
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.6, June 2014, pp. 4858 ~ 4875
DOI: 10.11591/telkomnika.v12i6.5847  4868

Received January 25, 2014; Revised March 20, 2014; Accepted April 3, 2014

A Heuristic Greedy Algorithm for Scheduling Out-Tree
Task Graphs

Jian Jun Zhang*, Wei Wen Hu, Mei Ni Yang
College of Science, Naval University of Engineering,

No. 717, Jiefang Avenue, Wuhan City, Hubei Province, P. R. China, +86-13871162297
*Corresponidng author, e-mail: wahh0912@163.com

Abstract
The scheduling of Out-Tree task graphs is one of the critical factors in implementing the compilers

of parallel languages and improving the performance of parallel computing. Although there are a few
heterogeneity based algorithms in the literature suitable for scheduling Out-Tree task graphs, they usually
require significantly high scheduling costs and may not deliver good quality schedules with lower costs.
This paper presents a heuristic greedy scheduling algorithm for Out-Tree task graphs with an objective to
simultaneously meet high performance and fast scheduling time, which is based on list and task
duplication, tries to find the best point between balancing loads and shortening the schedule length and
improves the schedule performance without increasing the time complexity of the algorithm. The
comparative study shows that the proposed algorithm surpasses previous approaches in terms of
schedule length ratio, speedup and efficiency metrics.

Keywords: parallel distributed computing, heterogeneous computing system, task scheduling, Out-Tree

task graph, task duplication

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

The effective task scheduling of applications plays a significant role in the performance
of parallel distributed computing. Tasks must be scheduled and assigned to processors in a way
that minimizes the total execution time or the schedule length of the distributed application. One
of the most important issues for high-performance computing with Heterogeneous Computing
Systems (HCS) is the mapping strategies they adopt. In general, static task scheduling for
HCSs is NP-complete problem [1]. Because of its key importance on performance, the
heterogeneity based scheduling algorithms has been extensively studied and various heuristics
were proposed in the literature [1-9]. In this paper, we consider the scheduling of Out-Tree task
graphs in HCSs. Many parallel programs exhibit in the Out-Tree structure, and this type of
parallel program paradigm arises in many application areas. The scheduling problem of Out-
Tree task graphs plays a very important role in implementing the compilers of parallel languages
and improving the performance of parallel computing.

There are several classical heuristic scheduling algorithms in HCSs [2-5], which is
suitable for scheduling Out-Tree task graphs. The Task Duplication Scheduling (H_TDS)
algorithm [3] schedules tasks according to their levels and assigns each task to a suitable
processor while guaranteeing the shorter schedule length and reasonable time complexity, but it
needs too many processors when scheduling Out-Tree task graphs. The Heterogeneous
Earliest-Finish-Time (HEFT) algorithm [4], which is based on list scheduling, schedules the task
according to its Ranku value which is based on its average execution cost, and uses an insertion
based strategy that considers the possible insertions of a task on the most suitable processor
which minimizes its earliest finish time. It ignores the load balance between processors and the
economization on processors, which easily leads to an undesirable schedule length and needs
too many processors when scheduling Out-Tree task graphs.

In this paper, based on the parallel computing model in HCSs and the characteristics of
the Out-Tree graphs, we propose a new algorithm, called the Heuristic Greedy Algorithm, for
Scheduling Out-Tree task graphs (HGAS_OT), the motivation behind which is to deliver good
quality of schedules with lower costs. Combing the strategies of list scheduling and task
duplication, and taking the load balances into consideration, it schedules the task according to

TELKOMNIKA ISSN: 2302-4046 

A Heuristic Greedy Algorithm for Scheduling Out-Tree Task Graphs (Jian Jun Zhang)

4869

the priority which is the maximal value of all its earliest completion times when scheduling it to
all processors respectively, and tries to schedule each leaf task on its most suitable processor
while guaranteeing the shorter schedule length and less number of used processors.

