
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 33, No. 3, March 2024, pp. 1829~1842

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i3.pp1829-1842  1829

Journal homepage: http://ijeecs.iaescore.com

Intrusion detection system in cloud computing by utilizing

VTR-HLSTM based on deep learning

Valavan Woothukadu Thirumaran1, Nalini Joseph1, Umarani Srikanth2
1Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research, Chennai, India

2Department of Computer Science and Engineering, Panimalar Engineering College, Chennai, India

Article Info ABSTRACT

Article history:

Received Dec 2, 2023

Revised Dec 29, 2023

Accepted Jan 11, 2024

 Cloud computing (CC) is a rapidly developing IT approach with intrusion

detection system being a crucial tool for safeguarding virtual networks and

machines from potential threats, thereby mitigating security concerns in the
cloud environment. The intrusion detection system (IDS) system demands

significant improvements, primarily based on optimizing performance and

bolstering security measures. This research aims to implement an IDS in

cloud computing utilizing deep learning (DL) method. The DL model is a
promising technique and is widely used to detect intrusions. The

implemented hierarchical long short-term memory (HLSTM) method’s

performance is evaluated for feature selection through variance threshold-

based regression (VTR) on two IDS network datasets: Bot-IoT and network
security lab-knowledge discovery and data mining (NSL-KDD). This paper

concludes the use of an intrusion detection network resulting in high security

and performance. Moreover, the implemented method on the NSL-KDD and

Bot-IoT datasets obtains respective accuracies of 99.50% and 0.995. It is
compared with the existing methods namely, ensemble ID model for CC

utilizing DL, LeNet, fuzzy deep neural network with a Honey Bader

algorithm for privacy-preserving ID, and improved metaheuristics with a

fuzzy logic-based IDS for cloud security, and beluga whale-tasmanian devil
optimization based on deep convolutional neural network (CNN) with TL,

chronological slap swarm algorithm-based deep belief network (DBN), and

dragonfly improved invasive weed optimization-based Shepard CNN.

Keywords:

Cloud computing

Deep learning

Hierarchical long short-term

memory

Intrusion detection system

Variance threshold

This is an open access article under the CC BY-SA license.

Corresponding Author:

Valavan Woothukadu Thirumaran

Department of Computer Science and Engineering, Bharath Institute of Higher Education and Research

Chennai, India

Email: wtvalavan@gmail.com

1. INTRODUCTION

An intrusion detection system (IDS) is a system that monitors traffic in the network to detect

potentially dangerous activity [1]. An IDS is a technology that monitors the network traffic and detects

malicious traffic or any type of assault, as well as issues alarms [2]. Cloud computing (CC) technology

allows users to access, store, and maintain their data in new and potentially easier ways [3], [4]. The client

computing paradigm has inherent issues with security, privacy, service availability, and other problems [5].

The cloud’s resources and data connections are becoming increasingly challenging to manage, as the number

of intrusions increase [6]. One of the techniques for preventing malicious attacks on cloud computing is

intrusion detection. The cloud intrusion detection systems (CIDSs) in research focus on the detection and

analysis of network traffic, specifically within a cloud environment. They are designed to identify malicious

attack behaviors, prevent any potential damage, and ensure the security and reliability of cloud

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1830

computing [7]. Attacks against service applications take many different forms in a cloud network including

state and protocol attacks, volumetric denial-of-service (DoS) attacks, and attacks involving encrypted or

malicious inputs. The security and confidentiality of the system’s network are compromised when threats or

intrusions are introduced [8]. On platforms that need continuous security monitoring, the network IDS is

proven to be helpful in detecting these attacks. It is understood that intrusion detection is crucial for

safeguarding any system against malicious activities, and maintaining the system’s security so that it may

function as intended [9]. IDS is a security tool that tracks the entire network’s activity and identifies any

malicious activity that is taking place [10]. The most common function of an IDS is to monitor risks and

capture intruders before they cause serious damage to the network. The CC, a shared full network of

resources and largely scalable internet-based innovation enables several clients to share a collection of

resources [11]. The IDS’s neural organizations are adaptive and impressive due to their strong ability to

express information effectively for a visual demonstration. However, the time taken to run the model on a big

dataset is very high [12]. Recent data analysis shows an incredible number of security issues in the virtual

network layer of cloud computing. Several earlier researches have used deep learning (DL) to detect attack

traffic, combining DL and shallow learning for network intrusion detection system (NIDS) on network

security lab-knowledge discovery and data mining (NSL-KDD) and KDD’99, as well as detecting NSL-KDD

datasets using DL sparse autoencoder and soft-max regression [13]. The cloud platform is now provided with

a variety of IDS tools and techniques that are used to identify attacks on the cloud infrastructure [14]. Even

though the cloud service employs authentication technique to safeguard data information of the user to some

level, some user data is saved during the storage process. This is because the current research on CC service

technology is still at a relatively rudimentary stage in terms of technological advancements. Softmax single

classifiers are frequently used in traditional deep learning-based ID methods for categorization in the output

layer [15]. Due to their impact on data dimensions, the training model frequently exhibits a poor detection

rate of attacks in the presence of large amounts of high-dimensional data, which has an impact on the overall

detection efficiency. When deep learning is used to create an IDS, higher-dimensional features are extracted

from original data to improve the classification model [16]. Raj and Pani [17] implemented a beluga whale-

tasmanian devil optimization (BWTDO)_DeepCNN-TL model, which was BWTDO based on deep CNN

with TL. This implemented method was utilized to develop a high-performance IDS based on a fuzzy

classifier in an environment cloud. The implemented hybrid meta-heuristic method combined Matusita

Distance and Fisher’s score for feature selection, while DeepCNN with TL was utilized in the classification

model. The implemented method increased the performance of cloud-based IDS and achieved an accurate

detection of network attacks. However, an efficient detection by the implemented BWTDO_DeepCNN-TL

method further required increased outlier detection techniques and clustering incorporation.

Salvakkam et al. [18] implemented ensemble intrusion detection model for cloud computing utilizing deep

learning (EICDL) to detect intrusions effectively. This implemented method utilized NSL-KDD, UNSW-

NB15, and KDDcup 1999 datasets to detect cloud computing intrusion. The implemented method improved

the both accuracy and detection rate by employing a combination of classification and learning models.

However, the implemented method did not possess the adequate ability to detect prior unknown attacks.

