
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 3, June 2024, pp. 1814~1822

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1814-1822  1814

Journal homepage: http://ijeecs.iaescore.com

Enhancing Hadoop distributed storage efficiency using multi-

agent systems

Rabie Mahdaoui, Manar Sais, Jaafar Abouchabaka, Najat Rafalia
Computer Research Laboratory LaRI, Department of Computer Science, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

Article Info ABSTRACT

Article history:

Received Dec 4, 2023

Revised Jan 24, 2024

Accepted Feb 23, 2024

 Distributed storage systems play a pivotal role in modern data-intensive

applications, with Hadoop distributed file system (HDFS) being a prominent

example. However, optimizing the efficiency of such systems remains a
complex challenge. This research paper presents a novel approach to

enhance the efficiency of distributed storage by leveraging multi-agent

systems (MAS). Our research is centered on enhancing the efficiency of the

HDFS by incorporating intelligent agents that can dynamically assign
storage tasks to nodes based on their performance characteristics. Utilizing a

decentralized decision-making framework, the suggested approach based on

MAS considers the real-time performance of nodes and allocates storage

tasks adaptively. This strategy aims to alleviate performance bottlenecks and
minimize data transfer latency. Through extensive experimental evaluation,

we demonstrate the effectiveness of our approach in improving HDFS

performance in terms of data storage, retrieval, and overall system

efficiency. The results reveal significant reductions in job execution times

and enhanced resource utilization, there by offering a promising avenue for

enhancing the efficiency of distributed storage systems.

Keywords:

Big data

Distributed storage

Hadoop distributed file system

Multi-agent systems

Node performance

This is an open access article under the CC BY-SA license.

Corresponding Author:

Manar Sais

Computer Research Laboratory LaRI, Department of Computer Science, Faculty of Sciences

Ibn Tofail University

Kenitra, Morocco

Email: manar.sais@uit.ac.ma

1. INTRODUCTION

In today’s data-driven era, the efficient management of vast amounts of data is imperative for the

success of a wide range of applications, from scientific research to business analytics. Distributed storage

systems, such as the hadoop distributed file system (HDFS), have emerged as critical components in

addressing the scalability and fault-tolerance requirements of these applications. HDFS is primarily designed

for distributed data storage management, and its main objective is fault tolerance and balanced data

distribution across different cluster nodes. HDFS does not natively have built-in functionality for dynamic

decision-making to determine which network path is the most optimal. Fluctuations in the network can make

this assessment complex, requiring sophisticated mechanisms to adapt to real-time variations in network

connectivity. On the other hand, prioritizing machines with the highest computing capacity poses challenges

in accurately determining node performance. Workload variability can make it difficult to predict actual node

performance, which can lead to sub-optimal decisions when selecting machines for specific tasks. Combining

these two issues, the need to find solutions that optimize the management of large files while considering

performance variations between nodes becomes crucial. An approach that enables dynamic, intelligent

allocation of storage tasks according to specific node performance could alleviate these challenges and

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhancing Hadoop distributed storage efficiency using multi-agent systems (Rabie Mahdaoui)

1815

significantly improve storage efficiency in HDFS. However, optimizing the performance and resource

utilization of such distributed storage systems remains a challenging task. Recent research efforts have

explored various strategies to enhance the efficiency of distributed storage systems [1]. Previous studies have

proposed solutions ranging from load balancing algorithms to data replication strategies, all aimed at

improving the overall system performance [2].

Building upon the foundation laid by previous research on distributed storage systems, such as the

seminal work on HDFS by Shvachko et al. [3] which laid the groundwork for modern distributed file

systems, and the research on agent-based systems by Wooldridge [4] showcasing the potential of agents in

decentralized decision-making. Another innovative algorithm has been introduced with a dual focus on

optimizing resource provisioning in Hadoop MapReduce [5], [6] prioritizing both performance and energy

efficiency. This algorithm shows promise in enhancing resource utilization and reducing execution times.

However, these approaches often overlook a critical dimension: the dynamic nature of node performance in

distributed environments.