2. The Proposed Algorithm
2.1. Preliminaries.

A scheduling system model consists of an application, a target computing environment,
and a performance criterion for scheduling. An application is represented by a directed acyclic
graph, G = (V, E), where V is the set of v tasks and E is the set of e edges between the tasks.
Data is a v×v matrix of communication data, where datai,j is the amount of data required to be
transmitted from task ni to nj. In a given task graph, a task without any parent is called an entry
task and a task without any child is called an exit task.

Out-Tree task graph is one of the basic structures for parallel processing, an example of
which is shown in Figure 1. We assume that the target computing environment consists of a set
Q of n heterogeneous processors connected in a fully connected topology in which all inter-
processor communications are assumed to perform without contention and computation can be
overlapped with communication. Task executions of a given application are assumed to be non-
preemptive. W is a m×n computation cost matrix in which each wij (also denoted by w(ni,Pj))
gives the estimated execution time to complete task ni on processor Pj. Before scheduling, the
tasks are labeled with the average execution costs.

Figure 1. An example Out-Tree Task Graph with 13 Tasks

The data transfer rates between processors are stored in matrix B of size n×n. The
communication start-up costs of processors are given in a n-dimensional vector L. The
communication cost of the edge (i, j), which is for transferring data from task ni (scheduled on
Pl) to nj (scheduled on Pk), is defined by cij=Ll+(Dataij/Blk). Before scheduling, average
communication costs are used to label the edges. The average communication cost of an edge

(i, j) is defined by ij ijDatac L B  , where B is the average transfer rate among the processors

and L is the average communication start-up time.
Before presenting our algorithm, it is necessary to define a few parameters for Out-Tree

task graphs.
Definition 1. Parameter ct(ni,Pj) denotes the execution time of the task ni and its

ancestors on processor Pj, which can be recursively denoted as ct(ni,Pj)=
ct(pred(ni),Pj)+w(ni,Pj), starting from the only entry task, where pred(ni) is the only immediately
predecessor task of task ni and thus ct(pred(ni),Pj) is the time when all data needed by ni has
arrived at processor Pj; especially, for the root task n1, ct(n1,Pj)=w(n1,Pj). In order to compute
ct(ni,Pj), the immediately predecessor task of ni must have been scheduled.

Definition 2. Parameter lact(ni) and ect(ni,Pq) denotes the latest allowable completion
time and the earliest completion time of the task ni respectively, which can be calculated by
lact(ni)=max{ct(ni,Pj)| jP Q } and ect(ni,Pq)=min{ct(ni,Pj)| jP Q }, where Pq gives the

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4868 – 4875

4870

corresponding processor on which task ni completes its execution in its earliest completion time,
ect(ni,Pq). Additionally, SL denotes the current schedule length at each scheduling step.

After all tasks in a Out-Tree task graph are scheduled, the schedule length (i.e., overall
completion time) will be the actual finish time of the exit task. If there are multiple exit tasks and
the convention of inserting a pseudo exit task is not applied, the schedule length (which is also
called makespan) is defined as the maximum of all the actual finish times of the exit tasks. The
objective function of the task scheduling algorithm is to determine the assignment of tasks of a
given application to processors such that its schedule length is minimized.

2.2. Description of the Algorithm

 Our algorithm has two major phases: a task prioritizing phase for computing the
priorities of all the leaf tasks and a processor selection phase for selecting the tasks in the order
of their priorities and scheduling each selected task and its ancestor tasks on its “best”
processor, which minimizes the task’s finish time.

Task prioritizing phase: In this phase, our algorithm requires the priority of each leaf
task to be set with the lact attributes. The task list l_task is generated by sorting the tasks in
decreasing order of their lact attributes. Tie-breaking is done randomly. There can be alternative
polices for tie-breaking. Since the alternative polices increase the time complexity, we prefer a
random selection strategy.

