SAC ’07. New York, NY, USA: Association for Computing Machinery, Mar. 2007,  

pp. 42–47, doi: 10.1145/1244002.1244012. 

[16] M. Sais, N. Rafalia, and J. Abouchabaka, “Enhancements and an intelligent approach to optimize big data storage and 

management: random enhanced HDFS (REHDFS) and DNA storage,” vol. 14, no. 1, pp. 196–203, 2022. 

[17] A. Rasooli and D. Down, “An adaptive scheduling algorithm for dynamic heterogeneous Hadoop systems,” in Proceedings of the 

2011 Conference of the Center for Advanced Studies on Collaborative Research, 2011, pp. 30-44. 

[18] A. Gandomi, M. Reshadi, A. Movaghar, and A. Khademzadeh, “HybSMRP: a hybrid scheduling algorithm in Hadoop 

MapReduce framework,” Journal Big Data, vol. 6, no. 1, p. 106, Dec. 2019, doi: 10.1186/s40537-019-0253-9. 

[19] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing MapReduce for highly distributed environments,” arXiv, Jul. 30, 2012, 

doi: 10.48550/arXiv.1207.7055. 

[20] A. A. Abdallat, A. I. Alahmad, D. A. A. Amimi, and J. A. AlWidian, “Hadoop MapReduce job scheduling algorithms survey and 

use cases,” Modern Applied Science, vol. 13, no. 7, Art. no. 7, Jun. 2019, doi: 10.5539/mas.v13n7p38. 

[21] O. Beaumont, T. Lambert, L. Marchal, and B. Thomas, “Data-locality aware dynamic schedulers for independent tasks with 

replicated inputs,” in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2018, 

pp. 1206–1213, doi: 10.1109/IPDPSW.2018.00187. 

[22] S. Hedayati, N. Maleki, T. Olsson, F. Ahlgren, M. Seyednezhad, and K. Berahmand, “MapReduce scheduling algorithms in 

Hadoop: a systematic study,” Journal of Cloud Computing, vol. 12, no. 1, p. 143, Oct. 2023, doi: 10.1186/s13677-023-00520-9. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1814-1822 

1822 

[23] S. Ibrahim, T. A. Phuong, and G. Antoniu, “An eye on the elephant in the wild: a performance evaluation of hadoop’s schedulers 

under failures,” F. Pop and M. Potop-Butucaru, Eds., in Lecture Notes in Computer Science, vol. 9438. Cham: Springer 

International Publishing, 2015, pp. 141–157, doi: 10.1007/978-3-319-28448-4_11. 

[24] C.-W. Lee, K.-Y. Hsieh, S.-Y. Hsieh, and H.-C. Hsiao, “A dynamic data placement strategy for hadoop in heterogeneous 

environments,” Big Data Research, vol. 1, pp. 14–22, Aug. 2014, doi: 10.1016/j.bdr.2014.07.002. 

[25] P. Varalakshmi and S. Subbiah, “Optimized scheduling of multi-user MapReduce jobs in heterogeneous environment,” 

Concurrency and Computation: Practice and Experience, vol. 34, no. 27, p. e7316, 2022, doi: 10.1002/cpe.7316. 

[26] P. R. Giri and G. Sharma, “Apache hadoop architecture, applications, and hadoop distributed file system,” Semiconductor Science 

and Information Devices, vol. 4, no. 1, Art. no. 1, May 2022, doi: 10.30564/ssid.v4i1.4619. 

[27] M. R. Ghazi and D. Gangodkar, “Hadoop, MapReduce and HDFS: a developers perspective,” Procedia Computer Science,  

vol. 48, pp. 45–50, Jan. 2015, doi: 10.1016/j.procs.2015.04.108. 

[28] M. Saroha and A. Sharma, “Big Data and hadoop ecosystem: a review,” in 2019 International Conference on Smart Systems and 

Inventive Technology (ICSSIT), Nov. 2019, pp. 1–5, doi: 10.1109/ICSSIT46314.2019.8987848. 

[29] Q. Chen, “Massive data storage algorithm based on node performance evaluation,” in 2018 14th International Conference on 

Computational Intelligence and Security (CIS), Nov. 2018, pp. 408–411, doi: 10.1109/CIS2018.2018.00097. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Rabie Mahdaoui     was born in 1999 in fez. He received his Master’s degree in 

computer science, big data cloud computing from Ibn Tofail University, Kenitra, Morocco.  
He is a Ph.D. student in Computer Research Laboratory (LaRI) at Ibn Tofail. His research 

interests include big data, data storage, cloud computing, distributed computing. He can be 

contacted at email: rabie.mahdaoui@uit.ac.ma. 

 

 

Manar Sais     was born in 1996 in fez. She received his Master’s degree in 

computer science, big data cloud computing from Ibn Tofail University, Kenitra, Morocco. 

She is a Ph.D. student in Computer Research Laboratory (LaRI) at Ibn Tofail. Her research 

interests include big data, data storage, cloud computing, distributed computing. She can be 

contacted at email: manar.sais@uit.ac.ma. 

 

 

Jaafar Abouchabaka     was born in Guersif, Morocco, 1968. He has obtained two 

doctorates in Computer Sciences applied to mathematics from Mohammed V University, 

Rabat, Morocco. Currently, he is a Professor at Department of computer Sciences, Ibn Tofail 

University, Kenitra, Morocco. His research interests are in concurrent and parallel 
programming, distributed systems, multi agent systems, genetics algorithms, big data and 

cloud computing. He can be contacted at email: jaafar.abouchabaka@uit.ac.ma. 

 

 

Najat Rafalia     was born in Kenitra, Morocco, 1968. She has obtained three 

doctorates in Computer Sciences from Mohammed V University, Rabat, Morocco by 

collaboration with ENSEEIHT, Toulouse, France, and Ibn Tofail University, Kenitra, 
Morocco. Currently, she is a Professor at Department of Computer Sciences, Ibn Tofail 

University, Kenitra, Morocco. Her research interests are in distributed systems, multi-agent 

systems, concurrent and parallel programming, communication, security, big data, and cloud 

computing. She can be contacted at email: arafalia@yahoo.com. 

 

mailto:rabie.mahdaoui@uit.ac.ma.
mailto:manar.sais@uit.ac.ma.
mailto:arafalia@yahoo.com
https://orcid.org/0009-0005-9332-3857
https://scholar.google.com/citations?user=QtQpLPMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58571621500
https://orcid.org/0000-0002-7870-947X
https://scholar.google.com/citations?hl=fr&user=E6rPnEcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57226753706
https://orcid.org/0000-0003-3193-8416
https://scholar.google.com/citations?user=SKwyQikAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58571621700
https://orcid.org/0000-0003-1271-7490
https://scholar.google.com/citations?hl=en&user=2puwAloAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=9278139100