Recognizing this gap, our research focuses on a novel paradigm to optimize HDFS using

multi-agent systems (MAS) [7]-[9] which provides a decentralized decision-making framework capable of

adapting to real-time variations in node performance. This study investigated the effects of dynamic storage

task allocation by intelligent agents on performance optimization. While earlier studies have explored various

aspects of distributed storage systems, they have not explicitly addressed the impact of intelligent agents in

dynamically allocating storage tasks to nodes based on their performance profiles. This approach represents a

departure from traditional centralized approaches and holds the potential to effectively mitigate performance

bottlenecks while optimizing resource utilization in distributed storage environments.

Incorporating MAS into the Hadoop framework holds promise for boosting performance [10].

This approach utilizes multiple agents’ collective capabilities to improve task handling and system

coordination [1], [11], potentially optimizing resource allocation and load balancing, consequently leading to

a noticeable boost in the system’s overall performance [12]. MASs in Hadoop facilitate distributed data

mining through agent protocols and message-based communication, enabling scalability and dynamic load

balancing [13], [14]. In sum, our study suggests that higher integration of MASs into Hadoop stands as a

promising approach with the capability to significantly enhance resource utilization, streamline coordination,

and ultimately elevate the performance of data processing and analytical tasks within the framework [15].

This paper presents the culmination of our research efforts in the realm of distributed storage

efficiency enhancement through MAS. Through an empirical evaluation, we evaluate our approach against

existing methods and demonstrate its effectiveness, particularly in terms of reducing job execution times,

resource utilization, and overall system performance. Our contribution not only extends the existing body of

research on distributed storage optimization but also opens new horizons for addressing the evolving

challenges of managing distributed data efficiently. In the following sections, we will first offer an overview

of the related work. Then, we will dive into the specifics of our MAS-based approach, conduct a thorough

analysis of our experimental results, and finally, explore the implications of our findings for the broader

context of optimizing distributed storage systems.

2. RELATED WORK

Several research papers have made substantial contributions, each aimed at bolstering the

performance, resource allocation, and fault tolerance of these distributed computing frameworks [16].

This section delves into key research papers, providing insight into their contributions while also addressing

the inherent limitations associated with their respective approaches. Rasooli and Down [17] presented an

adaptive scheduling algorithm, tailored to address the unique challenges posed by dynamic and

heterogeneous Hadoop systems. The primary aim is to enhance the mean completion time of submitted jobs.

This adaptive approach is invaluable for accommodating varying workloads and resource availability, yet it

may confront challenges in effectively handling extreme workload fluctuations and in preserving the delicate

balance between resource allocation and job execution times. Looking ahead, a hybrid scheduling algorithm

has been introduced within the Hadoop MapReduce framework [18]. It places particular emphasis on the

optimization of data locality rates and job completion times. While this research strives to strike a balance

between resource utilization and job execution durations, it may encounter challenges in situations marked by

highly dynamic and unpredictable data processing workloads.

Focusing on the central concern of data locality in Hadoop, dynamic schedulers have been

introduced to optimize makespan and communication for MapReduce tasks involving replicated inputs [19].

These dynamic scheduling strategies show promise in augmenting the system’s overall performance and

resource utilization. Nevertheless, their effectiveness might be influenced by irregular data access patterns or

the administration of extensive clusters accommodating diverse workloads. Moving forward, An innovative

algorithm has been presented for enhancing the scheduling of MapReduce tasks on Hadoop [20],

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1814-1822

1816

demonstrating substantial performance enhancements. Nonetheless, its appropriateness for exceptionally

dynamic and diverse settings, along with the possible resource overhead during implementation, requires

thoughtful evaluation.

With a focus on fault tolerance and failure handling, an evaluation has been conducted to assess the

performance of Hadoop’s schedulers when faced with failures [21]. While this examination delves into

potential avenues for improving Hadoop’s performance and resource allocation strategies in the event of

unforeseen failures, it also underscores the need for additional exploration into the scalability of these

strategies and their potential influence on the overall system performance. A study has been conducted on

data placement policies in Hadoop, presenting a modified approach to enhance system performance,

especially in environments characterized by heterogeneity [22]. However, striking a harmonious balance

between optimizing data placement and accommodating real-time data access patterns may present its own

set of challenges. In the wider landscape of cloud computing data centers, an exploration has been conducted

concerning the optimization of software architecture by integrating Hadoop and MapReduce [23].