Sreelatha et al. [19] implemented extended equilibrium deep TL (EEDTL) classification which was

utilized to increase the cloud-based computing environment security. The introduced method with sandpiper-

based feature selection was employed to develop an efficient cloud IDS. The security system was built to

recognize attacks on virtual networks in the cloud at the lowest possible cost. This method determined the

suitable features and classified the intrusion with high accuracy and less FAR. Nonetheless, this method had

a limited set of features that allowed for fast learning and hence provided a better IDS for the security of

cloud data. Selvapandian and Santhosh [20] implemented a LeNet-based IDS which for the environment of

IoT multi-cloud. The introduced DL-based IDS method addressed neural network-based IDS. It made use of

the dataset of NSL-KDD to provide an improved performance. This method gave a high convergence rate

and made it easy to compute inputs. The implemented IDS method increased the accuracy of detection by

increasing the efficiency of training. However, the implemented method needed to improve the detection of

multi-class attacks effectively in the cloud environment. Jain et al. [21] implemented a fuzzy deep neural

network with a honey bader algorithm for privacy-preserving ID (FDNN-HBAID) for cloud environment.

This method established the scheme ID method with a blockchain-enabled privacy-preserving scheme.

As a result, the suggested FDNN-HBAID with the dataset of NSL-KDD had the potential to ensure privacy

and security in the cloud infrastructure. Nonetheless, the real-world utilization of shared data was then

constrained as the IDS system required to be properly integrated and trusted. Karuppusamy et al. [22]

implemented a chronological slap swarm algorithm-based deep belief network (chronological SSA-based

DBN) which was used to detect suspicious intrusions in the cloud environment. The implemented

Chronological SSA-based deep belief network (DBN) was enhanced by combining the chronological concept

with slap swarm algorithm. This method was deployed to detect the intrusion by disclosing the fitness

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1831

function which provided a minimal error rate as the optimum solution. Nonetheless, the implemented

Chronological SSA-based DBN method needed improvement in its ability to detect unknown attacks.

Sathiyadhas and Antony [23] proposed dragonfly improved invasive weed optimization-based shepard

convolutional neural networks CNN (DIIWO-based ShCNN) method. The proposed DIIWO-based ShCNN

method was used to detect attackers and intruders, and mitigate threats in the cloud paradigm with Bot-IoT

and KDD cup datasets. The characteristics and features of DA were inherited by IIWO to improve the rate of

convergence and enhance the detected effectiveness. But, the implemented method had computation

problems with imbalanced datasets. Alohali et al. [24] suggested improved metaheuristics with a fuzzy logic-

based IDS for cloud security (IMFL-IDSCS) method for intrusion detection. The IMFL-IDSCS method

deployed ECOA-FS categorization whilst parameter optimization of JSSO being utilized for ID. The ECOA-

FS method was deployed for subset feature selection to increase the performance of classification. The JSSO

was combined with the adaptive neuro fuzzy inference system (ANFIS) method for intrusion classification

which was further classified into various classes. As a result, the proposed method reduced computational

burden and improved the rate of classification. But, the proposed IMFL-IDSCS method had security issues.

The main contributions of this study is given as follows:

 To implement variance threshold-based regression (VTR)-hierarchical long short-term memory (HLSTM)

method for effective cloud IDS based on the feature selection and categorization methods to increase the

cloud environment’s security. The implemented approach addresses useful features and categorizes

network attacks by employing novel techniques.

 The filtering techniques resemble pearson correlation, Ridge regression, and variance thresholding are

employed for selecting the features, and the HLSTM is used for process of classification.

 A novel method is introduced for detecting cloud computing intrusion utilizing NSL-KDD and Bot-IoT

datasets. The implemented method improves the accuracy of detection under lesser computation time.

The rest of this paper is structured as follows: The implemented model is described in section 2.

A description of the feature selection and classification methods is given in section 3. The results and

discussion are described in section 4, and the conclusion of this paper is given in section 5.

2. PROPOSED METHOD

In this proposed work, an IDS is utilized in a cloud computing environment. This method involves

the steps of dataset, pre-processing, feature selection, DL model, and evaluation. Figure 1 represents the

proposed block diagram of the introduced IDS.

Figure 1. Block diagram of the implemented IDS method

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1832

2.1. Dataset

The IDS is an application or device that monitors and detects attacks and malicious activities in the

IoT network. The two datasets employed for the suggested intrusion detection using deep learning model are

NSL-KDD and BoT-IoT. These databases are explained.

2.1.1. Bot-IoT Dataset

The dataset of Bot-IoT is used for intrusion detection in IoT networks. The dataset of Bot-IoT is

generated by the Cyber Range Lab of UNSW Canberra in a realistic network environment. In this dataset,

botnet and normal traffic are combined for the network environment, and the complete dataset contains 72

million records. 364,562 records are used for training the dataset, whereas 243,043 records are used in testing

the dataset. This dataset includes four kinds of attacks: reconnaissance, distributed DoS (DDoS), theft, and

DoS [25].

2.1.2. NSL-KDD dataset

The dataset of NSL-KDD is generated by utilizing the KDDcup99 dataset which is the most popular

intrusion dataset. The problem with the KDDcup99 dataset is that it contains duplicate records in training and

testing data and has bias classifiers [26]. This problem is resolved in the NSL-KDD dataset. This dataset has

a total of 125,973 records, out of which 67,343 are benign, and 58,630 are anomaly samples. One of the most

often used in the IDS framework evaluation is the NSL-KDD dataset. Apart from the normal network traffic,

the NSL-KDD consists of 4 kinds of intrusions they are which are, U2R, DoS, Probe, and R2L.

2.2. Pre-processing

Pre-processing is a process that involves cleaning data and converting the actual dataset into a

suitable format. Normalization is a pre-processing method that is mainly deployed in the preparation of data

parts for the models of DL. By using the basic scale and avoiding perverting variance in the original value

ranges, the normalization process attempts to control the numerical data values in the dataset (i.e., 0 and 1)

without losing any data. Through creating a new value that manages resource data ratios and basic

distribution, normalization is efficient in protecting the values of all the models’ numerical columns.

Furthermore, the method of changing the samples of training data called min-max normalization is

employed in this research. The datasets contain minimal and maximal values for each characteristic. This

approach is particularly deployed to normalize the data by providing every element within [0,1] is

normalized, which improves the efficiency of categorization for every data element. The Min-Max

normalization is numerically represented in (1).

𝑖 =
𝑛𝑖−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
 (1)

Where, the numeric feature for the 𝑖th sample is denoted as 𝑛𝑖, Min and Max are the minimum and maximum

values of numeric features. Then, the pre-processed output is provided for feature selection as input.

3. RESEARCH METHOD

The DL model is a promising technique, widely used for intrusion detection. The implemented

HLSTM method’s performance is evaluated for feature selection through VTR on two IDS network datasets:

NSL-KDD, and Bot-IoT. A technique for choosing pertinent features and eliminating redundant or

unnecessary ones is provided by the VTR. Concentrating on the most useful features and decreasing the

dimensionality of the input space increases the model’s efficiency. The model’s ability to be more

significantly generalized is enhanced by the combination of HLSTM and VTR. The model’s adaptability to

new intrusion patterns is heightened by selecting features with higher relevance, thereby reducing the risk of

overfitting in training data noise.

