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 The escalating global prevalence of blindness remains a pressing concern, 

with eye diseases representing the primary culprits behind this issue. Vision 

is integral to various aspects of human life, underscoring the significance of 

effective eye disease detection. Presently, disease detection relies largely on 

manual methods, which are susceptible to misdiagnosis. However, the 

advent of technology has paved the way for disease detection through the 

application of deep learning methodologies. Deep learning exhibits 

substantial potential in disease detection, particularly when applied to image 

data, as attested by its accuracy in algorithmic assessments. This research 

introduces a novel approach to disease detection, specifically transfer 

learning-based deep learning. The study seeks to evaluate and compare the 

performance of various models, including EfficientNetB3, DenseNet-121, 

VGG-16, and ResNet-152, in identifying three prevalent eye diseases: 

cataract, diabetic retinopathy, and glaucoma, utilizing retinal fundus image 

data. Extensive experimentation reveals that the DenseNet-121 model 

achieves the highest accuracy levels, boasting precision, recall, F1-score, 

and accuracy values of 96.5%, 96%, 96.25%, and 96.20%, respectively. 

These results demonstrate the superior performance of the employed transfer 

learning model, signifying its efficacy in detecting eye diseases. 
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1. INTRODUCTION 

Vision plays a pivotal role throughout one's lifespan. Visual impairment or eye diseases can 

manifest across various age groups, significantly impacting the quality of life. Notably, eye diseases stand as 

a primary cause of blindness, further exacerbating the challenges faced by individuals [1]. The global 

prevalence of visual impairment has seen a concerning rise, with data from the World Health Organization 

(WHO) in 2019 revealing that over 2.2 billion people worldwide suffer from visual impairment or blindness. 

Alarmingly, Indonesia ranks third globally in terms of blindness prevalence, with a rate of 1.47%, and within 

Southeast Asia, it possesses the highest rate at 3% [2].  

Analyzing data spanning from 1990 to 2015, cataracts emerge as the leading cause of blindness, 

accounting for 36.58% of cases. Following closely is undercorrected refractive error at 36.43%, while other 

conditions such as glaucoma (5.81%), age-related macular degeneration (2.44%), corneal disease (2.43%), 

diabetic retinopathy (0.16%), and trachoma (0.04%) constitute the remaining causes of blindness [3]. These 

statistics underscore cataracts as the predominant contributor to blindness. Cataracts involve a degenerative 

process characterized by opacity in the eye's lens fibers. Additionally, conditions like glaucoma, 

characterized by optic disc cupping and resulting from elevated intraocular pressure, play a significant role in 

https://creativecommons.org/licenses/by-sa/4.0/
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vision loss. Diabetic retinopathy, marked by damage to the eye's blood vessels, is another prominent cause of 

blindness [4]. These high incidence rates highlight a concerning issue: many individuals affected by eye 

diseases remain unaware of their condition, leading to delayed diagnosis and treatment, often worsening the 

prognosis.  

Conversely, the process of diagnosing eye disorders can be time-consuming, particularly when 

relying on manual observations, which may lead to misdiagnosis. However, with the advancement of 

technology, disease identification can be facilitated through the use of technological means, with deep 

learning emerging as a prominent approach. Deep learning, a subset of machine learning, is characterized by 

its focus on artificial intelligence algorithms inspired by the neural structure and functioning of the brain, 

known as artificial neural networks [5]. Within the realm of deep learning, one method that stands out is 

transfer learning. This approach harnesses the potential to accurately identify diseases, thus offering 

significant assistance in the field of medicine. Transfer learning serves as a technique to expedite the training 

process within convolutional neural networks (CNNs), a key component of deep learning, designed to 

address limitations inherent in previous methods [6].  