This research offers valuable insights into the interplay between these frameworks and cloud computing.

A modeling-based optimization approach is presented to improve the performance of Hadoop [24].

It promises a reduction in execution time and provides information on the selection of execution techniques

and parameters. However, limitations may arise due to the complexities involved in creating and maintaining

accurate models, especially in dynamic computing environments. One study examines different job

scheduling algorithms to improve MapReduce job execution in Hadoop [25], offering insights into

approaches that can be used to improve job scheduling. While this work has enriched the field of Hadoop and

distributed computing, its limitations highlight the need for innovative solutions to address the multiple

complexities of modern data-intensive applications and distributed systems, as presented in this article.

3. BACKGROUND

Within the realm of Hadoop, there exists a remarkable system tailored to quench the insatiable thirst

for storage that big data applications possess-the HDFS for short [26], [27]. Picture HDFS as a sprawling,

distributed giant, capable of seamlessly expanding to meet your data storage needs. It’s not just a file system;

it’s a juggernaut of distribution, scalability, and resilience, custom-made to thrive in the world of budget-

friendly hardware. Now, let’s journey through the annals of time, more than a decade since Hadoop’s

inception. During this epoch, the HDFS technology has been a phoenix, perpetually reborn and refined.

Certain facets of HDFS have undergone substantial transformations, evolving to tackle the unique and

formidable challenges that Hadoop and big data bring to the table. These advancements are nothing short of

remarkable in their relentless pursuit of enhancing the Hadoop ecosystem

3.1. HDFS storage architecture

HDFS is a pivotal component in the field of distributed data storage, playing a fundamental role in

the efficient management and retrieval of large-scale data across distributed clusters [28]. HDFS employs

a unique architecture designed for fault tolerance, scalability, and high availability. At its core, HDFS divides

large data files into smaller blocks, distributing them across a cluster of commodity hardware.

This distributed approach ensures that data is both redundant and accessible, even in the face of hardware

failures. HDFS relies on a master-slave architecture, comprising two main components: the NameNode and

DataNodes. The NameNode serves as the central coordinator, storing metadata and namespace information,

while DataNodes store the actual data blocks. Additionally, HDFS utilizes a replication strategy, replicating

data across multiple DataNodes to ensure data durability and availability. As a result, HDFS has become the

cornerstone of many big data applications, enabling researchers and organizations to harness the power of

distributed computing for processing and analyzing vast datasets. Understanding the intricacies of HDFS

storage architecture is crucial for optimizing the performance and reliability of such data-intensive

research endeavors.

3.2. DataNode selection in HDFS

HDFS is an astute decision-maker when it comes to selecting DataNodes for storing data. It relies

on two fundamental principles to guide its choices, each contributing to the efficiency of data storage and

retrieval [29]. One of HDFS’s foremost considerations is minimizing network traffic. Imagine it as a traffic

controller for data, orchestrating the flow in the most efficient manner possible. To achieve this, HDFS

favors DataNodes based on their proximity to the client. In simpler terms, it selects DataNodes that are

physically closer to where the data is needed, effectively reducing the need for data to traverse long and

congested network routes. By doing so, HDFS significantly optimizes data access speeds and, at the same

time, alleviates the network’s burden. In addition to its network-savvy approach, HDFS is also resource-

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhancing Hadoop distributed storage efficiency using multi-agent systems (Rabie Mahdaoui)

1817

conscious. It carefully evaluates the capabilities of potential DataNodes in terms of the resources required to

handle data storage tasks. These resources encompass factors such as available disk space and processing

power. By ensuring that selected DataNodes possess the necessary resources, HDFS guarantees the efficient

execution of data storage processes without encountering capacity-related bottlenecks. However, it’s crucial

to acknowledge that HDFS doesn’t consistently pursue the absolute optimal DataNode for every task.

This approach, while pragmatic, can be seen as a trade-off between efficiency and resource maximization.

