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Abstract 
In this paper, a class of even-order half-linear functional differential equations with damping is 

studied. By using the generalized Riccati transformation and the integral averaging technique, six new 
oscillation criterias are obtained for all solutions of the equations. The results obtained generalize and 
improve some known results. 
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1. Introduction 

In this paper, we consider the oscillatory behavior of solutions for the n-th order half-
linear functional differential equation with damping of the form: 

 

  0
)1()1( ,0)))((,())(()())(()(

d

d
tttgxtftxtptxtr

t
nn   .                    (1) 

 

Where n is even, uuu 1||)(   ,   is a real number and 0 . For simplicity, we note : 

 

0I [ , ),t   

),0[R),,0(R 0  .  

 
Throughout this paper, we assume that: 
 

(H1) )RI,()(,0)('),RI,()( 01 CtptrCtr   . 

(H2) 0)(',)(),RI,()( 0  tgttgCtg , 


)(lim tg
t

. 

(H3) )RR,I(),( Cxtf . 

In order to discuss conveniently in the following context, several definitions will firstly be 
given. 

Definition 1. The function 0
1 ),R),,([)( tTTCtx xx

n    is called a solution of (1), if 

)R),,([))(()( 1)1(  
x

n TCtxtr and )(tx  satisfy (1) on an interval ),[ xT . 

Definition 2. A nontrivial solution of (1) is said to be oscillatory if it has arbitrarily large 
zeros; otherwise, it is called nonoscillatory. (1) is said to be oscillatory if all its solutions are 
oscillatory.  

Very few people have studied the oscillatory behavior of even-order half-linear 
functional differential equations with damping. So, much research, especially some on the 
Philos oscillation criteria of (1) and the other related results, will be done in this paper by 
referring to [1-8]. Moreover, functional inequalities in this paper hold for all sufficient large t if 
there is no special explanation. 
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2. Main Results 
The following lemma is a well-known result; let us see [1, Lemma 2.2.1] and [2]. 
Lemma 1. Let u  be a positive and n-times differentiable function on an interval ),[ T  

with its n-th derivative )(nu non-positive on ),[ T  and not identically zero on any interval of the 

form ),,'[ T  TT ' . Then there exists an integer l , 10  nl , with ln   odd and such that for 

some '* TT  : 
 

)1,,1,(),,[,0)1( *)(   nlljTtu jjl  ; 

 )1,,2,1(),,[,0 *)(  liTtu i   , when 1l . 

 
Lemma 2 [8]. Assume that )(tx  satisfies all the conditions in Lemma 1 and

x
nn tttxtx  ,0)()( )()1( ; then there exists constants )1,0( , and 0M  such that: 

 
)()(' )1(2 txMttx nn  , 

 
For all sufficient large t. 

Theorem 1. If the following conditions are true: 
 
(H4) 

 ttrtE
t
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t
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(H5) Suppose that there exists )RI,()( 0Ctq  , )RR,()( CxF   such that: 

 

)sgn()()()sgn(),( xxFtqxxtf  , xxkxFxF 1||)()(   , 

 
Then 0,0,0  kx ; 
 

(H6) 


ssqsE
t

t
t

d)()(suplim
0

. 

 
Then (1) is oscillatory. 
Proof.  Assume that  is an eventually positive solution of (1), then there exists 

01 tt  , such that: 

  
 0))((,0)(  tgxtx ,  for all 1tt  . 

 
 From (1) and (H5), we obtain: 
 

1
)1( ,0))(()()())]'(()()([ tttgxtqtkEtxtrtE n    .                                         (2) 

 
Hence, 
   

1
)1( ,0))]'(()()([ tttxtrtE n   .                                                       (3) 

 
From (3) and (H4), then there exists 12 tt  such that: 

 

2
)1( ,0)( tttx n  .                                                              (4) 

 
From (4) and (1), we obtain: 
 

2
)1( ,0]'))()(([ tttxtr n   .                                                        (5) 

)(tx
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It follows from  that: 

 

2
)( ,0)( tttx n  .                                                                (6) 

 
From Lemma 1, we obtain: 
 

2,0)(' tttx  .                                                                (7) 

 
From (3) and (4), we obtain: 
 

2
)1( ,0))(()()(]'))()(()([ tttgxtqtkEtxtrtE n    .                                  (8) 

 
In view of ,0)(',0)(  txtx  then there exists 2tT   and 0 , for all Tt  , we have ))(( tgx . 

Hence, 
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We get that: 
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T

n    . 

 
Hence, we have a contradiction to the condition (H6). The proof is complete. 

Theorem 2. Assume conditions (H4) and (H5) hold, and the following condition is true 

(H7)  Suppose that there exists 0)('),RI,()( 1   tCt  , and 0  such that: 

 




sssqsEsk
t

t
t

d)](')()()([suplim
0

 . 

 
Then (1) is oscillatory. 

Proof.  Assume that )(tx  is an eventually positive solution of (1), proceeding as the 

proof of Theorem 1, we obtain (8) holds. Consider the function: 
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Then 0)( tW , and: 
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From (3), (7), (8) and (11), we obtain: 
 

0

)1(

,
))((

))()(()()('
)()()()(' tT

Tgx

TxTrTEt
tqtEtktW

n






 .                                (12) 

Let  
))((

)()()( )1(

Tgx

TxTrTE n







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Integrating the above from T to t, we obtain: 
 

sssqsEskTWtW
t
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d])(')()()([)()(    .                                               (14) 

 
In (14), let t .Because 0)( tW , we have a contradiction to condition (H7). The proof is 

complete. 
Theorem 3. Assume condition (H4) and (H5) hold, and the following condition is true 

(H8)  Suppose that there exists )RI,()( 1 Ct  such that: 

 

01

1

,]d
))()(()1(

)()())('(
)()()([suplim tTs

sGs

srsEs
sqsEsk

t

T
t




 




 




 ,                 (15) 

 

Wherein )s()(')( 2 ngsMgsG  , M, in Lemma 2, )(sE  in (H4). Then (1) is oscillatory. 