In a study conducted by Sarki et al. [7], the application of transfer learning was employed to 

diagnose diabetic eye diseases by analyzing retinal fundus images using CNN architectures, specifically 

VGG-16. The findings indicated that there was an accuracy rate of 83.43%. In addition, Pin conducted a 

study wherein the ResNet50 model was employed for the purpose of detecting eye problems [8]. The results 

indicated an accuracy rate of 85.79% when applied to a dataset consisting of 1,304 fundus images. In a 

separate study, Sugeno did research on the application of EfficientNetB3 for the identification of eye 

illnesses [9]. The findings of this inquiry revealed an accuracy rate of 84.42%. Additionally, Taşar employed 

the Transfer Learning methodology to discern various medical conditions, such as skin cancer, through the 

examination of dermoscopy images [10]. In this particular case, the DenseNet-121 architecture was 

employed, resulting in a remarkable accuracy rate of 94.29%. 

Based on the aforementioned findings, this study aims to identify specific eye disorders, namely 

cataract, glaucoma, and diabetic retinopathy. This research proposes to conduct a comparative analysis of 

various algorithms using transfer learning methodology, specifically focusing on EfficientNetB3, DenseNet-

121, VGG-16, and ResNet-152, using retinal fundus image data. The ultimate goal is to determine the 

algorithm that exhibits the highest level of accuracy in detecting various eye diseases. This work presents a 

novel transfer learning approach using different hyperparameters. We have conducted 12 experiments by 

modifying different learning rate and epoch values for each algorithm, then the results of the classification 

will be compared to find out which transfer learning method has the best performance for eye disease image 

data. So that the best results are obtained for the classification of eye disease images. 

 

 

2. METHOD 

In this study, the transfer learning technique was utilized to classify image data pertaining to eye 

diseases. This approach involves utilizing a pre-trained model and adjusting its parameters to cater to the 

specific characteristics of the new case, which, in this context, relates to eye disease classification. This study 

applies the transfer learning process to compare the performance of various models with parameter adjustments 

according to new cases in eye diseases. This research will identify three eye diseases namely cataract, diabetic 

retinopathy, and glaucoma. Le et al. [11] mentioned that using transfer learning will result in stronger 

classification. This is one of the references for researchers to use transfer learning in eye disease classification. 

The employed methodology can be described as follows: It begins with the gathering of the 

necessary datasets. Afterwards, data preprocessing is carried out to prepare the data for integration with the 

selected model. There are three subsets within the dataset: training data, testing data, and validation data. In 

the training phase, the designated training dataset is used to train the model. During each training iteration, 

the validation dataset is used to evaluate the performance of the model. After the training process is 

complete, the model is tested using the testing dataset [12]. Figure 1 is a visual representation of the overall 

workflow for the method used in this study. 

 

2.1.  Data collection 

The dataset utilized in this study comprises publicly available retinal fundus images of eye diseases, 

sourced from Kaggle. This dataset amalgamates data from diverse origins, including the Indian Diabetic 

Retinopathy Image Dataset (IDRiD), oculur recognition, and high-resolution fundus (HRF) datasets. The 

dataset employed in this research encompasses a total of 4,217 images, which have been categorized into four 

distinct classes. These classes comprise 1,038 images of cataract cases, 1,098 images depicting diabetic 

retinopathy, 1,007 images showcasing glaucoma, and 1,074 images representing normal eye conditions. A 

comprehensive breakdown of the dataset distribution across these classes is presented in Table 1. 
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Figure 1. Research method workflow 

 

 

Table 1. Division of eye disease dataset 
Class Data 

Cataracts 1,038 

Diabetic retinopathy 1,098 

Glaucoma 1,007 
Normal 1,074 

 

 

2.2.  Image preprocessing 

The image preprocessing stage encompasses a series of techniques applied to the dataset to enhance 

its usability for subsequent processes. A critical aspect of this stage involves noise removal to ensure data 

quality. Additionally, since the loaded data exhibits variations in resolution sizes, standardization is achieved 

by resizing all images to a consistent dimension of 224×224×3. In the realm of deep learning, a substantial 

volume of data is typically essential for optimal model performance. However, image classification methods 

often encounter limitations due to insufficient data availability for model training. Consequently, image 

augmentation emerges as an effective technique, particularly when dealing with datasets lacking ample data 

points. This method proves valuable by augmenting the training dataset without the necessity of acquiring 

additional data, thereby circumventing the need for extra storage capacity. In the context of this research, the 

Keras library is harnessed to leverage the image data generator function, which plays a pivotal role in 

preventing overfitting. This function encompasses various graphical parameters designed to generate 

synthetic images [13]. Within this study, specific parameters are employed, including the preprocessing 

function=scalar and horizontal flip=true. 