By not obsessively seeking the absolute best DataNode for each task, HDFS may occasionally fall short of

squeezing every last drop of resource efficiency from the system.

4. METHOD AND SYSTEM DESIGN

In contrast to the conventional HDFS, which primarily relies on proximity and resource availability

for task assignment, our research presents a novel approach that seeks to enhance the task allocation process.

HDFS simply selects machines that are geographically close to the client and possess adequate resources for

task execution, our system deploys a more sophisticated methodology. Our proposed system, in contrast,

goes beyond mere proximity considerations. It employs an intricate selection mechanism that prioritizes

machines with the most optimal network route to the client. It is important to note that geographical

proximity alone does not guarantee the shortest data transmission route. Therefore, our system takes into

account not just the physical closeness of machines but also their network efficiency in reaching the client.

Furthermore, our system doesn’t stop at network optimization, it also incorporates a performance-oriented

component. After identifying machines with the most efficient network routes, it further refines its selection

by prioritizing those machines that exhibit the highest computational performance capabilities. This dual-

stage selection process ensures that tasks are allocated to machines that not only minimize data transmission

overhead but also maximize computational efficiency, and enhance overall system performance.

Within our research framework, we have implemented a comprehensive monitoring system to assess

the performance of each DataNode within the distributed architecture. This monitoring mechanism involves

the deployment of an individual agent on every DataNode. These agents continuously track various

performance metrics, including task completion times, read/write speeds, central processing unit (CPU)

processing speeds, core count, random-access memory (RAM) capacity, RAM speed, CPU utilization, and

available free RAM. Subsequently, this agent transmits this critical performance data to a dedicated agent

situated on the master node, adhering to a predefined regular reporting schedule.

Figure 1 shows a description of the agent tasks used in our system.The master node, being the

central orchestrator of our distributed system, features a dual-agent infrastructure to evaluate the performance

of the DataNodes and the network. The first agent assumes the responsibility of collecting performance

reports generated by the agents residing on the DataNodes. Upon receiving this wealth of data, the master

node agent employs a scoring mechanism to assign a performance score to each DataNode. This scoring

system enables the master node to classify and categorize the DataNodes based on their performance metrics,

ensuring that resources are allocated optimally within the system. In parallel, at the same time, the second

agent located on the master node concentrates on network performance evaluation and is responsible for

conducting exhaustive tests on the network to assess various parameters such as latency, throughput and

reliability of connections between the client and the various DataNodes in the cluster. To do this, the network

agent sends test requests to each DataNode in the cluster, measuring response latency, data transfer speed and

connection stability. These tests enable the agent to gather valuable data on the network performance of each

node. Then, based on the results of these network assessments, the agent classifies the DataNodes according

to their respective network performance. This classification of DataNodes according to their network

performance enables the master node to make informed decisions about data routing and the selection of

nodes to respond to customer requests. Thanks to this crucial network performance evaluation step, the

HDFS system can optimize data transmission and deliver reliable, efficient user performance.

This robust monitoring and classification system, encompassing both individual DataNode

performance and network efficiency, contributes significantly to the intelligent resource allocation and task

distribution within our distributed system, ultimately enhancing its overall performance and efficiency. When

a client seeks access to a file in the system, such as in the case of file retrieval, the master node undertakes a

comprehensive process to fulfill this client request, as schematized in Figure 2. This process involves

identifying the most efficient machines among the selected DataNodes. This critical step is designed to

ensure that the most efficient resources are used to meet the client’s request. To achieve this, the master node

identifies the DataNodes hosting the required file blocks and uses the information presented by the two

evaluation agents to predict the performance of each selected DataNode and the most efficient network

connectivity for the client’s needs. This meticulous evaluation determines which machines can handle the

client’s request as quickly and reliably as possible. Once these machines have been identified, the client

receives essential information such as the addresses of these selected machines and the identifiers of the

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1814-1822

1818

corresponding file blocks. These details enable the customer to locate and access the required data seamlessly

while ensuring optimum efficiency and maximum network performance. In this way, they ensure that the

client can access the desired file smoothly and efficiently, contributing to overall system optimization and

user satisfaction.