Processor selection phase: In this phase, our algorithm first assigns the first task in
l_task and all its ancestors to the processor which guarantees its earliest completion time. Then,
it deploys the following greedy strategy that, for subsequent tasks in l_task, while guaranteeing
not to increase the current SL, the algorithm assigns the leaf node and its ancestor nodes to
used processor by avoiding duplication of task. On the other hand, if it is necessary to increase
the current SL, while guaranteeing the increase in theschedule length is as less as possible, the
algorithm schedules the leaf node and all its ancestor nodes to a new processor or a used
processor. Figure 2 shows the steps involved in the proposed algorithm in detail.

Algorithm 1:
Begin
Compute parameter lacts of the leaf tasks, sort leaf tasks n1, n2,…, nm in descending

order by lacts, for convenience (sake), still denote them as n1, n2,…,nm, and put them into
l_task in turn;
while (l_task Φ) do

Remove the leaf task ni from l_task;
SL=max{SL, ect(ni,Pq)};

if there exist certain Pj such that ct(ni,Pj)<=SL, where jP Q

Schedule the leaf task ni and its ancestors without duplication to processor Pj;
else

 Schedule the leaf task ni and its ancestors without duplication to processor Pq;
 Remove processor Pq from Q;

Endwhile
End

Figure 2. Overall steps of the HGAS_OT Algorithm

2.3. The Time Complexity and Effectivity of the Algorithm

In this section, we will analyze the time complexity and the effectivity of the HGAS_OT
algorithm.

First of all, in the task prioritizing phase the HGAS_OT algorithm traverses all the tasks
of the DAG to compute the lact attributes of the leaf tasks and sorts the leaf tasks in the non-
increasing order of their lact values, the worst case time complexity of this step would be on the
order of O(vp)+O(vlogv), where v is the number of tasks in the task graph and p is the number
of processors required. The second phase is carried out to search whether the new leaf node
and its ancestor nodes could be scheduled to the suitable processor, all the used processors
may be examined, with the worst case time complexity of O(v2p).

TELKOMNIKA ISSN: 2302-4046 

A Heuristic Greedy Algorithm for Scheduling Out-Tree Task Graphs (Jian Jun Zhang)

4871

Consequently, the overall time complexity of the HGAS_OT algorithm is O(v2p).
On the other hand, Given an Out-Tree task graph and a HCS, the HGAS_OT algorithm

produces an schedule, the schedule length of which is the values of SL when the algorithm
terminates, This is just the fact we can see from the description of the HGAS_OT algorithm.

3. Performance and Comparison
3.1. An Illustrative Example

To illustrate the effectiveness of the proposed algorithm, in this section we first give the
scheduling process for the example Out-Tree task graph in Figure 1. Without loss of generality,
suppose n=8 and generate the computation cost matrix randomly, as is expressed in (1).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

5 7 6 7 5 5 6 6

3 2 3 3 3 2 4 3

3 2 2 3 3 3 3 4

7 8 9 8 9 8 7 9

3 3 3 4 3 3 4 3

6 7 7 6 6 6 7 7

3 4 3 3 3 3 5 4

7 6 9 7 8 7 6 8

3 2 3 4 3 2 2 3

3 4 3 3 4 3 4 3

5 7 5 6 5 6 5 7

7 8 6 6 7 8 7 7

3 5 6 3 4 5 4 4

 (1)

Let us show how the HGAS_OT algorithm works in detail. Firstly, in task prioritizing

phase, lact values for all leaf nodes are computed in a top-down fashion, starting from the only
entry task n1. The corresponding results are shown in Table 1. So the list l_task is n11, n9, n10,
n12, n8, n13, n6 and n7.

