
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 34, No. 3, June 2024, pp. 1868~1878 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp1868-1878      1868 

 

Journal homepage: http://ijeecs.iaescore.com 

Distributed denial of service attacks classification system using 

features selection and ensemble techniques 
 

 

Leila Bagdadi, Belhadri Messabih 
Department of Computer Science, University Mohamed Boudiaf, Oran, Algeria 

 

 

Article Info  ABSTRACT  

Article history: 

Received Nov 30, 2023 

Revised Feb 20, 2024 

Accepted Mar 3, 2024 

 

 Distributed denial-of-service (DDoS) attacks are expanding threat to online 

services and websites. These attacks overwhelm targets with traffic from 

multiple sources to exhaust resources and make services unavailable. The 
frequency of DDoS attacks exhibits an ongoing upward trajectory over time. 

This persistent escalation highlights the need for effective countermeasures. 

While machine learning approaches have been extensively investigated for 

binary classification of DDoS attacks, multi-class classification has received 
comparatively less examination in the literature despite its greater practical 

utility. In this paper, we propose an intrusion detection system for detecting 

and classifying DDoS attacks, based on two main axes: feature selection for 

selecting the best relevant features and ensemble learning technique for 
improving performance by combining weak learners. The proposed model 

has been trained and evaluated on the CICDDoS2019 dataset. Experimental 

evaluation demonstrates improved performance using a subset of 16 relevant 

features identified, with a test accuracy of 82.35% attained for 

discriminating between the 12 classes represented in the dataset. By 

aggregating attacks sharing common characteristics resulting in 7 classes, 

the approach achieves surpassing 97% accuracy. Additionally, a binary 

classification delineating benign and DDoS attacks attain 99.90% accuracy. 
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1. INTRODUCTION 

Distributed denial-of-service (DDoS) is one of the most hazardous internet attacks that aims to 

exhaust the resources of a targeted system, network, or application, making it unavailable to legitimate users 

by flooding it with flows from varied sources. In a 2020 analysis by Cisco, it was forecasted that the quantity 

of DDoS attacks would increase twofold, rising from 7.9 million in 2018 to 15.4 million by 2023. In light of 

the analysis, it has become crucial to seriously consider counterattacking this type of attack. The attack is 

carried out by sending a great number of requests to the target server, thus causing it to crash or become 

unresponsive. Any website or online service that relies on internet connectivity can be vulnerable to such 

attacks. Various protocols such as hypertext transfer protocol (HTTP), user datagram protocol (UDP), 

transmission control protocol (TCP) and internet control message protocol (ICMP) can be employed for these 

attacks in the application layers and transport [1]. In the network security research area, considerable research 

efforts have been dedicated to developing effective countermeasures against DDoS attacks.  

Sharafaldin et al. [2] analyzed eleven existing intrusion detection systems (IDS) datasets, finding 

most fail real-world criteria due to limited traffic diversity, outdated attacks covered, and heavy 

anonymization. This motivated developing a new benchmark with contemporary attacks. The highest 
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accuracy obtained by their proposed model was given by random forest (RF) algorithm. In later work [1], the 

authors presented another modern benchmark dataset for anomaly detection captured from a real-world 

testbed. Evaluating multiple machine learning techniques evidenced superior performance by the ID3 

algorithm compared to RF when leveraging this improved dataset. Collectively, these studies highlight 

significant constraints with current IDS benchmarks and demonstrate the efficacy of updated data coupled 

with machine learning for intrusion detection. Abdulraheem and Ibraheem [3] proposed a multi-stage process 

using the CICIDS2017 dataset, first addressing limitations and then applying feature standardization and 

selection to identify the most effective 36 features. They trained an multi-layer perceptron (MLP) model on 

this improved dataset and compared results to those obtained by Sharafaldin et al. [2], demonstrating 

performance gains from their data preprocessing approach. Alamri and Thayananthan proposed a two-stage 

DDoS mitigation scheme for software-defined networking using adaptive bandwidth thresholding and 

extreme gradient boosting classification, evaluated on CICDDoS2019, NSL-KDD and CAIDA datasets [4].  