3.1. Feature selection

After pre-processing, the output of the pre-processed data is fed into as input for feature selection.

Feature selection is a process that includes the necessary or significant features and removes the irrelevant

features in the dataset. Filtering techniques that resemble pearson correlation, ridge regression, and variance

thresholding are used in the proposed implementation to select the features. By utilizing any of these feature

selection methods, the necessary features are selected for the IDS.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1833

3.1.1. Variance thresholding

Variance thresholding is a feature selection technique which removes low-variance features from the

dataset that are not highly significant for modeling purposes after the pre-processing step. To further reduce

the redundant features, variance thresholding is used after pearson correlation. This filter-based technique is

applied to eliminate features with variance values below a predetermined threshold. This is because the

features with a reduced variance transmit less information as the variation is inversely correlated with the

predictive power. As a result, a threshold of 0.0001 is used, and the variance of each feature determined,

while the variance thresholding value is further used in the person correlation to select the features [27].

3.1.2. Pearson correlation

In this phase, a feature optimization approach is used to reduce the input dimension by selecting an

optimal feature subset. Pearson’s correlation coefficient filter method is deployed to find the discriminative

features in the feature set with the value of variance thresholding. It produces a value of correlation

coefficient in the range of [-1, 1] and assesses the similarity comparable to the attributes or qualities of the

dataset [28]. It shows that when value of correlation coefficient is equal to 1 it is an entirely positive

correlation, and when equal to -1 it is an entirely negative correlation. This demonstrates that there is a strong

correlation between features and the value with a high coefficient, and vice versa. In (2) mathematically

expresses the pearson’s correlation coefficient where ′𝜎𝑋′ and ′𝜎𝑌′ denote ′𝑋′ and ′𝑌′ standard deviations,

respectively, (𝑋𝑌) is a covariance measure for ′𝑋′ and ′𝑌′, and the expected value of ′𝐸′ is ′𝐸(𝑋)′.

𝜌𝑥,𝑦 =
(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

𝐸((𝑋−𝜇𝑋)(𝑋−𝜇𝑌))

𝜎𝑋𝜎𝑌
=

𝐸(𝑋𝑌)−𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2)−𝐸2(𝑋)√𝐸(𝑌2)−𝐸2(𝑌)

 (2)

3.1.3. Ridge regression

Ridge regression is a method of model tuning that is utilized to evaluate any data that suffers from

multicollinearity. By adding a 𝐿2 norm penalty to the negative of the log-likelihood function, Ridge

regression is intended to address the overfitting issue with logistic regression [29]. In (3) mathematically

expresses the Ridge regression model:

𝜃 = 𝑎𝑟𝑔 𝑚𝑖𝑛{−𝐿(𝜃|𝐷) + 𝑃(𝜃; 𝜆)} (3)

Where, the log-likelihood function is denoted as 𝐿(𝜃|𝐷) = ∑ {𝑦𝑖 log[𝑓(𝑋𝑖
�̈�)] + (1 − 𝑦𝑖)log [1 −𝑛

𝑖=1

𝑓(𝑋𝑖
�̈�𝜃)]}, the sigmoid function is denoted as 𝑓(𝑥) = exp(𝑥) /(1 + exp (𝑥)), the penalty term is denoted as

𝑃(𝜃; 𝜆) = 𝜆 ∑ 𝜃𝑗
2𝑝

𝑗=1 , the intercept term of unknown coefficient is 𝜃0, and the vector is denoted as 𝜃 =

(𝜃1, 𝜃2, 𝐿, 𝜃𝑝) �̈�. In (6) measures the feature's importance where the feature is more significant with higher

absolute magnitude of the coefficient. Here, the Ridge regression’s error rate should be lower than the

selected features of pearson correlation.

3.2. Classification

The DL HLSTM method is deployed after feature selection for classification in this scenario.

Generally, LSTM detects attacks in cloud computing by classifying malicious data from various stages into

the respective classification systems. LSTM neural network identifies long-term dependencies between the

time steps of sequence data from the dataset. The LSTM layers have input, word embedding (WE), Softmax,

and output classification layers.

3.2.1. LSTM

The LSTM neural network identifies long-term dependencies between the time steps of sequence

data from the dataset. Regardless of the window size, the LSTM networks are qualified to be utilized to

detect attack patterns that repeat within a sequence of long packets [30]. Figure 2 shows a basic LSTM cell

that forms the foundation of the LSTM architecture. It contains three gates to control the data flow from one

cell state to another. The LSTM neural network method which is represented in (4) demonstrates the forward

calculation method.

The gates are classified as the output, forget, and input gates. To provide a determination and

control of the information flow, all three gates rely on the activation of sigmoid 𝜎. The determining of

whether a certain piece of information needs to be kept or forgotten in a given data sample is called the forget

gate. The current input signal 𝑋𝑡, and the previous output sequences 𝑦𝑡−1 in the cell state 𝐶𝑡−1 are interpreted

by this gate to produce an output 𝑓𝑡 in the interval between 1 and 0, where 1 represents entirely remembering

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1834

the information and 0 represents fully forgetting it. The information included in the current cell state 𝐶𝑡 is

determined by multiplying the output by the activation layer tanh input gate. Similarly, the output gate flow

of the proportion of details 𝑦𝑡 in 𝐶𝑡 at the cell’s result is determined by combining the LSTM cell’s output

with the result of another activation layer tanh. The LSTM cell of three gate operations to generate outcome

𝑦𝑡 in state of cell 𝐶𝑡 is represented by the following in (4).

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶�̃� = 𝑡𝑎𝑛ℎ (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖

𝐶𝑡 = 𝑓𝑡 𝐶𝑡−1 + 𝑖𝑡𝐶�̃�

𝑂𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ (𝐶𝑡) (4)

Where, the terms for matrix and bias are respectively 𝑊 and 𝑏, whereas 𝑓 is the forgetting gate, 𝑖 is the gate

of input, and 𝑜 is the gate of output. The tangent activation functions in a hyperbolic order as the tanh is

sigmoid. The usage of this formula demonstrate that the LSTM solves the issue of long-term RNN

dependence. As a consequence, DDoS attacks are possible to be identified and detected using the derived

functions, which are then used to set up and detect a neural network prediction method depending on the

LSTM. Next, by applying input data architecture from the NSL-KDD and Bot-IoT datasets and optimizing

the weights of the LSTM neural network using the H-LSTM neural network, the predicted accuracy is

increased. Better results are obtained by using the hierarchical algorithm, which helps to further explain the

parameters.

Figure 2. LSTM cell

3.2.2. Hierarchical LSTM

This hierarchical method increases the detection accuracy and produces a robust performance in the

classification process. The model of convolutional LSTM takes a vector income 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 and

predicts the vector outcome 𝑈 = 𝑢1, 𝑢2, … , 𝑢𝑛 [31]. The (5) and (6) are used to calculate the token in

sequence of softmax function.