Table 1. The Latest Allowable Completion Times of the Leaf Nodes
Task n6 n7 n8 n9 n10 n11 n12 n13

lact 17 14 18 22 21 25 21 18

Then in processor selection phase the algorithm schedules leaf node n11 and its
ancestors to processor P1, and we have ct(n11,P1)=20, SL=20; for leaf task n9, because
ct(n9,P1)=20+3=23>max{20,ect(n9,P6)}, the algorithm assigns n9 and its ancestors to processor
P6, and we have ct(n9,P6)=17; as to node n10, from ct(n10,P1)=20+3=23>max{20,18} and
ct(n10,P6)=17+3=20≤max{20,18}, the HGAS algorithm schedules n10 and all its ancestors to
processor P6, and lets ct(n10,P6)=20.

Adopting above strategy, the HGAS_OT algorithm sequentially carries out the
scheduling process of the subsequent leaf nodes: it schedules task n12 and all its ancestors to
processor P3 and lets ct(n12,P3)=18, schedules task n8 and all its ancestors to processor P2 and
lets ct(n8,P2)=15, schedules task n13 and all its ancestors to processor P5 and lets ct(n13,P5)=15,
and, schedules task n7 to processor P2 (noticing all its ancestors have already been in
processor P2) and lets ct(n7,P2)=ct(n8,P2)+w(n7,P2)=19. At last, we have l_task=Φ, and the
algorithm terminates. The processor allocations and scheduling times produced by our
algorithm are shown in Figure 3.

On the other hand, for the HEFT algorithm, in its task prioritizing phase, the upward
rank value, Ranku, for all nodes, which is based on mean computation and mean communication
costs, are computed. The corresponding results are shown in Table 2. So the scheduling order
is n1, n2, n4, n3, n5, n8, n11, n12, n6, n10, n13, n9 and n7.

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4868 – 4875

4872

Figure 3. The Scheduling Result Produced by the HGAS_OT Algorithm

Table 2. The Upward Rank Values of All the Nodes
Task n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

Ranku 42.625 36.75 21.125 26.875 20.25 12.5 6.5 15.25 7.75 10.375 13.75 13 8.25

Then in processor selection phase, the HEFT algorithm sequentially carries out the
scheduling process: it schedules task n1 to its best processor P1, schedules task n2 to its best
processor P1, schedules task n4 to its best processor P1, schedules task n3 to its best processor
P2 which enables minimal execution time, schedules task n5 to its best processor P3 which
enables minimal execution time, schedules task n8 to its best processor P2, schedules task n11
to its best processor P1, schedules task n12 to its best processor P3, schedules task n6 to its best
processor P4 which enables minimal execution time, schedules task n10 to its best processor P1,
schedules task n13 to its best processor P5 which enables minimal execution time, schedules
task n9 to its best processor P6 which enables minimal execution time, and at last, schedules
task n7 to its best processor P8 which enables minimal execution time. The processor
allocations and scheduling times produced by the HEFT algorithm are shown in Figure 4.

Figure 4. The Scheduling Result Produced by the HEFT Algorithm

3.2. Comparison Metrics

Except the basic metrics, i.e., the schedule length, number of used processors and time
complexity, the comparisons of the algorithms are based on the following metrics:

(1) Schedule Length Ratio (SLR): The main performance measure of a scheduling
algorithm on a graph is the schedule length (makespan) of its output schedule. Since a large set
of task graphs with different properties is used, it is necessary to normalize the schedule length
to a low bound, which is called the Schedule Length Ratio (SLR). The SLR value of an algorithm
on a graph is defined by:

 
i MIN

i j jn CP

makespan
SLR

w n P P Q



 min (,) |

. (2)

The denominator is the summation of the minimum computation costs of tasks on the

CPMIN. (For an unscheduled DAG, if the computation cost of each node ni is set with the

TELKOMNIKA ISSN: 2302-4046 

A Heuristic Greedy Algorithm for Scheduling Out-Tree Task Graphs (Jian Jun Zhang)

4873

minimum value, then the critical path will be based on minimum computation costs, which is
represented as CPMIN.) The SLR of a graph (using an algorithm) cannot be less than one since
the denominator is the lower bound. The task scheduling algorithm that gives the lowest SLR of
a graph is the best algorithm with respect to performance.