Usha et al. [5] proposed a system to efficiently detect and classify DDoS attacks, using the 

CICDDoS2019 dataset with various machine learning (ML) algorithms including XGBoost and a 

convolutional neural network (CNN) architecture. Experiments showed that XGBoost achieved the greatest 

accuracy for attack identification, while CNN and k-nearest neighbour (KNN) performed comparably for 

classification. The study demonstrates that machine learning techniques can provide efficient DDoS attack 

detection when applied to recent benchmark datasets. Araujo et al. [6] explored using feature selection to 

improve DDoS attack classification with XGBoost, comparing filter methods like variance filtering and 

wrapper techniques. Experiments on the CICDDoS2019 benchmark showed analysis of variance (ANOVA) 

provided the best performance enhancements. The study demonstrates feature selection, specifically 

ANOVA-based filtering, significantly boosts machine learning for automated DDoS attack detection. Thorat 

et al. [7] introduced TaxoDaCML, a multi-class approach designed for detecting DDoS attacks. The 

classification problem was decomposed into seven smaller sub-classification tasks, and the feature set was 

refined through the application of ANOVA and MI feature selection techniques as outlined in [7]. They 

classified the 11 DDoS attacks present in the CIC-DDOS2019 dataset using a computationally light decision 

trees algorithm [7].  

Chartuni and Marquez [8] proposed a 7-layer neural network model for multiclass DDoS attack 

classification, using the CIC-DDOS2019 dataset for training after preprocessing. By creating 10 new 

balanced classes retaining the initial attacks with 78 attributes, throughout three different scenarios, they have 

successfully classified 13 attacks for the first scenario. They removed the three attacks namely Portmap, 

UDP, and lightweight directory access protocol (LDAP) to ameliorate the obtained results in the second 

scenario. At the least, by grouping attacks sharing similarities, they obtained a better result. Lai and Nguyen 

[9] proposed a hybrid machine learning approach combining hierarchical temporal memory and k-nearest 

neighbors for DDoS attack detection and classification. The model that they proposed demonstrates 

incremental learning capabilities and it was evaluated on the CICDDoS 2019 benchmark, achieving high 

attack identification performance [9]. 

While machine learning approaches for binary classification of DDoS attacks have been extensively 

studied, there is relatively limited research on multi-class classification, despite it is practical relevance. To 

address this gap, we propose a novel approach that emphasizes the importance of feature selection and 

ensemble methods in improving the detection and classification of DDoS attacks using the most realistic 

public CICDDoS2019 dataset. To the extent of our knowledge, this study is the first to explore this approach.  

In this work, the principal contribution is a novel approach combining the efficacy of ensemble 

methods with a majority voting feature selection technique to improve multi-class classification accuracy for 

DDoS attacks. This is achieved using the most recent CICDDoS2019 dataset. Additionally, by conducting 

experiments to group similar attacks based on common underlying tactics into unified sub-categories, 

misclassification errors are reduced, further enhancing model accuracy. 

The remainder of this paper is structured as follows. Section 2 gives the theoretical basis 

underpinning the study. Section 3 delineates the proposed approach in a comprehensive manner, emphasizing 

the various steps undertaken to derive the final model. Section 4 delineates the diverse metrics utilized to 

assess model performance, with experimental results and attendant discussions being presented therein. 

Finally, section 5 furnishes conclusions stemming from the study and outlines potentially fruitful future 

research directions. 

 

 

2. THEORICAL BASIS 

In the network security research area, various IDS have been proposed for detecting DDoS attacks, 

such as anomaly-based, signature-based and hybrid IDS [10], [11]. Machine learning has surfaced as  

a potentially advantageous technique in anomaly detection of DDoS attacks. Most popular individual 

machine learning algorithms have been widely utilized for detecting and classifying DDoS attacks, however 
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single model may not always yield optimal predictions [12]-[14]. These algorithms are susceptible to errors 

caused by variance and bias. To overcome their limitations, ensemble methods can be useful. The concept 

behind ensemble learning is that by aggregating the predictions of several weak models, we can mitigate 

variance and/or bias [12], ultimately achieving better results compared to individual models [15]. 