𝑡ℎ𝑒 𝑆(𝑈|𝑉) = 𝛱𝑡∈[1,𝑛𝑢]𝑠(𝑢𝑡|𝑣1, 𝑣2, … , 𝑣𝑡, 𝑢1, 𝑢2, … , 𝑢𝑡−1) (5)

𝑆(𝑈|𝑉) = 𝛱𝑡∈[1,𝑛𝑢]
𝑒𝑥𝑝 (𝑓(𝑝𝑡−1,𝑒𝑢𝑡))

𝑒𝑥𝑝 (∑ 𝑓(𝑝𝑡−1,𝑒�̂�)�̂�)
 (6)

Where, 𝑝𝑡−1 denotes the output of LSTM, whereas 𝑓(𝑝𝑡−1, 𝑒𝑢) denotes the activation function. The

complex sequence is learned at various levels with the hierarchical LSTM. According to (7), the sequence

vector is generated at the recurrent network’s first layer.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1835

𝑝𝑡
𝑠 = 𝐿𝑆𝑇𝑀(𝑝𝑡−1

𝑠 , 𝑒𝑡
𝑠) (7)

Where, 𝑝𝑡−1
𝑠 denotes the hidden vector, while 𝑒𝑡

𝑠 denotes the world level embedding. In order to

make the explanation less complicated, the operation of LSTM is described with the function. In (8) is used

to create the document vector at the 2nd layer of the recurrent network. Here, 𝑝𝑡−1
𝑑 denotes the hidden vector,

and embedding at the sentence level in the LSTM model. The sentence structure and word-level structure are

retained by the vector document.

𝑝𝑡
𝑑 = 𝐿𝑆𝑇𝑀(𝑝𝑡−1

𝑑 , 𝑒𝑡
𝑑) (8)

HLSTM is used in the implemented cloud computing method to improve the computation efficacy

and ID accuracy. The number of records are used to create a grayscale image, where the Bot-IoT dataset

comprises 43 features, while the dataset of NSL-KDD has 40 features. For every record, a 7×7 image is

possible to be created, the first layer (7,1) is encoded by the HLSTM model as a (64) shape column vector.

Furthermore, a column vector 7 along the form (7, 64) encodes every 7 column vectors to create a complete

image, and finally, the forecast is attained with a connection of the complete layer.

Since the LSTM’s success is typically dependent on the hierarchy that recognizes its learning to other layers,

the HLSTM method is scalable. In a cloud computing environment, every layer completes a task before

passing it on to the subsequent layer. In this approach, a pipeline where every layer calculates local data and

delivers activity to the LSTM’s upper layer is created. The cloud computing design at every LSTM layer

performs to minimize the computing load on the cloud, whilst the deep learning contributing to the

established construction of a global model. Pseudocode 1 represents a pseudo-code of HLSTM in Cloud

system for intrusion detection. The Table 1 shows the notation description.

Pseudocode 1. HLSTM in Cloud system for intrusion detection
Load dataset (X, y) where X is input data and y is labels

Variable Threshold-based Ridge regression for feature selection

def ridge_regression_feature_selection(X, y, threshold):

 selected_features = []

 # Iterate over features

 for feature in range(X.shape[1]):

 # Apply Ridge regression

 ridge_model = Ridge(alpha=1.0)

 ridge_model.fit(X[:, feature].reshape(-1, 1), y)

 # Check the coefficient magnitude against the threshold

 if np.abs(ridge_model.coef_[0]) > threshold:

 selected_features.append(feature)

 return selected_features

Set the threshold based on your requirements

threshold_value = 0.1

Select features using Ridge regression

selected_features = ridge_regression_feature_selection(X, y, threshold_value)

Use the selected features for further analysis or model training

X_selected = X[:, selected_features]

Hierarchical LSTM model

def hierarchical_lstm_model(input_shape):

 model = Sequential()

 # First LSTM layer

 model.add(LSTM(units=50, return_sequences=True, input_shape=input_shape))

 # Second LSTM layer

 model.add(LSTM(units=50, return_sequences=True))

 # Third LSTM layer

 model.add(LSTM(units=50))

 # Output layer

 model.add(Dense(units=1, activation='sigmoid'))

 # Compile the model

 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

 return model

Train the hierarchical LSTM model

input_shape = (X_selected.shape[1], 1) # Adjust input shape based on selected features

model = hierarchical_lstm_model(input_shape)

model.fit(X_selected, y, epochs=10, batch_size=32)

Evaluate the model on a test set

test_predictions = model.predict(X_test[:, selected_features])

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1836

Table 1. Notation description
Symbol Description

𝑛𝑖 numeric feature for the 𝑖th sample

𝑀𝑖𝑛 minimum values

𝑀𝑎𝑥 maximum values

𝜎𝑋 standard deviations ′𝑋′
𝜎𝑌 standard deviations ′𝑌′

(𝑋𝑌) covariance measure for ′𝑋′ and ′𝑌′
𝐸(𝑋) expected value of ′𝐸′

𝐿(𝜃|𝐷) = ∑{𝑦𝑖 log[𝑓(𝑋𝑖
�̈�)] + (1 − 𝑦𝑖)log [1 − 𝑓(𝑋𝑖

�̈�𝜃)]}

𝑛

𝑖=1

log-likelihood function

𝑓(𝑥) = exp(𝑥) /(1 + exp (𝑥)) sigmoid function

𝑃(𝜃; 𝜆) = 𝜆 ∑ 𝜃𝑗
2

𝑝

𝑗=1

penalty term

𝑊 and 𝑏 matrix and terms for the bias

𝑓 forgetting gate

𝑖 input gate

𝑜 output gate

𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 vector income

𝑈 = 𝑢1, 𝑢2, … , 𝑢𝑛 vector outcome

𝑝𝑡−1 output of LSTM

𝑓(𝑝𝑡−1, 𝑒�̂�) activation function

𝑝𝑡−1
𝑠 and 𝑝𝑡−1

𝑑 hidden vectors

𝑒𝑡
𝑠 world level embedding

4. RESULTS AND DISCUSSION

4.1. Evaluation parameters

For the assessment of fault diagnosis, six parameters which are accuracy, specificity, sensitivity,

recall, precision, and f-measure are used [32]-[34]. Here, the number of normal instances is denoted as 𝑁, the

number of correctly predicted normal instances is denoted as 𝐹𝑁, the number of fault instances is denoted as

𝑃, the number of correctly predicted fault instances is denoted as 𝑇𝑃, the incorrectly predicted fault samples

is denoted as 𝐹𝑃.

Accuracy: it is the proportion of accurate predictions to all input samples which is calculated using in (9).