Figure 1. Descriptive of agents tasks

Figure 2. Procedure of DataNodes selection

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhancing Hadoop distributed storage efficiency using multi-agent systems (Rabie Mahdaoui)

1819

In our study, we set up an experimental environment consisting of a NameNode, two DataNodes and a

client. The NameNode is the central coordination point, while the two DataNodes store and manage the data

blocks. The client acts as an external entity requesting access to files stored in the system. Each component of

this environment is specified in hardware terms, with details such as the number of processors, the amount of

RAM, and other essential features as shown in Table 1. This diverse configuration has been carefully crafted to

reflect realistic conditions and enable an assessment of our system’s performance. The specific details of each

component will be essential for interpreting the results of our experiments and understanding the impact of

different configurations on the performance of the distributed system we are evaluating.

As part of our comparative evaluation between Hadoop HDFS and our system, we conducted tests

using files of various sizes, ranging from 20 MB to 1 GB. The aim of these tests was to measure and compare

the times required to save and retrieve these files in the two systems, in order to quantify and put into

perspective their respective performances. The screenshots presented Figures 3 and 4 illustrate our test results

in detail, highlighting the saving and retrieval times for each file size when using our proposed system.

Table 1. Experimental environment
Type of node No of servers Configuration

NameNode 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system,

OS Ubuntu 22.04.2

DataNode 2 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system,

OS Ubuntu 22.04.2

DataNode 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 1,3 GB RAM system type: 64-bit operating system,

OS Ubuntu 22.04.2

Client 1 Intel® Core™ i5-6300U CPU @ 2.40 GHz × 2,4 GB RAM system type: 64-bit operating system,

OS Ubuntu 22.04.2

Figure 3. Saving a 20 MB/100 MB/200 MB/1 GB file with our system

Figure 4. Obtaining a 20 MB/100 MB/200 MB/1 GB file with our system

5. EXPERIMENTAL RESULTS AND DISCUSS

The obtained results from our study on enhancing hadoop distributed storage efficiency using MASs

are promising. We conducted measurements to assess the time required for both writing and reading

(downloading) complete files. Figures 5 and 6 illustrate the results of the write operation, while

Figures 7 and 8 present the results of the read operation.

Figures 5 and 6 illustrate a comparative analysis of our system, both before and following the

integration of the MAS. The preceding figure serves as a clear testament to a notable improvement in system

performance when operating with a MAS across the entire range of file sizes. Through the application of the

percentage optimization formula [(initial value - new value) / initial value] * 100, consistently positive values

were obtained, signifying enhanced performance in the presence of MAS. The aggregate percentage

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1814-1822

1820

optimization, averaging around 26.57% underscores the substantial performance enhancement observed in

the context of the MAS scenario.

Similar to Figure 5, Figure 6 demonstrates a consistent superiority of the system when MAS is

employed as opposed to its absence. The integration of MAS results in a notable optimization of the reading

operation, achieving an approximate improvement of 22%. Significantly, we attained enhanced performance

by employing a MAS, primarily attributable to the concurrent execution of tasks. Each agent autonomously

undertakes its assigned responsibilities and subsequently consolidates its outcomes for utilization by the

central system.

Figure 5. Write operation time (MAS vs no MAS)

Figure 6. Read operation time (MAS vs no MAS)

As depicted in Figure 7, HDFS exhibits superior performance for small files. However, as the file

size increases, our system demonstrates significantly improved performance. This improvement is

noteworthy, as it showcases the scalability and efficiency of our system when dealing with larger data

volumes. For instance, HDFS took a respectable 2.8 seconds to pen a 20 MB file, but as the challenge scaled

to a colossal 1,000 MB file, it required a substantial 16.8 seconds. In striking contrast, our system

demonstrated remarkable agility, with a mere 4.4 seconds for the 20 MB file and a lightning-fast 12.3

seconds for the 1,000 MB file. The substantial performance gain as file sizes augment highlights the

robustness and adaptability of our system in accommodating the growing demands of big data applications.