Furthermore, feature selection is a critical process in machine learning, involving the identification of the 

most relevant features in a dataset. The substantial number of input features in the most recent datasets can 

readily prompt the overfitting of machine learning models. To mitigate this effect, feature selection 

techniques must be applied to reduce the dimensionality of the input space. The primary objectives of feature 

selection are to identify a parsimonious subset of discriminative input features [16] while discarding 

redundant and correlated variables, this plays an essential role in improving prediction accuracy, reducing 

computational complexity, and decreasing prediction latency [17]. 

 

2.1.  Features selection 

Feature selection algorithms can be categorized into three main groups: filter, wrapper, and 

embedded methods [16]. Filter methods rank features based on statistical measures such as ANOVA, mutual 

information and correlation [18]. ANOVA is a well-established statistical approach for analyzing differences 

between multiple independent group means [19]. ANOVA ranks features [19]. A higher F-ratio signifies 

increased association between the feature and grouping factor, thereby indicating greater relevance of that 

feature in predicting the categorical target label. Mutual Information quantifies the amount of information 

shared between one random variable and another variable [20], and only features with higher mutual 

information values are considered more relevant and are thus retained [21].  

Correlation analysis is a technique for pruning redundant predictor variables within multivariate data 

by quantifying the extent of their interdependence [22]. Mathematically, this involves the calculation of 

correlation coefficients assessing the association between two variables, with Pearson’s coefficient r adopted as 

predominant measure [23]. Conceptually, r is the quotient of the covariance of two variables and the product of 

their standard deviations when mathematically expressed [22]. Its bounded range of [-1, 1] lends interpretability, 

with proximity to +1/-1 indicating a strong relationship, while trending toward zero denotes independence [24]. 

Unlike filter methods, wrapper methods are focus on optimizing the performance of specific 

machine learning model by selecting a subset of features [25]. The most greedy methods frequently 

employed are Boruta, recursive feature elimination (RFE), Forward selection and Backward elimination. 

Boruta is an extension of the RF classifier that identify all important features with the target variable [26], 

[27]. The algorithm generates shuffled versions of all features, known as Shadow Features, trains a forest 

classifier on the expanded dataset and the significance of each feature is then evaluated using metrics such as 

mean decrease accuracy [28]. The algorithm stops when either all features are accepted or rejected or when it 

attains a number of specified iterations [27]. 

As described in [29], RFE is a method that recursively eliminating the least significant features from  

a dataset. Initially, a model is constructed using all the features and importance scores are assigned to each 

feature [29]. This procedure is repeated until the wanted number of features is attained [29], [30]. Forward 

feature selection (FFS) iteratively adds features one at a time, at each step adding the feature that decreases the 

model error the most [31]. This is repeated until addition of remaining features does not sufficiently improve 

performance. 

Backward feature selection (BFS): in contrast, backward selection starts with the all features, 

iteratively pruning the least useful feature at each step [31]. Importance is determined by the increase in 

model error after excluding a feature [31]. The process is repeated until no inclusion or exclusion of features 

significantly improves model performance. 

Embedded methods incorporate feature selection within the machine learning algorithm [32]. In the 

training phase, the classifier adjusts its internal parameters and assigns suitable importance to each feature to 

enhance classification accuracy [32]. Examples of embedded techniques encompass decision tree-oriented 

algorithms like RF and extreme gradient boosting [32]. They provide feature importance as part of their 

output [33]. The importance is calculated based on how much each feature reduces the impurity in the tree 

[34]. The measure of impurity is either the Gini impurity or the information Gain/entropy [34]. 

 

2.2.  Ensemble methods 

There are three popular classes of ensemble learning methods namely boosting, bagging, and 

stacking [35], [36]. Bagging, also known as bootstrap aggregation, is a technique in which multiple base 

models are trained on equal-sized subsets independently and in parallel, then results obtained from the 

different models are then combined by averaging or voting to get a final prediction [36]. Contrary to the 

bagging algorithms which are parallel trained, the boosting technique, mostly homogeneous, trains  

a sequence of models on a weighted training set. Boosting works by sequentially adding models to the 
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ensemble, each new model corrects the errors made by the previous models [37] until the performance is 

satisfactory or other stopping conditions are met. In contrast, stacking is an ensemble learning framework 

where a distinct machine learning algorithm is trained to merge the predictions of multiple ensemble 

members [35]. The result of the individual predictions is then treated as the next training data, which serves 

as input for another model called meta learner. 