Accuracy =
𝑇𝑃+𝑇𝑁

(𝑃+𝑁)
× 100 (9)

Specificity: it is the probability of negative test results, conditioned on the proportion of truly being negative.

It is calculated using in (10).

Specificity =
𝑇𝑁

(𝐹𝑃+𝑇𝑁)
 (10)

Sensitivity: the sensitivity of a model is a measure of its ability to predict true positives in each of the

categories that is accessible. It is calculated using in (11).

Sensitivity =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (11)

Recall: it measures the wide range of accurate predictions. It is evaluated by dividing the total of true positive

predictions by the sum of 𝑇𝑃 and 𝐹𝑁 predictions. It is calculated using in (12).

Recall =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (12)

Precision: the precision measures the percentage of actual data records versus the expected data records. The

performance of the classification model is greater if the precision is higher. It is calculated using in (13).

Precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (13)

F-measure: it is a single static that combines recall and precision to capture both features. It is calculated

using in (14).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1837

F-measure =
(2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (14)

4.2. Result

Tables 2 and 3 display the enhanced performance analysis of specificity, F1-score, sensitivity,

precision, accuracy, as well as the selected feature selection. Tables 2 and 3 represent the simulation results

of HLSTM by varying the classifiers for the respective datasets of Bot-IoT and NSL-KDD.

Table 2. HLSTM’s simulation results by various classifiers for the dataset Bot-IoT
 Methods Precision Accuracy F1-score Specificity Recall Sensitivity

Selected feature selection results CNN

RNN

LSTM

HLSTM

0.933

0.922

0.921

0.99

0.903

0.902

0.925

0.995

0.964

0.959

0.976

0.987

0.926

0.945

0.984

0.992

0.902

0.951

0.899

0.987

0.952

0.910

0.965

0.982

Actual feature selection results CNN

RNN

LSTM

HLSTM

0.923

0.943

0.953

0.966

0.915

0.943

0.922

0.993

0.956

0.914

0.967

0.978

0.934

0.925

0.945

0.956

0.881

0.947

0.937

0.962

0.916

0.956

0.927

0.974

In comparison to classifiers selected feature selection, those features on the dataset of Bot-IoT have

the highest performance metrics. Table 2 displays the outcomes of simulations using the Bot-IoT dataset and

the HLSTM algorithm by employing various classifiers. The implemented HLSTM is compared to the

recurrent neural network (RNN), CNN, and LSTM in terms of sensitivity, precision, accuracy, F1-score, and

specificity. The graphical representation of Bot-IoT’s disease classification performed through the selected

and actual feature selection is shown in Figures 2 and 3, simultaneously. In comparison with the other

classifiers, the results obtained reveal that the implemented HLSTM obtains the superior values with an

accuracy of 0.995, precision of 0.99, sensitivity of 0.982, specificity of 0.992, recall of 0.987, and f1-score of

0.987. Figures 3 and 4 represent the quantitative analysis of the actual and selected feature selection of

various categories for the datasets Bot-IoT and NSL-KDD, simultaneously.

Figure 2. HLSTM optimization performance selected feature selection

Figure 3. HLSTM optimization performance actual feature selection

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1838

Table 3. HLSTM’s simulation results by various classifiers for the dataset of NSL-KDD
 Methods Precision (%) Accuracy (%) F1-score (%) Specificity (%) Recall (%)

Selected Feature selection results CNN 91.50 89.24 94.75 92.56 90.35

 RNN 88.96 92.47 93.20 94.99 95.23

 LSTM 93.27 94.31 96.60 94.84 93.22

 HLSTM 99.73 99.50 99.46 99.62 99.70

Actual Feature selection results CNN 89.32 87.42 94.42 90.54 92.10

 RNN 94.78 93.25 93.27 91.80 94.15

 LSTM 98.42 95.71 96.78 96.61 92.58

 HLSTM 98.00 98.95 98.53 98.73 97.50

The NSL-KDD dataset’s classifiers display the superior performance metrics in contrast to

classifiers that use feature selection. The outcomes of HLSTM’s simulations on the NSL-KDD with different

classifiers are represented in Table 3. The suggested HLSTM is compared to the RNN, CNN, and LSTM in

terms of recall, precision, F1-score, specificity, and accuracy.

Figure 4. HLSTM optimization performance selected feature selection

Figure 5. HLSTM optimization performance actual feature selection

Figure 4 displays the graphical representation of HLSTM’s optimization performance in selected

feature selection. Figure 5 shows the graphical representation of the actual feature selection of HLSTM’s

optimization performance. In comparison with the other classifiers, the results obtained reveal that the

suggested HLSTM obtains the greatest values with a 99.50% of accuracy, 99.73% of precision, 99.70% of

recall, 99.46% of f1-score, and 99.62% of specificity.

In this study, the FRIEDMAN test is selected to prove the difference among the categorization

methods (CNN, RNN, LSTM, and HLSTM). The models are raked independently for each fold in the

database using the FRIEDMAN test. For example, the Bot-IoT dataset assigns a rating of one to the model

that performs the best, two to the second best, and so on. The null hypothesis is rejected since Table 4 shows

that p-value is under accuracy [35], [36]. In such a way, at least one categorization method varies from other

categorization methods over all datasets (Bot-IoT and NSL-KDD). Table 4 shows the statistics of

FRIEDMAN test for five-fold cross-validation. It is hence evident that classification model’s outcomes are

different by means of recall, F1-measure, accuracy, and precision.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1839

Table 4. Obtained results of the FRIEDMAN test

FRIEDMAN test Precision Recall F1-measure Accuracy

F-statistic 1.256 1.075 1.684 1.423

P-value 0.984 0.587 0.947 0.853

4.3. Comparative analysis

In this section, the implemented method’s results are analyzed by utilizing the parameters of

precision, accuracy, f1-score, recall, sensitivity, and specificity. The comparative analysis of the existing and

proposed models on the datasets of Bot-IoT is shown in Table 5. This comparative analysis contrasts the

suggested model with the existing approaches on the Bot-IoT dataset. These results are shown in Table 3

which demonstrates well that the developed approach performs better than the previous models:

BETDO_CNN-TL [13], chronological SSA-based DBN [18], and DIIWO-based ShCNN [19]. With the

values of 0.99, 0.95, 0.992, 0.987, 0.982, and 0.987 in the respective terms of precision, f1-score, specificity,

recall, accuracy, sensitivity, the suggested HLSTM outperforms the Bot-IoT dataset.