Turning our attention to Figure 8, we observe a similar trend. HDFS maintains its edge in performance for

small files, thanks to its optimized mechanisms for handling such data. Nevertheless, as the file size

continues to grow, our system consistently outperforms HDFS, underscoring its reliability and efficiency in

handling the challenges posed by larger and more complex files. Notably, HDFS outperforms our system

when it comes to handling smaller files. This advantage arises from the fact that smaller files do not

necessitate the selection of the best-performing machine; instead, one can simply opt for the nearest available

machine.

Figure 7. Write operation time (Hadoop vs MAS-

HDFS)

Figure 8. Read operation time (Hadoop vs MAS-

HDFS)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Enhancing Hadoop distributed storage efficiency using multi-agent systems (Rabie Mahdaoui)

1821

6. CONCLUSION

This research paper presents a pioneering MAS that enhances the HDFS and boasts a range of

capabilities, including dynamic selection of DataNodes based on network and machine performance, as well

as continuous monitoring of DataNode performance. The incorporation of intelligent agents into our

MAS-HDFS approach not only facilitates the transparent allocation of storage tasks to nodes, but also adapts

to real-time conditions, effectively alleviating performance bottlenecks and reducing data transfer latency.

This innovation has the potential to revolutionize the efficiency of distributed storage systems, particularly in

the context of data-intensive applications. In addition, we envisage an interesting synergy between our

MAS-HDFS and a random read/write enhanced HDFS (REHDFS). By combining our system with REHDFS,

which exploits strategies such as random or load-based selection of nodes, we anticipate a substantial

improvement in performance. This fusion of intelligent agent-driven decision making and advanced node

selection strategies promises to further optimize data storage and retrieval, as well as system efficiency in

distributed storage environments. Against a backdrop of ever-increasing demand for efficient data

management, our research lays the foundations for transformative improvements in distributed storage

systems. By maximizing the use of resources and exploiting their capabilities, we are paving the way for

improvements in this field.

REFERENCES
[1] M. Sais, N. Rafalia, R. Mahdaoui, and J. Abouchabaka, “Distributed storage optimization using multi-agent systems in Hadoop,”

E3S Web of Conferences, vol. 412, Aug. 2023, doi: 10.1051/e3sconf/202341201091.

[2] V. Rao Chandakanna, “REHDFS: a random read/write enhanced HDFS,” Journal of Network and Computer Applications,

vol. 103, pp. 85–100, Feb. 2018, doi: 10.1016/j.jnca.2017.11.017.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), May 2010, pp. 1–10, doi: 10.1109/MSST.2010.5496972.

[4] P. G. Balaji and D. Srinivasan, “An introduction to multi-agent systems,” in Innovations in Multi-Agent Systems and Applications

- 1, D. Srinivasan and L. C. Jain, Eds., in Studies in Computational Intelligence. Berlin, Heidelberg: Springer, 2010, pp. 1–27,

doi: 10.1007/978-3-642-14435-6_1.

[5] P. P. Nghiem and S. M. Figueira, “Towards efficient resource provisioning in MapReduce,” Journal of Parallel and Distributed

Computing, vol. 95, pp. 29–41, Sep. 2016, doi: 10.1016/j.jpdc.2016.04.001.

[6] V. Sontakke and D. R. B, “Memory aware optimized Hadoop MapReduce model in cloud computing environment,”

IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, Art. no. 3, Sep. 2023,

doi: 10.11591/ijai. v12.i3.pp1270-1280.

[7] T. J. Grant, “A review of multi-agent systems techniques, with application to columbus user support organisation,”

Future Generation Computer Systems, vol. 7, no. 4, pp. 413–437, May 1992, doi: 10.1016/0167-739X(92)90056-H.

[8] M. Falco and G. Robiolo, “A systematic literature review in multi-agent systems: patterns and trends,” in 2019 XLV Latin

American Computing Conference (CLEI), Sep. 2019, pp. 1–10, doi: 10.1109/CLEI47609.2019.235098.

[9] N. E. Khalidi, F. Benabbou, and N. Sael, “Distributed parking management architecture based on multi-agent systems,”

IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 4, Art. no. 4, Dec. 2021,

doi: 10.11591/ijai.v10.i4.pp801-809.