RFs consist of a collection of decision trees where each tree is trained on the value of the subset 

created from a random resampling of the training dataset [38], [39]. For the final prediction, each individual 

tree casts a vote for a specific class, and the forest predicts the class that achieves the majority of votes [39]. 

The extra trees algorithm operates akin to the RF technique. A fundamental distinction between these 

methods lies in how extra trees randomly selects splitting points, as opposed to RFs selection of the best 

splitting point [35]. This randomization makes extra trees faster to train than RF. Adaptive boosting 

(AdaBoost) algorithm combines weak learners to create a strong one [40]. It operates based on a weighting 

principle [32], where subsequent models in the ensemble sequence focus their training on instances 

misclassified by prior models in order to correct those errors. 

XGBoost is a decision tree-oriented method using regularization techniques to minimize overfitting 

[6]. It employs a gradient-boosting algorithm to construct a collection of weak models. At each iteration,  

a new weak model is incorporated into the ensemble, and the current ensemble is updated [41]. The 

algorithm operates in a stage-by-stage approach, adding and updating models in a systematic order where 

each step follows the preceding one.  

LightGBM stands for light gradient boosting, utilizes decision trees and is engineered to be effective 

and scalable for large datasets. Unlike other tree-based models, LightGBM constructs decision trees by 

growing the leaves first, rather than growing the levels from the root, which accelerates the training process. 

It uses gradient-based one-side sampling and exclusive feature bundling to separate out the data instances for 

finding optimal split points and deal with excessive features [42], [43].  

CatBoost stands for categorical boosting, is a gradient-boosting algorithm that iteratively adds 

decision trees to the ensemble to build a strong predictive model. Like XGBoost, catBoost uses regularization 

techniques to minimize overfitting. Although CatBoost is used for categorical features, it works seamlessly 

with numerical features and can be a good choice for building models using heterogeneous data [44]. 

Histogram gradient boosting machine (HGBM) is a similar to other gradient boosting algorithms. However, 

instead of working with the original data, HGBM first constructs feature histogram representation of the 

features optimizing thus the training process and reducing computaional complexity [42], [45]. 

 

 

3. METHOD  

In order to counter DDoS intrusions, the proposed approach, as delineated in Figure 1, comprises three 

primary stages: data preprocessing, feature selection to identify the most relevant explanatory variables, and 

application of ensemble machine learning techniques to generate the model. Experiments were conducted using 

the CIC-DDoS2019 dataset publicly accessible [46]. This benchmark dataset was generated by the Canadian 

Institute for Cybersecurity (CIC) [1] utilizing the CICFlowMeter software [2]. It encompasses over 50 million 

samples, comprising benign traffic as well as 12 recent common DDoS attack types enumerated in Table 1. 

These attacks include LDAP, NetBIOS, MSSQL, UDP, UDP-Lag, WebDDoS, Syn, SSDP, SNMP, DNS, NTP, 

and TFTP floods. Each flow in CIC-DDoS2019 is characterized by approximately 87 features with ground truth 

labels provided for method evaluation. 

 

3.1.  Data preprocessing 

As preprocessing is an essential step and we had prior knowledge that socket-related features 

including source and destination IP, source and destination port, and protocol can vary from network to 

network, we started by removing these ones [46]. Features that don’t contain useful values for model training 

such as Timestamp, Inbound, Unnamed, Fwd Header Length.1, and SimilarHTTP are also removed. The 

inclusion sof those features can easily lead to shortcut learning issues [46] and affect clearly the performance 

of the models. So, the feature number was reduced from 87 to 77. We also dropped all rows with missing and 

infinite values. After conducting a thorough analysis of the dataset, which revealed a significant number of 

redundant records, we were prompted to perform a treatment to obtain a non-redundant dataset. The results 

presented in Table 1 demonstrate a clear reduction in the number of benign and attack instances following the 

data cleaning process.  