(2) Speedup: The speedup value for a given graph is computed by dividing the
sequential execution time (i.e., cumulative computation costs of the tasks in the graph) by the
parallel execution time (i.e., the makespan of the output schedule). The sequential execution
time is computed by assigning all tasks to a single processor that minimizes the cumulative of
the computation costs.

 
i

i j jn V
w n P P Q

Speedup
makespan





min (,) |

. (3)

If the sum of the computation costs is maximized, it results in a higher speedup, but

ends up with the same ranking of the scheduling algorithms.
(3) Efficiency: The ratio of the speedup value to the number of processors used, which

is another comparison metric usually used for application graphs of real world problems.

3.3. Performance and Comparison

 The example Out-Tree task graph shown in Figure 1 can be used to compare the
HGAS algorithm with the H_TDS and HEFT algorithm. The H_TDS algorithm initially generates
a set of clusters similar to linear clusters. Then dulplication is carried out until system resources
are exhausted. The processor allocations and the scheduling times produced by the H_TDS
algorithms are shown in Figure 5. Table 3 gives the comparison result.

Figure 5. The Scheduling Result Produced by the H_TDS Algorithm

Table 3. Comparison with other Algorithms for DAG in Figure 1
 Schedule

length
Number of used

processors
Time

complexity
Schedule length

ratio
Speedup Efficiency

HGAS_OT 20 6 O(v2p) 1.053 2.90 0.483
H_TDS 21 8 O(v2p) 1.105 2.76 0.345
HEFT 23 7 O(v2p) 1.211 2.52 0.360

As shown in Figures 3-5 and Table 3, the HGAS_OT algorithm deploys an effective
strategy, which effectively balances the workloads, shortens the schedule length, economizes
the processors, and so improves the schedule performance. It only used six processors and its
schedule length is only 20. Despite its reasonable time complexity, the H_TDS algorithm
excessively uses task duplications and ignores the economization on processors, whose
number of used processors is 8 and schedule length is 21. The HEFT algorithm is not
duplication based and neglects the balance of the workloads, the full utilization of the computing
capacity of heterogeneous processors and the reduction of the schedule length, it uses seven
processors and its schedule length is, 23, more than that of the HGAS_OT algorithm. Overall,
the comparison with other algorithms for DAG in Figure 1 shows that the proposed algorithm

  ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4868 – 4875

4874

outperforms the other two approaches in terms of schedule length ratio, speedup and efficiency
metrics.

For extensive comparison, we present the comparative evaluation of the HGAS_OT,
H_TDS and HEFT algorithm. We adopt the Out-Tree task graphs randomly generated by
classical methods [4] as the workloads for testing these algorithms in the same HCS. Firstly 20
to 200 nodes are generated, corresponding matrices W, B and L are also randomly generated
[4]. Visual C is used as the simulation program and the simulation is performed by the personal
computer with Windows 7, 2G RAM and 2.53GHz CPU. The comparison of the number of used
processors, the schedule length and the efficiency are shown in Figures 6-8, respectively.

Figure 6. Comparison of the Number of Used

Processors
Figure 7. Comparison of the Schedule

Lengths

Figure 8. Comparison of the Standard Efficiencies

As shown in Figures 6-8, the HGAS algorithm has the characteristic of less number of
used processors. The schedule lengths produced by the HGAS algorithm are very close to that
of the H_TDS algorithm and are obviously less than that of the HEFT algorithm. Overall, as
compared to other two algorithms, the HGAS_OT algorithm effectively improves the scheduling
efficiency of the Out-Tree task graphs in HCSs, and the more the number of nodes in the task
graph is, the more prominence the superiority in the major performances over other compared
algorithms is.