 

2.3.  Data splitting 

During the data processing stage, a data splitting process, commonly referred to as data division, is 

conducted in order to acquire a dataset that is proportionally representative. The utilization of this stage is 

also employed to mitigate bias during the assessment of model performance. The data division ratio utilized 

in this study involves allocating 90% of the data for training purposes, while 5% is allocated for testing and 

another 5% for validation. The training data consisted of 3,795 instances, while the test and validation 

datasets each contained 211 instances. The data will subsequently be partitioned randomly utilizing the 

random state function set to 123. 
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2.4.  Transfer learning 

 Transfer learning is a widely recognized method that utilizes the structural framework of a  

pre-existing model to improve the precision of models, especially when faced with datasets that are not large 

enough for extensive training. Transfer learning leverages feature extraction techniques derived from  

pre-existing models. The transfer learning models have been trained on extensive datasets such as ImageNet, 

which consists of 1.2 million images belonging to 1,000 different classes. This training process enables the 

models to acquire significant features that can be applied to new target data [14], [15]. 

One of the main benefits of utilizing transfer learning is its capacity to optimize the duration of 

training and reduce generalization errors, as evidenced by previous studies [16]. Within the scope of this 

research, the utilization of transfer learning methodology is observed, employing four pre-trained CNN 

architecture models: EfficientNetB3, DenseNet-121, VGG-16, and ResNet-152. These models have been 

specifically customized for the purpose of classifying eye diseases. The application of transfer learning 

models in a strategic manner greatly enhances the efficiency and effectiveness of the classification task being 

performed. 

 

2.4.1. EfficientNetB3 

EfficientNetB3 is a CNN model that includes three critical elements in its architecture: width, depth, 

and resolution. This combination is strategically designed to achieve higher levels of accuracy while 

simultaneously minimizing both the optimal parameter size and the number of floating-point operations 

(FLOPs) [17]. EfficientNetB3's architecture includes two convolution layers, seven mobile bottleneck 

convolution layers, one pooling layer, and one fully connected layer. Within each convolution layer, the 

process begins with a convolutional operation with a 3×3 kernel size and a filter value of 24. Following that, 

the rectified linear unit (ReLU) activation function is used, which is followed by the max pooling operation, 

which is also followed by the ReLU activation function. This operation sequence continues until the network 

reaches the 7th convolution layer. Following a series of convolutions, ReLU activation functions, and max 

pooling, the next step involves creating a fully connected layer and applying the SoftMax function. This final 

step is critical in classifying the extracted features, yielding an output indicating the image class under 

consideration [18]. 

 

2.4.2. DenseNet-121 

DenseNet represents a CNN architecture distinguished by its unique approach of connecting each 

layer to all subsequent layers in a feed-forward manner. This connectivity ensures that each subsequent layer 

receives input feature-maps from all preceding layers. The utilization of DenseNet offers several advantages, 

including the mitigation of gradient-related challenges, fortification of feature propagation throughout the 

network, and reduction in the overall number of parameters required for effective operation [19]. 

Furthermore, a prominent characteristic of DenseNet is the sequential connection density of layers within the 

network. In the context of this study, DenseNet-121 is the chosen variant, characterized by four dense blocks, 

three transition layers, and a total of 121 layers. This layer composition encompasses 117 convolution layers, 

three transition layers, and one classification layer. Each convolution layer is associated with a composite 

operation sequence, consisting of batch normalization (BN), ReLU, and convolution operations. The 

classification subnetwork of DenseNet-121 encompasses global average pooling at 77%, followed by a fully-

connected layer with 1000 dimensions, concluding with the SoftMax function for classifying the extracted 

features and producing the desired image class output [20]. 