Given the negligible number of WebDDoS attacks, we have removed the corresponding class from 

the prepared dataset, then we adjusted the different classes to match the minority class, which is NetBios with 

17,925 samples. This adjustment resulted in a dataset of 17,000 samples per attack, effectively mitigating the 

impact of class imbalance on our modeling process. We complete this step by normalizing the data using the 
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Min-Max scaler technique to scale all feature values within the [0, 1] interval ensuring equal importance for 

each feature. 

 

 

 
 

Figure 1. The proposed approach framework 
 

 

Table 1. CIC-DDoS2019 Before/ After pre-processing 
Attacks Before cleaning After cleaning 

Attacks number Benign Attacks number Benign 
LDAP 2,179,930 1,612 28,871 1,393 

NetBIOS 4,093,279 1,707 17,925 1,627 
MSSQL 4,522,492 2,006 193,346 1,871 

UDP 3,134,645 2,157 1,074,465 2,042 
UDP-Lag/WebDDoS 366,461/439 3,705 88,986/ 414 3,542 

SYN 1,582,289 392 155,501 374 

SSDP 2,610,611 763 890,292 732 

SNMP 5,159,870 1,507 112,066 1,302 

DNS 5,071,011 3,402 108,119 3,035 

NTP 1,202,642 14,365 1,112,756 13,309 

TFTP 20,082,580 25,247 5,549,475 23,248 

BENIGN  56,863  52,475 

 

 

3.2.  Best feature subset  

The resultant dataset from the preceeding step contains a substantial number of features, 

necessitating selection of the best subset retaining only the most relevant features. The proposed 

methodology incorporates two pivotal stages of feature selection: Level 1 employs supervised techniques, 

while Level 2 leverages unsupervised ones. According to [47], if the target variable is not taken into account 

during the elimination of predictors, the method is classified as unsupervised; otherwise, it is categorized as 

supervised. The unsupervised feature selection phase focuses on eliminating non-informative and redundant 

predictors. We initiate this by discarding all features exhibiting zero variance, which provide no 

discriminative information for target prediction. Additionally, quasi-constant features taking identical values 

for over 99% of observations are removed. Successively, highly correlated features with absolute Pearson’s 

coefficient correlation exceeding 0.98 are discarded. Through this streamlined process, the number of 

features is appreciably reduced from 76 to 42 as shown in Table 2. Subsequent to the initial unsupervised 

feature selection phase, implementation of all the aforementioned feature selection methodologies was 

undertaken. Each technique yielded a subset of highest-ranked attributes. To further augment the selection 

process, we leveraged majority voting to consolidate the individual subsets into a unified set. Beginning with 

the features favored by all methods, features were incrementally incorporated into the model one at a time on 

the basis of vote score. 
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At each iteration, the performance enhancement resulting from supplemented features was 

quantified. This iterative inclusion procedure persisted until reaching a threshold where augmenting the 

remaining features failed to considerably improve model accuracy. The predetermined models delineated in 

section 2 validated that the subset consisting of the 16 top-ranked features from the voting list, specifically 

“Flow_Duration, Flow_ IAT_Min, Flow_IAT_Max, Flow_IAT_Mean, Flow_Packets/s, Total_Fwd_Packets, 

Total_Length_of_Fwd_Packets, Fwd_Header_Length, Fwd_Packets_Length_Min, Fwd_Packets_Length_Max, 

Total_Length_of_Bwd_Packets, Bwd_Packets/s, Init_Win_bytes_forward, Init_Win_bytes_backward, 

min_seg_size_forward, and Max_Packets_Length”, yielded optimal performance. These attributes were 

identified as impactful by at least six of the explored feature selection techniques. 