4. Conclusion

Effective task scheduling is important to achieve high performance in HCSs. In this
paper, we present a new greedy scheduling algorithm for scheduling Out-Tree task graphs in
HCSs, called the HGAS_OT algorithm. It schedules tasks according to a new priority when
scheduling each leaf node to corresponding processor, and merges the list and duplication
based strategy to assign each leaf task to the most suitable processor while guaranteeing the

0

20

40

60

80

100

120

140

10 40 80 120 160 200N
u

m
b

er
 o

f
u

se
d

 p
ro

ce
ss

o
rs

Number of tasks

H_TDS

HEFT

HGAS_OT

0

50

100

150

200

250

300

10 40 80 120 160 200
S

ch
ed

u
le

 L
en

g
th

Number of tasks

H_TDS

HEFT

HGAS_OT

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

E
ff

ic
ie

n
cy

Number of tasks

H_TDS

HEFT

HGAS_OT

TELKOMNIKA ISSN: 2302-4046 

A Heuristic Greedy Algorithm for Scheduling Out-Tree Task Graphs (Jian Jun Zhang)

4875

shorter schedule length and less number of used processors. Experimental results validate the
HGAS_OT algorithm outperforms the H_TDS and HEFT algorithm when schedule length, the
number of used processors, schedule length ratio and efficiency are concerned.

One planned future research is to analytically investigate the trade-off between the
quality of schedules of the algorithms, i.e., average makespan values, and the number of
processor available. This extension may come up with some bounds on the degradation of
makespan given that the number of processors available may not be sufficient. It is also
planned to extent the algorithm for more general target computing environments by considering
the link contention.

Acknowledgements

This work is supported partially by the National Natural Science Foundation of China
under Grant No. 71171198 to Yexin Song, the Natural Science Foundation of Naval University
of Engineering under Grant No. HGDYDJJ13151 to Jianjun Zhang and under Grant No.
HGDQNJJ13153 to Meini Yang, respectively.

References
[1] Foad Lotfifar, Hadi Shahriar Shahhoseini. Complexity Task Scheduling Algorithm for Heterogeneous

Computing Systems. Third Asia International Conference on Modelling & Simulation. Bali. 2009; 5:
596-601.

[2] Jianjun Zhang, Yexin Song, Dengbin Huang. Task scheduling algorithm for Fork-Join task graghs in
heterogeneous environment. Computer Engineering & Design. 2010; 31(3): 486-490. (In Chinese)

[3] Samantha Ranaweera, Dharma P Agrawal. A Task Duplication Based Scheduling Algorithm for
Heterogeneous Systems. Proceedings of the 14th International Parallel and Distributed Processing
Symposium. Florida. 2000; 445-450.

[4] H Topcuoglu, S Hariri, MY Wu. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel and Distributed Systems. 2002; 13(3): 260-274.

[5] T Hagras, J Janecek. An approach to compile-time task scheduling in heterogeneous computing
systems. Proceedings of the 33rd International Conference on Parallel Processing Workshops.
Canada. 2004; 182-189.

[6] Sang Cheol Kim, Sunggu Lee, Jaegyoon Hahm. Push-Pull: Deterministic Search-Based DAG
Scheduling for Heterogeneous Cluster. IEEE Trans. Parallel and Distributed Systems. 2007; 18(11):
1489-1502.

[7] Fatma A Omara, Mona M Arafa. Genetic Algorithms for Task Scheduling Problem. Journal of Parallel
and Distributed Computing. 2010; 70(1): 13-22.

[8] Jiadong Yang, Hua Xu, Peifa Jia. Task Scheduling for Heterogeneous Computing based on Bayesian
Optimization Algorithm. International Conference on Computational Intelligence and Security. Beijing.
2009; 1: 112-117.

[9] B Demiroz, HR Topcuoglu. Static task scheduling with a unified objective on time and resource
domains. The Computer Journal. 2006; 49(6): 731–743.