 

2.4.3. VGG-16 

VGG-16 stands as a prominent CNN architecture model that has demonstrated remarkable 

performance on the ImageNet dataset. Notably, it secured the top position in the ImageNet 2014 visual vision 

challenge. The architecture of VGG-16 is characterized by a specific convolutional filter specification, 

employing 3×3 filters. VGG-16 is designed to process RGB images with dimensions of 224×224 pixels.  

As an initial step, it normalizes the pixel values, which typically range from 0 to 255, to the normalized scale 

of 0 to 1. Subsequently, the image undergoes a series of convolutional layers and fully connected layers. 

VGG-16 boasts a total of 13 convolution layers and 3 fully connected layers within its structure. To manage 

image size reduction and augment filter depth, VGG-16 incorporates 2D MaxPool layers strategically. The 

number of filters progressively escalates with the depth of the model, commencing at 64 filters and 

progressively increasing to 128, 256, and 512 filters as features are extracted from the input image. The 

ultimate output of the VGG-16 model consists of a feature representation derived from the input image, 

rendering it well-suited for a variety of classification or detection tasks. 
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2.4.4. RestNet-152 

ResNet, short for residual networks, represents a CNN architecture meticulously engineered to 

address the notorious problem of gradient loss encountered in deep neural networks. This innovation is 

achieved through the implementation of skip connections between layers, a technique referred to as residual 

learning. Such architectural enhancement culminates in a network that is considerably more tractable during 

the training process. This, in turn, facilitates the design of deeper networks, and it exerts a favorable impact 

on overall model accuracy. Among the various ResNet architectures available, ResNet-152 stands out, 

boasting the lowest recorded top-1 error and top-5 error rates, approximately measuring 21.43% and 5.71%, 

respectively [21]. The ResNet-152 architecture itself unfolds with specific specifications: it commences with 

a 7×7 convolution operation, featuring a stride of 2. Subsequently, a 3×3 max-pooling operation with a stride 

of 2 is executed. Furthermore, the model incorporates batch normalization (1×1), followed by a ReLU 

activation (1×1) and a 3×3 convolution operation within each of the conv2_x, conv3_x, conv4_x, and 

conv5_x stages. The final steps involve average pooling and the Softmax function to yield classification 

results. 

 

2.5.  Training model 

The primary frameworks for developing the model in this study are Python and TensorFlow. The 

runtime environment used is GPU, which provides significant benefits in terms of improved performance and 

reduced training time, especially when dealing with complex neural network models [22]. In the 

experimental phase, the model is pretrained by using the ImageNet public dataset to initialize weight values. 

Comprehensive hyperparameter tuning is performed to improve the model's efficiency. This entails fine-

tuning a variety of parameters such as learning rate, momentum, epoch count, batch size, and others [23].  

A custom Keras callback subclass is created to ensure efficient performance monitoring throughout the training 

process. This callback system is critical in monitoring the model's training progress and facilitating parameter 

adjustments to improve the training monitoring process. Table 2 shows the hyperparameter tuning used. 

 

 

Table 2. Tuning hyperparameter 
Class Data 

Loss function Categorical cross-entropy 

Optimizer Adamax 
Activation Softmax 

Learning rate [(0.01), (0.001), (0.0001)] 

Epoch [(10), (20), (30)] 
Batch size 40 

Momentum 0.99 

 

 

2.6.  Evaluation 

Evaluating a model's performance is an important step in the process, especially when determining 

the best model. The confusion matrix is a valuable technique for evaluating classification model 

performance. This matrix represents the model's predictions in relation to the actual data conditions in detail. 

Two fundamental metrics, accuracy and the F1-score, can be derived from the confusion matrix. The 

proportion of correctly predicted samples in relation to the total sample count is referred to as accuracy. The 

F1-score, on the other hand, provides a combined measure that balances precision and recall. Precision is the 

ratio of correctly predicted positive cases to total positive predictions, whereas recall is the ratio of true 

positive predictions to total true positive data instances. 

The outcomes of these computations serve as a means to assess the algorithm's efficacy. Accuracy 

values fall within a range of 0 to 1 or 0 to 100% when expressed as a percentage. A higher accuracy value is 

indicative of a more effective utilization of the algorithm [24]. 