 

 

Table 2. Removed features after an unsupervised features selection 
Features Dropped features 

With zero 

variance 

 Bwd_PSH_Flags, Fwd_URG_Flags, Bwd_URG_Flags, FIN_Flag _Count, PSH_Flag_Count, ECE_Flag_Count, 

Fwd_Avg_Bytes/Bulk, Fwd_Avg_Packets/Bulk, Fwd_Avg_Bulk_Rate, Bwd_Avg_Bytes/Bulk, 

Bwd_Avg_Packets/Bulk, Bwd_Avg_Bulk_Rates 

Quasi constant  Fwd_PSH_Flags, SYN_Flag_Count, RST_Flag_Count 

Highly 

correlated 

Average_Packet_Size, Avg_Bwd_Segment_Size, Avg_Fwd_Segment_Size, Bwd_IAT_Std, Flow_IAT_Std, 

Fwd_IAT_Max_Fwd_IAT_Mean, Fwd_IAT_Min, Fwd_Packet_Length_Mean, Idle_Max, Min_Packet_Length, 

Packet_Length_Mean, Subflow_Bwd_Bytes, Subflow_Bwd_Packets, Subflow_Fwd_Bytes, act_data_pkt_fwd, 

Fwd_IAT_Total, Fwd_Packets/s, Subflow_Fwd_Packets 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Performance metrics 

The selection of appropriate evaluation metrics is crucial for quantitatively assessing and comparing 

the performance of machine learning classifier. In this work, we utilize a suite of widely adopted metrics 

(accuracy, precision, recall and F1-score) that offer complementary insights into model behavior. These 

metrics are evaluated form the counts of true positives (TP), false positives (FP), false negatives (FN), and 

true negatives (TN).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

4.2.  Experimental results 

Throughout the experimentation and performance evaluation process, we used several python 

libraries particularly numpy, matplotlib, scikit-learn and pandas. In order to rigorously assess the 

performance of our proposed approach, 5-fold cross-validation methodology was instantiated across the 

entire dataset. This validation strategy separates the dataset into 5 mutually exclusive partitions or “folds”.  

A model training iteration is then conducted on each unique combination of 4 folds, with model assessment 

carried out on the remaining single holdout fold not utilized during the training phase. Repeating this 

approach permits approximating model generalization aptitude by surveying efficacy over multiple distinct 

train-test splits of the data.  

Inspired by the well-established efficacy of ensemble learning approaches for enhancing model 

performance [12], we implemented the previously outlined ensemble models for both binary and multiclass 

classification tasks using the best feature subset identified during prior feature selection. Furthermore, to 

highlight that this feature subset encapsulates the core information for differentiating DDoS attacks, we 

trained these models on the preprocessed dataset (77 features). As shown in Tables 3 and 4, the ensemble 

models trained on the best feature subset demonstrated superior classification accuracy compared to models 

using the full preprocessed dataset. The consistency of the results provides compelling evidence for the utility 

of conducting rigorous feature selection before model training. For the binary classification task, we merged 

the various DDoS attack classes into a unified attack class, which was then classified against the benign 

traffic class. As shown in Table 5, the binary classification outcomes indicate the LightGBM model attained 

the maximum observed performance at 99.90%, followed by XGBoost and CatBoost yielding 99.86% and 

99.83% accuracy, respectively. 
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Table 3. Classification results for 12 classes with 77 features 
Classifier  RF Extra Tree Light GBM CatBoost HGBC AdaBoost XGBoost 

Accuracy (%) 78.36 77.57 81.03 81.09 80.43 76.91 82.24 

 

 

Table 4. Classification results for 12 classes with 17 features 
Classifier  RF Extra Tree Light GBM CatBoost HGBC AdaBoost XGBoost 

 Accuracy (%) 78.50 77.70 81.59 81.16 80.65 76.92 82.35 

 

 

Table 5. Binary classification using 17 features  
Classifier  RF Extra Tree Light GBM CatBoost HGBC AdaBoost XGBoost 

 Accuracy (%) 99.82 99.80 99.90 99.83 99.86 99.80 99.86 

 

 

Additionally, comparisons were undertaken between the ensemble methodologies and five single 

model classifiers: decision tree (DT), multinomial Naive Bayes (MNNB), stochastic gradient descent (SGD), 

support vector machine (SVM), and logistic regression (LR) to substantiate the superior capabilities of 

ensemble paradigms. The accuracy attained by these models is delineated in Table 6, with the DT approach 

exhibiting the highest performance at 76.96%. However, the multinomial Naive bayes classifier resulted in 

markedly lower accurate classification of 50.22%. In contrast, almost all implemented ensemble models 

demonstrated categorically elevated accuracy levels relative to any individual model. The maximum 

accuracy registered across the individual models as consistently exceeded across the ensemble models, 

clearly evidencing enhanced generalization aptitude. 