[10] P. Sethia and K. Karlapalem, “A multi-agent simulation framework on small Hadoop cluster,” Engineering Applications of

Artificial Intelligence, vol. 24, no. 7, pp. 1120–1127, Oct. 2011, doi: 10.1016/j.engappai.2011.06.009.

[11] K. Gogineni, P. Wei, T. Lan, and G. Venkataramani, “Towards efficient multi-agent learning systems,” arXiv, May 23, 2023.

Accessed: Nov. 29, 2023. [Online]. Available: http://arxiv.org/abs/2305.13411

[12] V. Julian and V. Botti, “Special issue on multi-agent systems,” Applied Sciences, vol. 13, no. 2, Art. no. 2, Jan. 2023,

doi: 10.3390/app13021021.

[13] K.-C. Jim and C. L. Giles, “How communication can improve the performance of multi-agent systems,” in Proceedings of the

fifth international conference on Autonomous agents, in AGENTS ’01. New York, NY, USA: Association for Computing

Machinery, May 2001, pp. 584–591, doi: 10.1145/375735.376455.

[14] M. Oprea, “Applications of multi-agent systems,” in Information Technology, vol. 157, R. Reis, Ed., in IFIP International

Federation for Information Processing, vol. 157, Boston: Kluwer Academic Publishers, 2004, pp. 239–270,

doi: 10.1007/1-4020-8159-6_9.

[15] G. D. Fatta and G. Fortino, “A customizable multi-agent system for distributed data mining,” in Proceedings of the 2007 ACM

symposium on Applied computing, in SAC ’07. New York, NY, USA: Association for Computing Machinery, Mar. 2007,

pp. 42–47, doi: 10.1145/1244002.1244012.

[16] M. Sais, N. Rafalia, and J. Abouchabaka, “Enhancements and an intelligent approach to optimize big data storage and

management: random enhanced HDFS (REHDFS) and DNA storage,” vol. 14, no. 1, pp. 196–203, 2022.

[17] A. Rasooli and D. Down, “An adaptive scheduling algorithm for dynamic heterogeneous Hadoop systems,” in Proceedings of the

2011 Conference of the Center for Advanced Studies on Collaborative Research, 2011, pp. 30-44.

[18] A. Gandomi, M. Reshadi, A. Movaghar, and A. Khademzadeh, “HybSMRP: a hybrid scheduling algorithm in Hadoop

MapReduce framework,” Journal Big Data, vol. 6, no. 1, p. 106, Dec. 2019, doi: 10.1186/s40537-019-0253-9.

[19] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing MapReduce for highly distributed environments,” arXiv, Jul. 30, 2012,

doi: 10.48550/arXiv.1207.7055.

[20] A. A. Abdallat, A. I. Alahmad, D. A. A. Amimi, and J. A. AlWidian, “Hadoop MapReduce job scheduling algorithms survey and

use cases,” Modern Applied Science, vol. 13, no. 7, Art. no. 7, Jun. 2019, doi: 10.5539/mas.v13n7p38.

[21] O. Beaumont, T. Lambert, L. Marchal, and B. Thomas, “Data-locality aware dynamic schedulers for independent tasks with

replicated inputs,” in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2018,

pp. 1206–1213, doi: 10.1109/IPDPSW.2018.00187.

[22] S. Hedayati, N. Maleki, T. Olsson, F. Ahlgren, M. Seyednezhad, and K. Berahmand, “MapReduce scheduling algorithms in

Hadoop: a systematic study,” Journal of Cloud Computing, vol. 12, no. 1, p. 143, Oct. 2023, doi: 10.1186/s13677-023-00520-9.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 3, June 2024: 1814-1822

1822

[23] S. Ibrahim, T. A. Phuong, and G. Antoniu, “An eye on the elephant in the wild: a performance evaluation of hadoop’s schedulers

under failures,” F. Pop and M. Potop-Butucaru, Eds., in Lecture Notes in Computer Science, vol. 9438. Cham: Springer

International Publishing, 2015, pp. 141–157, doi: 10.1007/978-3-319-28448-4_11.