The introduced model’s outcomes are analyzed based on the parameters of recall, precision, f1-

score, and accuracy. The comparative analysis of the existing and presented approach on the NSL-KDD

dataset is presented in Table 6. In this evaluation, the results of the presented approach on the NSL-KDD

dataset is compared with that of the existing approaches. According to the measures of accuracy, precision,

recall, and f1-score, the results displayed in Table 4 indicate that the suggested method outperformed all

other models namely, EICDL [14], LeNet [16], FDNN-HBAID [17], and IMFL-IDSCS [20]. The

implemented HLSTM achieves better accuracy on the dataset of NSL-KDD with values of 99.73%, 99.50%,

99.46%, and 99.70% in terms of f1-score, accuracy, precision, and recall, simultaneously.

Table 5. Comparative analysis of implemented method using Bot-IoT dataset
Authors Methods Precision

(%)

Accuracy

(%)

Recall

(%)

F1-score

(%)

Sensitivity

(%)

Specificity

(%)

Boukhalfa et al. [13] BETDO_Deep CNN-

TL

0.926 0.924 0.924 0.927 N/A N/A

Salvakkam et al. [18] Chronological SSA-

based DBN

N/A 0.976 N/A N/A 0.982 0.930

Sathiyadhas and

Sreelatha et al [19]

DIIWO- based

ShCNN

0.950 N/A N/A N/A 0.955 0.948

Proposed method VTR-HLSTM 0.99 0.995 0.987 0.987 0.982 0.992

Table 6. Comparative analysis of implemented method using dataset NSL-KDD
Authors Methods Precision (%) Accuracy (%) F1-score (%) Recall (%)

Krishnaveni et al. [14] EICDL 82.60 91.71 N/A 78.09

Gao [16] LeNet 94.41 96.28 N/A 97.51

Raj and Pani. [17] FDNN-HBAID 99.39 99.39 99.39 99.39

Selvapandian and Santhosh. [20] IMFL-IDSCS 92.03 99.31 81.08 78.25

Proposed method VTR-HLSTM 99.73 99.50 99.46 99.70

4.4. Discussion

The suggested VTR-HLSTM’s individual performance, as well as its comparative study with the

previously introduced methods namely, BETDO_Deep CNN-TL [13], Chronological SSA-based DBN [18],

and DIIWO- based ShCNN [19] EICDL [14], LeNet [16], FDNN-HBAID [17], and IMFL-IDSCS [20] as

given in section 4.3 are discussed in this section. The existing method BWTDO_DeepCNN-TL [17], has

limitations such as the requirement to enhance the outlier detection techniques as well as the clustering

incorporation for an efficient detection. Furthermore, the EICDL [18] model does not possess an adequate

ability to detect prior unknown attacks. The EEDTL [19] method has only a limited set of features which

allowed for fast learning so as to provide better IDS for the security of cloud data. LetNet [20] method needs

to improve the detection of multi-class attacks effectively in the cloud environment while the IMFL-IDSCS

[24] method has security issues. Therefore, the VTR-HLSTM method is recommended for an effective cloud

IDS based on the feature selection and categorization method employed to increase cloud security in the

environment. The main goal of the HLSTM with variance threshold is to increase the security and

performance of the cloud computing IDS. By utilizing the Bot-IoT and NSL-KDD datasets, this novel

method is recommended for detecting cloud computing intrusion. This new ID model for cloud computing

using VRT-HLSTM is introduced after a careful investigation into the drawbacks of the existing IDS

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1840

techniques. It ensures a secure data transfer in the cloud computing architecture with the implemented ID

method which avoids end-user security issues. But employing this nuanced methodology, the introduced

approach addresses the advantageous features and categorizes the network attacks. The two datasets utilized

for Intrusion Detection using the deep learning model are BoT-IoT and NSL-KDD. First, the pre-processing

of data is a crucial step that is carried out to ensure the robust performance of the introduced method. This

step involves cleaning the data and converting the actual dataset into a suitable format. Next, feature selection

which is a process that includes the selection of the necessary or significant features alongside the removal of

the irrelevant features in the dataset using pearson correlation and variance thresholding methods is carried

out. Finally, the HLSTM method executes the phase of classification using the most significant and pertinent

features following the selection of the optimal features. Here, the VTR assists to improve data privacy,

whereas the HLSTM method detects the intrusion in CC. Additionally, the proposed VTR-HLSTM method is

also capable of recognizing the vector attacks. The experimental outcomes accomplish attack detection with

the involvement of the proposed VTR-LSTM, therefore establishing that it is more robust than the existing

methods. The performance of VTR-HLSTM is validated on both the Bot-IoT and NSL-KDD datasets. In

comparison to the existing methods such as BETDO_Deep CNN-TL [13], Chronological SSA-based DBN [18],

and DIIWO- based ShCNN [19] EICDL [14], LeNet [16], FDNN-HBAID [17], and IMFL-IDSCS [20], the

VTR-HLSTM achieves 0.995% and 99.50% of accuracy on the respective Bot-IoT and NSL-KDD datasets.

The VTR-LSTM exhibits finer performance guaranteeing reliability, strength and accuracy of the proposed

model over the previous methods.

5. CONCLUSION

This research paper recommends a variance threshold-based regression feature selection using the

(VTR-HLSTM) method to increase the performance of cloud-based IDS. The recommended VTR-HLSTM

method covers various component steps including the pre-processing of data dimensions using normalization,

feature selection using pearson correlation and variance thresholding, along with hierarchical LSTM-based

classification. The experimental outcomes display the VTR-HLSTM’s robustness over the other methods

based on the metrics of recall, f1-score, precision, accuracy, sensitivity, and specificity. Accordingly, this

recommended method is used by IDS for an effectual ID in cloud computing. The proposed method

possesses an improved accuracy for detection with less computation time. On the Bot-IoT and NSL-KDD

datasets, the implemented method obtains the highest accuracy of 0.995% and 99.50% values, respectively.

In the future, deep learning and feature optimization approaches will be used to develop more efficient IDS in

the cloud network.

REFERENCES
[1] M. Ramasamy, and P.V. Eric, “A novel classification and clustering algorithms for intrusion detection system on convolutional

neural network,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2845-2855, 2022, doi:

10.11591/eei.v11i5.4145

[2] J. Jose, and D.V. Jose, “Deep learning algorithms for intrusion detection systems in the Internet of things using CIC-IDS 2017

dataset,” International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 1, pp.1134-1141, 2023, doi:

10.11591/ijece.v13i1.pp1134-1141.

[3] N. O. Ogwara, K. Petrova, and M. L. Yang, “Towards the development of a cloud computing intrusion detection framework using

an ensemble hybrid feature selection approach,” J. Comput. Networks Commun., vol. 2022, p. 5988567, Feb. 2022, doi:

10.1155/2022/5988567.

[4] K. G. Maheswari, C. Siva, and G. Nalinipriya, “A hybrid soft computing technique for intrusion detection in web and cloud

environment,” Concurrency Comput. Pract. Exper., vol. 34, no. 22, p. e7046, Aug. 2022, doi: 10.1002/cpe.7046.