 

 

Table 6. Individual models classification results for 12 classes with 17 features 
Classifier  DT  MNNB SGD SVM LR 

Accuracy (%) 76.96 50.22 60.88 61.19 60.89 

 

 

The multiclass classification outcomes indicate the XGBoost as shown in Figure 2 model attained 

the maximum observed performance at 82.35%, followed by LightGBM and CatBoost yielding 81.59% and 

81.16% accuracy, respectively. For deeper examination of the classification efficacy across individual 

classes, the confusion matrix produced via the XGBoost classifier is outlined in Figure 2(a). Additionally, the 

class-wise evaluation metrics is summarized through the classification report depicted in Figure 2(b). 

 

 

  
(a) (b) 

 

Figure 2. The XGBoost (a) confusion matrix and (b) classification report for 12 classes  

 

 

Careful examination of the confusion matrix outcomes exposes challenges in discriminating 

between particular attack types exhibiting analogous traffic characteristics. This implies substantial overlap 

in the underlying features across certain classes, intrinsically complicating efforts to reliably distinguish 

between them, despite inclusion of only the best subset of relevant features. As noted in prior scholarship [8], 
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domain name system (DNS), lightweight directory access protocol (LDAP), and simple network management 

protocol (SNMP) attacks demonstrate considerable commonalities in their exploitation of amplification and 

reflection to overwhelm victims. Hence, amalgamating them into a consolidated DDoS attack class appears 

judicious. Furthermore, UDP, UDP-LAG, and SSDP attacks uniformly leverage user datagram protocol 

(UDP) [9] as the foundational transport mechanism, primarily effectuating amplification attacks. Therefore, 

merging them into a unified category for modeling purposes is reasonable. While existing literature 

characterizes MSSQL attacks as TCP-based reflection attacks [1], inspection of traffic traces reveals UDP 

predominance in MSSQL attack packets [7], given the protocol's intended functionality for handling UDP 

query requests. 

Hence, categorizing MSSQL attacks under UDP-reflection attacks more accurately aligns with 

standard server communication conventions. Additionally, notable parallels exist between MSSQL and 

NetBIOS attacks regarding exploitation of service vulnerabilities [31]. Both offensives target specific 

network services, with MSSQL concentrating on Microsoft SQL Server, while NetBIOS attacks compromise 

the NetBIOS Windows file/printer sharing protocol [32]. Attackers frequently manipulate authentication 

protocols, endeavoring unauthorized database access with MSSQL, and bypassing authentication to access 

shared NetBIOS resources, enabling potential data exfiltration. In light of the identified similarities, 

consolidating MSSQL and NetBIOS attacks into a unified class is warranted. Based on the discerned 

commonalities between particular DDoS attack types, we consolidated these similar classes into 7 unified 

categories. The multiclass classification after implementation of this consolidated categorization succeeds in 

reducing ambiguities between similar attack types, as shown in Table 7. The results reveal that the XGBoost 

model achieved the highest observed performance at 97.48%, followed by LightGBM and CatBoost with 

accuracies of 97.23% and 97.10% respectively. In Figure 3 explains about XGBoost. The confusion matrix 

generated by the XGBoost classifier is presented in Figure 3(a), while the class-wise evaluation metrics is 

summarized in the classification report depicted in Figure 3(b). 