 

 

3. RESULTS AND DISCUSSION 

The primary objective of employing transfer learning models, in conjunction with rigorously tested 

hyperparameter values, is to facilitate a comparative evaluation of various model architectures. This 

comparative analysis investigates the performance of EfficientNetB3, DenseNet-121, VGG-16, and ResNet-

152, with a specific emphasis on assessing accuracy and overall efficacy. In order to accomplish this 

objective, modifications are made to the learning rate function, taking into consideration the substantial 

influence of the learning rate on accuracy. An increased learning rate accelerates the training procedure but 

may potentially undermine the accuracy of the network, whereas a reduced learning rate results in a slower 

yet potentially more precise or stable training process. In addition, a range of diverse epoch values is utilized 
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in this study, acknowledging the significant impact that epoch settings can have on the performance of the 

model. Epochs are of utmost importance in the context of machine learning, serving as iterative stages that 

indicate the level of training the algorithm has undergone on the complete dataset. Insufficient numbers of 

training iterations can potentially lead to the model's inability to capture intricate data patterns, resulting in 

the phenomenon known as underfitting. On the contrary, an excessive number of epochs can lead to 

overfitting of the model, wherein it memorizes the training set. 

Therefore, the evaluation process assumes significant importance in this research. The evaluation 

method chosen for this study involves the implementation of a confusion matrix, which incorporates various 

metrics such as precision, recall, F1-score, and accuracy. Every individual value within the matrix plays a 

significant role in assessing the model's effectiveness and facilitates comprehension of the specific errors 

made by the model. The comprehensive presentation of the research findings, which includes the matrix 

values for each model, can be found in Table 3. 

 

 

Table 3. Model comparison results 
Model Learning rate Epoch Precision (%) Recall (%) F1-score (%) Accuracy (%) 

EfficientNetB3 0.01 10 89 88.75 88.5 88.63 
 0.001 20 93.75 93.75 94 93.84 

 0.0001 30 92.5 92.5 92.5 92.42 

DenseNet-121 0.01 10 77.75 66.5 66.75 68.24 
 0.001 20 95.5 95.75 95.75 95.73 

 0.0001 30 96.5 96 96.25 96.20 

VGG-16 0.01 10 74.25 49.75 47.25 51.18 

 0.001 20 91.25 91.25 91 91 

 0.0001 30 96.25 95.75 96 95.73 

ResNet-152 0.01 10 21.5 24.7 11.28 29.85 

 0.001 20 95 94.75 94.75 94.78 

 0.0001 30 95 95 95 93.84 

 

 

The results of the comparative analysis demonstrate that the EfficientNetB3 model achieves superior 

performance when trained with a learning rate of 0.001 and an epoch count of 20. DenseNet-121 exhibits 

superior performance compared to other models, especially when utilizing a learning rate of 0.0001 and an 

epoch value of 30. Furthermore, it is worth noting that both VGG-16 and ResNet-152 exhibit remarkable 

performance when a learning rate of 0.0001 and an epoch count of 30 are employed. The aforementioned 

results highlight the significant influence of different learning rates and epoch values on the resultant 

accuracy measure. It is imperative to acknowledge that there exists a positive correlation between accuracy 

and epoch count, suggesting a unidirectional association. Put simply, when the number of epochs is 

increased, the accuracy values for both the training and validation datasets also increase. On the other hand, a 

negative correlation can be observed between the number of epochs and the loss metric. This suggests that as 

the number of epochs increases, there is a corresponding decrease in the loss value observed in the training data.  

Upon evaluating the accuracy values obtained from the trained models, it is evident that the 

DenseNet-121 model achieved the highest accuracy, reaching an impressive 96.20%. This exceptional 

performance was achieved with a learning rate set at 0.0001 and 30 epochs. Following closely, VGG-16 

attained an accuracy of 95.73% under the same configuration of a learning rate of 0.0001 and 30 epochs. 