[5] P. Singh and V. Ranga, “Attack and intrusion detection in cloud computing using an ensemble learning approach,” Int. J. Inf.

Technol., vol. 13, no. 2, pp. 565-571, Apr. 2021, doi: 10.1007/s41870-020-00583-w.

[6] C. Kavitha, M. Saravanan, T. R. Gadekallu, K. Nirmala, B. P. Kavin, and W. -C. Lai, “Filter-based ensemble feature selection and

deep learning model for intrusion detection in cloud computing,” Electronics, vol. 12, no. 3, p. 556, Jan. 2023, doi:

10.3390/electronics12030556.

[7] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud intrusion detection method based on stacked contractive auto-encoder

and support vector machine,” IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1634-1646, 2022, doi: 10.1109/TCC.2020.3001017

[8] K. Samunnisa, G.S.V. Kumar, and K. Madhavi, “Intrusion detection system in distributed cloud computing: hybrid clustering and

classification methods,” Meas.: Sens., vol. 25, p. 100612, Feb. 2023, doi: 10.1016/j.measen.2022.100612.

[9] Farhana, K., Rahman, M. and Ahmed, M.T., 2020. An intrusion detection system for packet and flow based networks using deep

neural network approach. International Journal of Electrical & Computer Engineering (2088-8708), 10(5).

[10] Javadpour, P. Pinto, F. Ja’fari, and W. Zhang, “DMAIDPS: a distributed multi-agent intrusion detection and prevention system for

cloud IoT environments,” Cluster Comput., vol. 26, no. 1, pp. 367-384, Feb. 2023, doi: 10.1007/s10586-022-03621-3.

[11] S. Krishnaveni, S. Sivamohan, S. Sridhar, and S. Prabhakaran, “Network intrusion detection based on ensemble classification and

feature selection method for cloud computing,” Concurrency Comput. Pract. Exper., vol. 34, no. 11, p. e6838, May 2022. doi:

10.1002/cpe.6838.

[12] G. Nagarajan and P. J. Sajith, “Optimization of BPN parameters using PSO for intrusion detection in cloud environment,” Soft

Comput., Jun. 2023, doi: 10.1007/s00500-023-08737-1.

https://doi.org/10.1016/j.measen.2022.100612
https://doi.org/10.1007/s00500-023-08737-1

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Intrusion detection system in cloud computing by utilizing … (Valavan Woothukadu Thirumaran)

1841

[13] A. Boukhalfa, A. Abdellaoui, N. Hmina, and H. Chaoui, “LSTM deep learning method for network intrusion detection

system,” International Journal of Electrical and Computer Engineering, vol. 10, no. 3, p.3315, 2020, doi:

10.11591/ijece.v10i3.pp3315-3322.

[14] S. Krishnaveni, S. Sivamohan, S.S. Sridhar, and S. Prabakaran, “Efficient feature selection and classification through ensemble

method for network intrusion detection on cloud computing,” Cluster Comput., vol. 24, no. 3, pp. 1761-1779, Sep. 2021, doi:

10.1007/s10586-020-03222-y.

[15] X. Wang, “A collaborative detection method of wireless mobile network intrusion based on cloud computing,” Wireless Commun.

Mobile Comput., vol. 2022, p. 1499736, Oct. 2022, doi: 10.1155/2022/1499736.

[16] J. Gao, “Network intrusion detection method combining CNN and biLSTM in cloud computing environment,” Comput. Intell.

Neurosci., vol. 2022, p. 7272479, Apr. 2022, doi: 10.1155/2022/7272479.

[17] M.G. Raj, and S.K. Pani, “Hybrid feature selection and BWTDO enabled DeepCNN-TL for intrusion detection in fuzzy cloud

computing,” Soft Comput., Jun. 2023, doi: 10.1007/s00500-023-08573-3.

[18] D.B. Salvakkam, V. Saravanan, P.K. Jain, and R. Pamula, “Enhanced quantum-secure ensemble intrusion detection techniques for

cloud based on deep learning,” Cognit. Comput., vol. 15, no. 5, pp. 1593-1612, Sep. 2023, doi: 10.1007/s12559-023-10139-2.

[19] G. Sreelatha, A.V. Babu, and D. Midhunchakkaravarthy, “Improved security in cloud using sandpiper and extended equilibrium

deep transfer learning based intrusion detection,” Cluster Comput., vol. 25, no. 5, pp. 3129-3144, Oct. 2022, doi: 10.1007/s10586-

021-03516-9.

[20] D. Selvapandian and R. Santhosh, “Deep learning approach for intrusion detection in IoT-multi cloud environment,” Autom.

Software Eng., vol. 28, no. 2, p. 19, Sep. 2021, doi: 10.1007/s10515-021-00298-7.

[21] D.K. Jain, W. Ding, and K. Kotecha, “Training fuzzy deep neural network with honey badger algorithm for intrusion detection in

cloud environment,” Int. J. Mach. Learn. Cybern., vol. 14, no. 6, pp. 2221-2237, Jun. 2023, doi: 10.1007/s13042-022-01758-6.

[22] L. Karuppusamy, J. Ravi, M. Dabbu, and S. Lakshmanan, “Chronological salp swarm algorithm based deep belief network for

intrusion detection in cloud using fuzzy entropy,” Int. J. Numer. Modell. Electron. Networks Devices Fields, vol. 35, no. 1, p.

e2948, Jan./Feb. 2022, doi: 10.1002/jnm.2948.

[23] S.S. Sathiyadhas, and M.C.V.S. Antony, “A network intrusion detection system in cloud computing environment using dragonfly

improved invasive weed optimization integrated Shepard convolutional neural network,” Int. J. Adapt. Control Signal Process.,

vol. 36, no. 5, pp. 1060-1076, May 2022, doi: 10.1002/acs.3386.

[24] M.A. Alohali, M. Elsadig, F.N. Al-Wesabi, M. Al Duhayyim, A.M. Hilal, and A. Motwakel, “Enhanced chimp optimization-

based feature selection with fuzzy logic-based intrusion detection system in cloud environment,” Appl. Sci., vol. 13, no. 4, p.

2580, Feb. 2023. doi: 10.3390/app13042580.

[25] M. Zeeshan, Q. Riaz, M.A. Bilal, M.K. Shahzad, H. Jabeen, S.A. Haider, and A. Rahim, “Protocol-based deep intrusion detection

for dos and ddos attacks using unsw-nb15 and bot-iot data-sets,” IEEE Access, vol. 10, pp.2269-2283, 2021, doi:

10.1109/ACCESS.2021.3137201.

[26] A. Alsirhani, M.M. Alshahrani, A.M. Hassan, A.I. Taloba, R.M. Abd El-Aziz, and A.H. Samak, “Implementation of African

vulture optimization algorithm based on deep learning for cybersecurity intrusion detection,” Alexandria Engineering

Journal, vol. 79, pp.105-115, 2023, doi: 10.1016/j.aej.2023.07.077.