 

 

Table 7. Classification results after grouping into 7 sub-classes 
Classifier  RF Extra tree Light GBM CatBoost HGBC AdaBoost XGBoost 

 Accuracy (%) 97.14 96.60 97.23 97.10 97.04 96.20 97.48 

 

 

  
(a) (b) 

 

Figure 3. The XGBoost (a) confusion matrix (b) and classification report for the 7 sub-catgories 

 

 

D’Hooge et al. [47], demonstrated the significant influence of metadata features, also referred to as 

socket-related features, on the model’s prediction. They highlighted the prevalence of such features in many 

published articles [48]. In particular, destination port acts as a prime target for shortcut learning [47]. Taking 

this remark into account, in our comparative table as illustrated by Table 8, we used an additional column 

(metadata features) to indicate the use or not of metadata. In terms of performance, the accuracy of our 

models exceeds by more than 9% the accuracy of models not using any metadata. Specifically, ou accuracy 

surpasses those models obtained by [1], [6], which did not use metadata. Furthermore, by categorizing the 

attacks exhibiting commonalities, as described previously, into 7 distinct subgroups, our model accomplished 

heightened performance with classification accuracy exceeding 97% across the aggregated evaluation set. 
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Table 8. Comparison of the proposed approach with previous related works using CICDDoS2019 
References Algorithm F1-score Metadata features used 

Binary Multiclass 12 classes Multiclass 7 classes 

Araujo et al. [6] XGBoost 99.79% 73.40% -- No 
Sharafaldin et al. [1] ID3 -- 70.00% -- No 

Alamri and Thayananthan [4] XGBoost 100% 92.00% -- Yes 

Devi and Singh [49] J48 99.65% -- -- Yes 

Sbai and Elboukhari [50] DNN 99.00% -- -- Yes 

Elsayed et al. [51] DL 99.90% -- -- -- 

Cil et al. [52] DNN 99.90% -- -- -- 

Thorat et al. [7] RF 99.90% 85.80% -- Yes  

Our approach XGBoost 99.90% 82.35% 97.48% No 

 

 

4.3.  Discussions 

Extensive research has been conducted on machine learning methods for the binary classification of 

DDoS attacks, yet there is a scarcity of studies focusing on multi-class classification, despite it is practical 

importance. Additionaly, many studies have included at least one metadata feature in their models that can 

easily lead to shortcut learning issues [46] and affect clearly the performance. In this study, we focused in 

particular on the use of feature selection techniques and ensemble learning models for multiclass DDoS 

attack classification by excluding metadata features from the original dataset. The obtained feature subset 

demonstrated superior classification accuracy compared to models using the original dataset. The consistency 

of the results provided compelling evidence for the utility of conducting rigorous feature selection before 

model training. The comparisons that have been taken between the ensemble models and individual 

classifiers proved the superior capabilities of ensemble paradigms. We found that the feature subset obtained 

by the feature selection process combined with XGBoost classifier tended to have an accuracy exceeding by 

more than 9% the accuracy of models not using any metadata. After observing significant similarities among 

certain types of attacks, we proposed a new categorization consisting of 7 classes. The multiclass 

classification after implementation of this consolidated categorization succeeds in reducing ambiguities 

between similar attack types attaining an accuracy exceeding 97% without the use of any metadata feature. 

These results can contribute upstream to the engineering of a new dataset in future research endeavors. 

 

 

5. CONCLUSION 
The principal objective of this study was to propose a novel intrusion detection system for DDoS 

attack identification and classification. The proposed approach combines effective feature selection 

techniques for dimensionality reduction with ensemble learning methods to enhance model accuracy. 

Evaluation using the contemporary CICDDoS2019 benchmark demonstrates the efficacy of the methodology, 

attaining 99.90% accuracy for binary classification and over 82% accuracy across 12 classes. By 

consolidating attacks sharing common tactics into 7 unified categories, classification performance is further 

improved, achieving over than 97% test accuracy. The proposed system exhibits significant improvements 

compared to prior academic works examining multi-class DDoS attack classification utilizing the same 

dataset. Future work may integrate complementary machine learning paradigms like deep neural networks to 

investigate potential hybrid model benefits. Additionally, validation on live network traffic could assess  

real-world performance. Overall, this work provides salient contributions surrounding feature selection and 

ensemble learning for advanced DDoS attack modeling. 
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