ResNet-152 secured an accuracy of 94.76% using a learning rate of 0.001 and 20 epochs, while 

EfficientNetB3 yielded an accuracy of 93.84% with the same learning rate and epoch settings. It is essential 

to acknowledge that the architectural design of these models can exert a profound influence on their 

accuracy. Variables such as layer size, number of layers, layer type, and the interplay between layers 

significantly impact the models' ability to discern and interpret patterns within the data. 

Previous studies in this domain have also yielded noteworthy results. For instance, Islam et al.  [25] 

reported an accuracy of 96.25% in detecting glaucoma disease using EfficientNetB3. Similarly,  

Paradisa et al. [26] utilized DenseNet-121+Inception-ResNetV2 architecture to detect diabetic eye disease, 

garnering an accuracy of 91%. Notably, these studies often focused on single-eye disease detection or carried 

out the classification separately. In contrast, this research encompassed the simultaneous classification of 

three eye disease categories cataract, glaucoma, and diabetic retinopathy yielding an average accuracy of 

96.20% with the DenseNet-121 architecture, surpassing other models, including VGG-16, EfficientNetB3, 

and ResNet-152. 

These accuracy results across various models affirm their effectiveness in classifying retinal fundus 

image data for the detection of the aforementioned eye diseases. Several factors can influence the accuracy 

outcomes, including dataset size, data processing stages like image augmentation and data splitting, and the 
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configuration of hyperparameters during the model training process. These factors will affect the accuracy 

produced by each model. The better the data preparation done before model training. Then the better the 

accuracy produced by each model. Nagpal et al. [27] states that data preprocessing or data preparation before 

data is further processed will reduce noise in the image to be processed, this will result in better 

classification. 

 

 

4. CONCLUSION 

The process of detecting eye diseases in our research faced several challenges, with limited data 

availability being a significant impediment that could potentially affect the accuracy of our models. Transfer 

learning, a fundamental concept employed in this study, involves leveraging pre-trained models that have 

been trained on extensive datasets to facilitate the understanding of new data. This approach was adopted to 

enhance the accuracy of our models. The proposed method performs well with several transfer learning 

models, including EfficientNetB3, DenseNet-121, VGG-16, and ResNet-152, coupled with the exploration of 

various hyperparameters, we achieved the highest accuracy with the DenseNet-121 model. It demonstrated 

precision, recall, and F1-score values of 96.5%, 96%, and 96.25%, respectively, along with an overall 

accuracy of 96.20%. Furthermore, our investigation highlighted the significant impact of different learning 

rates and epochs on accuracy. Notably, the use of a learning rate set at 0.0001 and an epoch count of 30 

consistently yielded higher accuracy values compared to other configurations. Consequently, our research 

demonstrates the effectiveness of the selected transfer learning model in classifying retinal fundus image data 

for the detection of cataract, glaucoma, and diabetic retinopathy diseases. This study serves as a valuable 

benchmark for future research endeavours, offering insights into potential avenues for improving accuracy. 

Future investigations could explore a broader spectrum of transfer learning models and leverage larger 

datasets to further enhance the classification performance in this critical domain of eye disease detection. 

 

 

ACKNOWLEDGEMENTS 

The authors express gratitude to the Universitas Muhammadiyah Surakarta for providing research 

support, enabling the completion of this research. 

 

 

REFERENCES 
[1] S. R. Flaxman et al., “Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-

analysis,” Lancet Glob. Heal., vol. 5, no. 12, pp. e1221–e1234, Dec. 2017, doi: 10.1016/S2214-109X(17)30393-5. 

[2] E. Mardalena and F. Hayati, “Prevalence of blindness due to cataracts in RSUD dr. Zainoel Abidin Banda Aceh,” Jurnal Riset 
Sains dan Teknologi JRST, vol. 11, no. 3, pp. 597–602, 2021, doi: 10.47647/jsr.v11i3.794 

[3] V. Nangia et al., “Prevalence and causes of blindness and vision impairment: magnitude, temporal trends and projections in south 

and Central Asia,” British Journal of Ophthalmology, vol. 103, no. 7, pp. 871–877, Nov. 2018, doi: 10.1136/bjophthalmol-2018-
312292 

[4] R. S. Salvi, S. R. Labhsetwar, P. A. Kolte, V. S. Venkatesh, and A. M. Baretto, “Predictive analysis of diabetic retinopathy with 
transfer learning,” in 2021 International Conference on Nascent Technologies in Engineering, ICNET 2021 - Proceedings, 2021, 

doi: 10.1109/ICNTE51185.2021.9487789. 