Proof. Assume that )(tx  is an eventually positive solution of (1), proceeding as the 

proof of Theorem 1, we obtain (8) holds. Consider the function: 
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Then 0)( tW . From (8) and Lemma 2, we obtain: 
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By using the inequality: 
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Then 0,0,0  uBA , we have: 
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Integrating the above from T to t, we get: 
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Hence, we have a contradiction to the condition (H8). The proof is complete. 

Theorem 4. Assume the condition (H4) and (H5) hold, and the following condition is true 
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Where n > 1 and function )(),( sGsE is given by (H4) and (H8). Then (1) is oscillatory. 

Proof. Assume that )(tx  is an eventually positive solution of (1), proceeding as the 

proof of Theorem 3, and function )(tW  is given by (16), we get (19) holds. 

From (19), we obtain: 
 

. 

 

Multiplying two sides by nst )(  and integrating the above from T to t (t >T) , we get: 
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Hence, we have a contradiction to the condition (H9). The proof is complete. 

By Philos integral average conditions, the new oscillation theorems are given for 
Equation (1). Consider the sets: 

 
}:),{(D 00 tstst  ,  }:),{(D 0tstst  . 
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And, 
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Where functions )(),( sGsE are given by (H4) and (H8). Then (1) is oscillatory. 

Proof. Assume that )(tx  is an eventually positive solution of (1), proceeding as the 

proof of Theorem 3, and function )(tW  is given by (16), we get (17) holds. 

From (17), we obtain: 
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Replacing t by s, multiplying two sides by )(t,sH  and integrating the above from T to t (t >T ), 
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The right end of (25) is integrable functions for using the inequality (18), then for Tst  , we 
have: 
 

)()1(

|),(|)()()(
)(

)]()()([

),()(
)(),(|),(|

1

1
/)1(

/1
)1/(

sG

sthsrsEs
sW

srsEs

stHsG
sWstHsth 



















 .    (26) 

 
Form (25) and (26), we have: 
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If condition (H10) does not hold, then we can use the following oscillatory theorem to 

Equation (1).  

TttW
trtEt

tG
tW

t

t
tWtqtEtk   ),(

)]()()([

)(
)(

)(

)('
)(')()()( /)1(

/1










                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 6, June 2014:  4882 – 4892 

4888

Theorem 6. Assume the condition (H4) and (H5) hold, Pt,sH )( , and the following 

conditions is true. 
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Then (1) is oscillatory. 

Proof. Assume that )(tx  is an eventually positive solution of (1), proceeding as the 

proof of Theorem 3, and function )(tW  is given by (16), we get (25) holds. 

From (25), we obtain: 
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t

T
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T
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1
)( /)1(
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





. 

 
Let, 
  

ssWstHsth
TtH

tA
t

T
d)(),(|),(|

),(

1
)( )1/(   ,                                           (28) 

 

ssWstHsR
TtH

tB
t

T
d)(),()(

),(
)( /)1(  

,                                                (29) 

 
Which, 
 

 /1)]()()([

)(
)(

srsEs

sG
sR  .                                                               (30) 

 
Then, 
 

)()()(d)()()(),(
),(

1
tBtATWssqsEskstH

TtH

t

T
  .                               (31) 

 
From (27), we have: 
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
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


 .               (32) 

 
From (32) and (H14), we have: 
 

),[,)()( 0  tTTTW  ,                                                           (33) 

And, 
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1
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t

T
t

 
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.                                  (34) 

 
Joint (31) and (34) to produce: 
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1
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T
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We claim that: 
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T

d)()( /)1(  .                                                             (36) 
 

Otherwise, if: 
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T
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.                                                                                     (37) 

 
From (H11), then there exists 0  can be used in: 
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Let  be an arbitrary constant from (37), then there exists  can be used in: 
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Thus, 
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1
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TtH

t

T




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


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From (38), then there exist 12 TT  , can be used: 

 

2
0

1 ,
),(

),(
Tt

ttH

TtH
 .                                                              (41) 

 
Joint (40) and (41) to produce: 
 

0 TT 1
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2,)( TttB   .   

 
For  is arbitrary then, 

 



)(lim tB

t
.                                                                        (42) 

 

Consider next sequence 



 n
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nn ttt lim),,[}{ 01 , can be used in: 
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n
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. 

 
From (35), then there exists M can be used in: 
 

 .                                                      (43) 

 
From (42), 
 

.                                                                       (44) 

 
From (43), we have: 
 

.                                                                       (45) 

 
From (43) and (44), when n is sufficiently large, we have: 
 

. 

 
Therefore when n is sufficiently large, 
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From (45), we have: 
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On the other hand using the Holder inequality, we have: 
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Therefore: 
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Noted that )(tB  is definedby the above equation was when n is sufficiently large. 
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That is, 
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From (38), 
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Then there exists TT 3 , can be used in: 
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Therefore when n is sufficiently large, 
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From (47) and (48), we get: 
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From (46) and (49), we get: 
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Which implies: 
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Notice (30), this is contrary to condition (H12). Therefore, our assertion (36) is established. 
However, by (36) and (33): 
 

 




 ssWsRsssR
TT

d)()(d)()( /)1(/)1(  . 

 
Notice (30), this is contrary to condition (H13).The proof is complete. 
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