[27] E. Erin, and B. Semiz, “Spectral Analysis of Cardiogenic Vibrations to Distinguish Between Valvular Heart Diseases,” in

Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023),

vol. 4, pp. 212-219, 2023, doi: 10.5220/0011663900003414.

[28] G. Li, A. Zhang, Q. Zhang, D. Wu, and C. Zhan, “Pearson correlation coefficient-based performance enhancement of broad

learning system for stock price prediction,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 5,

pp.2413-2417, 2022. doi: 10.1109/TCSII.2022.3160266.

[29] L. Li, Y.A. Algabri, and Z.P. Liu, “Identifying diagnostic biomarkers of breast cancer based on gene expression data and

ensemble feature selection,” Current Bioinformatics, vol. 18, no. 3, pp. 232-246, 2023. doi:

10.2174/1574893618666230111153243.

[30] T. Alladi, V. Kohli, V. Chamola, and F.R. Yu, “A deep learning based misbehavior classification scheme for intrusion detection

in cooperative intelligent transportation systems,” Digital Communications And Networks, vol. 9, no. 5, pp.1113-1122, 2023. doi:

10.1016/j.dcan.2022.06.018.

[31] P. Singh, G.S. Gaba, A. Kaur, M. Hedabou, and A. Gurtov, “Dew-cloud-based hierarchical federated learning for intrusion

detection in IoMT,” IEEE journal of biomedical and health informatics, vol. 27, no. 2, pp. 722-731, 2022. doi:

10.1109/JBHI.2022.3186250.

[32] G. Manoharam, M.S.M. Kasihmuddin, S.N.F.M.A. Antony, N.A. Romli, N.A. Rusdi, S. Abdeen, and M.A. Mansor, “Log-Linear-

Based Logic Mining with Multi-Discrete Hopfield Neural Network,” Mathematics, vol. 11, no. 9, p.2121, 2023. doi:

10.3390/math11092121.

[33] M.S.M. Kasihmuddin, N.A. Romli, G. Manoharam, M.A. and Mansor, “Multi-unit discrete hopfield neural network for higher

order supervised learning through logic mining: optimal performance design and attribute selection,” Journal of King Saud

University-Computer and Information Sciences, vol. 35, no. 5, p.101554, 2023, doi: 10.1016/j.jksuci.2023.101554.

[34] S.Z.M. Jamaludin, N.A. Romli, M.S.M. Kasihmuddin, A. Baharum, M.A. Mansor, M.F. and Marsani, “Novel logic mining

incorporating log linear approach,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 10, pp.

9011-9027, 2022, doi: 10.1016/j.jksuci.2022.08.026.

[35] N.E. Zamri, M.A. Mansor, M.S.M. Kasihmuddin, S.S. Sidik, A. Alway, N.A. Romli, Y. Guo, and S.Z.M. Jamaludin, “A modified

reverse-based analysis logic mining model with weighted random 2 satisfiability logic in discrete hopfield neural network and

multi-objective training of modified niched genetic algorithm,” Expert Systems with Applications, vol. 240, p.122307, 2024, doi:

10.1016/j.eswa.2023.122307.

[36] N.E. Zamri, S.A. Azhar, M.A. Mansor, A. Alway, and M.S.M. Kasihmuddin, “Weighted random k satisfiability for k= 1, 2

(r2SAT) in discrete Hopfield neural network,” Applied Soft Computing, vol. 126, p.109312, 2022. doi:

10.1016/j.asoc.2022.109312.

https://doi.org/10.3390/app13042580
https://doi.org/10.1016/j.aej.2023.07.077
https://doi.org/10.1109/TCSII.2022.3160266
https://doi.org/10.1109/JBHI.2022.3186250
https://doi.org/10.1109/JBHI.2022.3186250
https://doi.org/10.1016/j.eswa.2023.122307
https://doi.org/10.1016/j.eswa.2023.122307
https://doi.org/10.1016/j.asoc.2022.109312
https://doi.org/10.1016/j.asoc.2022.109312

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1829-1842

1842

BIOGRAPHIES OF AUTHORS

Valavan Woothukadu Thirumaran is doing PhD (CSE) in Bharath Institute of

Higher Education and Research (BIHER), Chennai. He has completed BES in Electronics
Science in Alpha College, University of Madras in the year 2002. He has completed MSc in

Information Technology in Shree Chandraprabhu Jain College, University of Madras in the

year 2006 with University 17th Rank. He has completed MPhil in Computer Science in Periyar

University in the year 2007. He has completed MCA in Periyar University in the year 2009.
He has completed ME degree in Computer science and Engineering in Sriram Engineering

College, Anna University in the year 2012. He has 15 years of Industry experience. He can be

contacted at email: wtvalavan@gmail.com.

Nalini Joseph is working as a professor in Dept of CSE at Bharath Institute of

science and technology, Bharath University, Chennai. She has completed PhD degree in

Computer science and Engineering in Anna University in the domain of Wireless Sensor

Networks. She completed ME degree in Computer science and Engineering in SRM Engg
College, Madras University in the year 2000 and guiding scholars who are pursuing their PhD

degree. She has 33 years of Experience (22.5yrs -Teaching and 10.5-Industry experience. Her

areas of interest are WSN, Machine learning, Computer Networks, Deep learning and Internet

of things. She has published many papers in international and national journals. She has
presented papers in national and international conferences as well. She acted as guest speaker

in FDPs and workshops organized by various reputed Institutions. She has organized

workshops, seminars, Faculty Development Programmes, International conferences. She has

worked in administrative cadre like HOD, DEAN(Academics,) Vice Principal, Principal In
Engg college. Her strength is slow learners Training and Motivating them and Training

Young faculty. She can be contacted at email: nalinijoseph.cse.cbcs@bharathuniv.ac.in.

Umarani Srikanth is working as a professor in Dept of CSE at Panimalar

Engineering College, Chennai. She has completed PhD degree in Computer science and
Engineering in Anna University in the domain of soft computing. She completed ME degree

in Computer science and Engineering in National Institute of Technology, Trichy in the year

1996 and guiding scholars who are pursuing their PhD degree. She has 26 years of teaching

experience. Her areas of interest are Machine learning, Data Analytics, soft computing, and
Internet of things. She has published many papers in international and national journals. She

has presented papers in national and international conferences as well. She acted as guest

speaker in FDPs and workshops organized by various reputed Institutions. She has organized

plenty of workshops, seminars, Faculty Development Programmes, National and international

conferences. She can be contacted at email: umaranisrikanth@gmail.com.

https://orcid.org/0009-0006-5065-6333
https://orcid.org/0000-0001-6938-9235
https://orcid.org/0000-0002-7359-2495