[5] W. Supriyanti and D. A. Anggoro, “Classification of pandavas figure in shadow puppet images using convolutional neural 
networks,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 7, no. 1, pp. 18–24, 2021, doi: 

10.23917/khif.v7i1.12484. 

[6] I. D. Apostolopoulos and T. A. Mpesiana, “COVID-19: automatic detection from X-ray images utilizing transfer learning with 

convolutional neural networks,” Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635–640, Jun. 2020, doi: 

10.1007/s13246-020-00865-4. 

[7] R. Sarki et al., “Image preprocessing in classification and identification of diabetic eye diseases,” Data Science and Engineering, 
vol. 6, no. 4, pp. 455–471, Aug. 2021. doi: 10.1007/s41019-021-00167-z. 

[8] K. Pin, J. Ho Chang, and Y. Nam, “Comparative study of transfer learning models for retinal disease diagnosis from fundus 

images,” Computers, Materials, Continua, vol. 70, no. 3, pp. 5821–5834, 2022, doi: 10.32604/cmc.2022.021943. 
[9] A. Sugeno, Y. Ishikawa, T. Ohshima, and R. Muramatsu, “Simple methods for the lesion detection and severity grading of 

diabetic retinopathy by image processing and transfer learning,” Computers in Biology and Medicine, vol. 137, p. 104795, Oct. 

2021, doi: 10.1016/j.compbiomed.2021.104795. 
[10] B. Taşar, “SkinCancerNet: Automated classification of skin lesion using deep transfer learning method,” Traitement Du Signal, 

vol. 40, no. 1, pp. 285–295, Feb. 2023, doi: 10.18280/ts.400128. 

[11] D. Le et al., “Transfer learning for automated OCTA detection of diabetic retinopathy,” Translational Vision Science and 
Technology, vol. 9, no. 2, p. 35, Jul. 2020, doi: 10.1167/tvst.9.2.35. 

[12] H. Imaduddin and B. A. Hermansyah, “Transfer learning for detecting COVID-19 on x-ray using deep residual network,” Bulletin 

of Electrical Engineering and Informatics, vol. 11, no. 6, 2022, doi: 10.11591/eei.v11i6.4334. 
[13] S. Gu, M. Pednekar, and R. Slater, “Improve image classification using data augmentation and neural networks,” SMU Data 

Science Review, vol. 2, no. 2, Aug. 2019, Accessed: Apr. 17, 2023, [Online]. Available: 

https://scholar.smu.edu/datasciencereview/vol2/iss2/1. 
[14] M. Huh, P. Agrawal, and A. A. Efros, “What makes ImageNet good for transfer learning?,” Berkeley Artif. Intell. Res. Lab. UC 

Berkeley, Aug. 2016, Accessed: Apr. 17, 2023. [Online]. Available: https://arxiv.org/abs/1608.08614v2. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 509-516 

516 

[15] R. Godasu, D. Zeng, and K. Sutrave, “Transfer learning in medical image classification: challenges and opportunities 

opportunities,” MWAIS 2020 Proceedings., pp. 5–28, 2020, Accessed: Apr. 18, 2023. 
[16] A. Jaradat et al., “Automated monkeypox skin lesion detection using deep learning and transfer learning techniques,” 

International Journal of Environmental Research and Public Health, vol. 20, no. 5, p. 4422, Mar. 2023, doi: 

10.3390/ijerph20054422. 
[17] A. Bhatt, A. Ganatra, and K. Kotecha, “COVID-19 pulmonary consolidations detection in chest X-ray using progressive resizing 

and transfer learning techniques,” Heliyon, vol. 7, no. 6, Jun. 2021, doi: 10.1016/j.heliyon.2021.e07211. 