[24] C.-W. Lee, K.-Y. Hsieh, S.-Y. Hsieh, and H.-C. Hsiao, “A dynamic data placement strategy for hadoop in heterogeneous

environments,” Big Data Research, vol. 1, pp. 14–22, Aug. 2014, doi: 10.1016/j.bdr.2014.07.002.

[25] P. Varalakshmi and S. Subbiah, “Optimized scheduling of multi-user MapReduce jobs in heterogeneous environment,”

Concurrency and Computation: Practice and Experience, vol. 34, no. 27, p. e7316, 2022, doi: 10.1002/cpe.7316.

[26] P. R. Giri and G. Sharma, “Apache hadoop architecture, applications, and hadoop distributed file system,” Semiconductor Science

and Information Devices, vol. 4, no. 1, Art. no. 1, May 2022, doi: 10.30564/ssid.v4i1.4619.

[27] M. R. Ghazi and D. Gangodkar, “Hadoop, MapReduce and HDFS: a developers perspective,” Procedia Computer Science,

vol. 48, pp. 45–50, Jan. 2015, doi: 10.1016/j.procs.2015.04.108.

[28] M. Saroha and A. Sharma, “Big Data and hadoop ecosystem: a review,” in 2019 International Conference on Smart Systems and

Inventive Technology (ICSSIT), Nov. 2019, pp. 1–5, doi: 10.1109/ICSSIT46314.2019.8987848.

[29] Q. Chen, “Massive data storage algorithm based on node performance evaluation,” in 2018 14th International Conference on

Computational Intelligence and Security (CIS), Nov. 2018, pp. 408–411, doi: 10.1109/CIS2018.2018.00097.

BIOGRAPHIES OF AUTHORS

Rabie Mahdaoui was born in 1999 in fez. He received his Master’s degree in

computer science, big data cloud computing from Ibn Tofail University, Kenitra, Morocco.
He is a Ph.D. student in Computer Research Laboratory (LaRI) at Ibn Tofail. His research

interests include big data, data storage, cloud computing, distributed computing. He can be

contacted at email: rabie.mahdaoui@uit.ac.ma.

Manar Sais was born in 1996 in fez. She received his Master’s degree in

computer science, big data cloud computing from Ibn Tofail University, Kenitra, Morocco.

She is a Ph.D. student in Computer Research Laboratory (LaRI) at Ibn Tofail. Her research

interests include big data, data storage, cloud computing, distributed computing. She can be

contacted at email: manar.sais@uit.ac.ma.

Jaafar Abouchabaka was born in Guersif, Morocco, 1968. He has obtained two

doctorates in Computer Sciences applied to mathematics from Mohammed V University,

Rabat, Morocco. Currently, he is a Professor at Department of computer Sciences, Ibn Tofail

University, Kenitra, Morocco. His research interests are in concurrent and parallel
programming, distributed systems, multi agent systems, genetics algorithms, big data and

cloud computing. He can be contacted at email: jaafar.abouchabaka@uit.ac.ma.

Najat Rafalia was born in Kenitra, Morocco, 1968. She has obtained three

doctorates in Computer Sciences from Mohammed V University, Rabat, Morocco by

collaboration with ENSEEIHT, Toulouse, France, and Ibn Tofail University, Kenitra,
Morocco. Currently, she is a Professor at Department of Computer Sciences, Ibn Tofail

University, Kenitra, Morocco. Her research interests are in distributed systems, multi-agent

systems, concurrent and parallel programming, communication, security, big data, and cloud

computing. She can be contacted at email: arafalia@yahoo.com.

mailto:rabie.mahdaoui@uit.ac.ma.
mailto:manar.sais@uit.ac.ma.
mailto:arafalia@yahoo.com
https://orcid.org/0009-0005-9332-3857
https://scholar.google.com/citations?user=QtQpLPMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58571621500
https://orcid.org/0000-0002-7870-947X
https://scholar.google.com/citations?hl=fr&user=E6rPnEcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57226753706
https://orcid.org/0000-0003-3193-8416
https://scholar.google.com/citations?user=SKwyQikAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58571621700
https://orcid.org/0000-0003-1271-7490
https://scholar.google.com/citations?hl=en&user=2puwAloAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=9278139100