[18] F. Zaelani and Y. Miftahuddin, “Comparison of EfficientNetB3 and MobileNetV2 methods for identification of fruit types using 
leaf features,” JITTER, vol. 9, no. 1, pp. 1–11, 2022, doi: 10.33197/jitter.vol9.iss1.2022.911. 

[19] G. Huang, Z. Liu, and L. van der Maaten, “Densely connected convolutional networks,” In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, pp. 4700-4708. 2017, doi: 10.48550/arXiv.1608.06993. 
[20] X. Li, X. Shen, Y. Zhou, X. Wang, and T. Q. Li, “Classification of breast cancer histopathological images using interleaved 

DenseNet with SENet (IDSNet),” PLoS One, vol. 15, no. 5, May 2020, doi: 10.1371/journal.pone.0232127. 

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 770–778, Dec. 2016, doi: 10.1109/CVPR.2016.90. 

[22] R. D. Nurfita, G. Ariyanto, “Tensorflow-based deep learning implementation for fingerprint recognition,” Journal Emit, vol. 18, 

no. 01, pp. 22–27, 2018, doi: 10.23917/emitor.v18i01.6236. 
[23] C. M. Sharma, K. Tomar, R. K. Mishra, and V. M. Chariar, “Indian sign language recognition using fine-tuned deep transfer 

learning model,” Proceedings of the 1st International Conference on Innovation in Computer and Information Science, 2021. 

doi:10.5220/0010790300003167 
[24] E. F. Ohata, J. V. S. das Chagas, G. M. Bezerra, M. M. Hassan, V. H. C. de Albuquerque, and P. P. R. Filho, “A novel transfer 

learning approach for the classification of histological images of colorectal cancer,” Journal Supercomput, vol. 77, no. 9, pp. 

9494–9519, 2021, doi: 10.1007/s11227-020-03575-6. 
[25] M. T. Islam, S. T. Mashfu, A. Faisal, S. C. Siam, I. T. Naheen and R. Khan, “Deep learning-based glaucoma detection with 

cropped optic cup and disc and blood vessel segmentation,” in IEEE Access, vol. 10, pp. 2828-2841, 2022, doi: 
10.1109/ACCESS.2021.3139160. 

[26] R. H. Paradisa, A. Bustamam, W. Mangunwardoyo, A. A. Victor, A. R. Yudantha, and P. Anki, “Deep feature vectors 

concatenation for eye disease detection using fundus image,” Electronics, vol. 11, no. 1, 2022, doi: 10.3390/electronics1101002. 
[27] D. Nagpal, N. Alsubaie, B. O. Soufiene, M. S. Alqahtani, M. Abbas, and H. Almohiy, “Automatic detection of diabetic 

hypertensive retinopathy in Fundus images using transfer Learning,” Applied Sciences, vol. 13, no. 8, p. 4695, Apr. 2023, doi: 

10.3390/app13084695. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Helmi Imaduddin     is currently a lecturer at the Faculty of Communication and 

Informatics, Universitas Muhammadiyah Surakarta. His primary areas of interest in research 

include natural language processing, image processing, and classification. In 2015, he 

successfully completed his Bachelor of Science in Informatics Engineering from Universitas 

Muhammadiyah Surakarta. Subsequently, in 2020, he obtained his Master of Science in 

Information Technology from Gadjah Mada University in Yogyakarta. He can be contacted 

at email: helmi.imaduddin@ums.ac.id. 

  

 

Alivia Rahma Sakina     is an informatics engineering student at Muhammadiyah 

University of Surakarta. She has research interests in data engineering, computer vision and 

machine learning. Recently She has been actively working as a data engineer in the 

telecommunications network sector. She can be contacted at email: 

aliviarahma56@gmail.com. 

 

https://orcid.org/0000-0001-5461-4874
https://scholar.google.com/citations?user=RIH5JH8AAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57211251078
https://www.webofscience.com/wos/author/record/AGC-0625-2022
https://orcid.org/0009-0009-1851-9920
https://scholar.google.com/citations?hl=id&user=g6H9WhQAAAAJ
https://www.webofscience.com/wos/author/record/JOJ-4730-2023

