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 Clinical named entity extraction (NER) based on deep learning gained much 

attention among researchers and data analysts. This paper proposes a NER 

approach to extract valuable Parkinson’s disease-related information.  

To develop an effective NER method and to handle problems in disease data 

analytics, a unique NER technique applies a “recognize-map-extract (RME)” 

mechanism and aims to deal with complex relationships present in the data. 

Due to the fast-growing medical data, there is a challenge in the 

development of suitable deep-learning methods for NER. Furthermore,  

the traditional machine learning approaches rely on the time-consuming 

process of creating corpora and cannot extract information for specific needs 

and locations in certain situations. This paper presents a clinical NER 

approach based on a convolutional neural network (CNN) for better use of 

specific features around medical entities and analyzes the performance of the 

proposed approach through fine-tuning NER with effective pre-training on 

the BC5CDR dataset. The proposed method uses annotation of entities for 

various medical concepts. The second stage develops a clinically NER 

method. This proposed method shows interesting results on the performance 

measures achieving a precision of 92.57%, recall of 92.22%, and F1-

measure of 91.6%. 
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1. INTRODUCTION 

Named entity recognition provides a way to find insights from unstructured medical data. Due to the 

challenges in handling new disease cases, medical information extraction demands urgent solutions to 

address disease-related problems. Traditional methods rely on the time-consuming process of creating a large 

dictionary, rule-set, or clean-structured corpora. The new deep learning need not depend upon hand-crafted 

features. Although conditional random fields (CRF) capture correlations between nearest class labels,  

the existing methods do not make use of complete contextual information in the hidden layers [1]. 

Medical people nowadays have the option to utilize artificial intelligence technology for making 

informed decisions and to provide evidence-based medicine. Moreover, intelligent systems are trying to 

derive valuable insights for disease monitoring. To deal with the ambiguity, the named entity recognition 

approach proposed a fully self-attentive mechanism [2] and integrated the encoding vector with the 

contextual information. While extracting features, instead of CRF, it has used multivariate convolutional 
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decoding on hidden vectors to associate the current word at a specified position with neighbouring words of 

the sentence. 

Named entity extraction (NER) requires a method to solve polysemy problems on financial 

information. In this direction, Xin and Xiaoyan [3] proposed an ERNIE-Doc-Bi-LSTM-CRF. This pre-

trained model shows the accuracy of 86.72%, the recall 83.39%, and the F1-score 85.02%. Figure 1 shows 

example named entities. 

 

 

 
 

Figure 1. Example named entities 

 

 

In this work, the proposed method for clinical NER based on convolutional neural network (CNN) 

aims to perform well in the NER task. It generates a clinical information vector attached to the entities for 

effective mapping to the class labels of the disease concept. This study investigated the effects of related 

medical entities on medical concepts for disease handling. While earlier studies have explored the impact of 

medical entities on other diseases, they have not explicitly addressed its influence on Parkinson’s disease. 

The major contributions are: 

− Eliminating unwanted tokens and utilization of annotated named entities. 

− Building clinical NER models that perform recognize-map-extract (RME) tasks around entities, reducing 

irrelevant extraction through effective mapping to Parkinson’s disease-related topics. 

− Developing an effective clinical information extraction approach based on CNN. 

− Better performance during testing and validation. 

− Significant improvement in precision, recall, and F1-measure. 

The rest of the section covers related work, methodology, results and discussion and then the conclusion. The 

present work applies a rich feature list which includes named-entity-features and localized contextual 

features. 

 

 

2. RELATED WORKS 

Named entity recognition has recently been used to classify entities from e-health records for 

medical concepts. There is a huge interest in clinical NER for medical concepts. The work on clinical NER in 

the paper [4] has aimed at improving the performance of supervised classification using medical 

terminologies. In this existing work, a French corpus APcNER consisting of 5 types of entities has been built 

and it has used 147 annotated documents. The hybrid system using the terminologies has performed better 

than biGRU-CRF on i2b2 small corpus and APcNER, where the F-measure was 87.8% and 86.4% 

respectively. 

Several NER systems identify named entities from biomedical documents. However, the manually 

annotated feature representation requires a lot of time and effort. In contrast, word embedding is considered a 

better choice because word embedding gives a more general representation with an automatic feature 

generation for learning by neural network and multiple kernel learning [5]. The integrated method containing 

dictionary look-up and machine learning has shown benefits in terms of F1-score on the CRAFT corpus 

which has 67 full documents. In the earlier work, confidence scores of evidence on events are not reliable as 

far as informative documents-handling is considered for supervised learning. An event extraction employed 

in the work on active learning uses NER and the details of event participants [6]. The event extraction has 

focused on filtering false positives from unlabeled documents. This related work has used committee-based 

learning to support multiple event types. The word similarity measure in this work finds unknown words in 
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the test data. This existing method used named entities to rank false negatives and measured the expression 

probabilities of events. 

Linking named entities to an ontology concept is a very important step in information extraction. 

Karadeniz and Özgür [7] proposed an approach to normalize the bacteria biomedical entities through biotope 

ontology. The dictionary is used to normalize the drug reaction entities. This work has shown a precision of 

65.9% using the BioNLP shared task bacteria Biotape test data. 

Research scientists who work in chemical text data mining research aim to develop deep learning 

models to extract molecules and contextual features which will help in determining the properties of 

molecules and their activities. In this direction, the paper [8] has presented a review of chemical NER.  

A chemical entity recognition based on machine learning presented in the paper [9] used two conditional 

random field models. In that research work, the F-measure of 87.48% has been achieved in the NER task. 

Further, the research for effective extraction of named entities and associations between medical entities 

would allow automatic medical information extraction. 

Nguyen et al. [10] outlined the creation of the COPIOUS corpus. This corpus includes annotations 

for five entity categories essential for biodiversity research and 668 documents with a total of 28,801 entity 

annotations, making it suitable for training and assessing text mining tools. The experiments has indicated 

that this corpus is valuable for extracting information related to biodiversity texts, specifically in the areas of 

NER and occurrence extraction. The NER investigated in the study [11] used Spark NLP without contextual 

embeddings and without using transformer models. As mentioned by the authors of the paper, there is a 

demand for easy-to-use NER models or tools for biomedical applications. 

Another study on transfer learning [12] aimed to develop predictive disease models. However, this 

work used limited data to identify named entities present in the texts. The potential of NLP has to be explored 

in the field of disease detection. The integration of electronic health records (EHRs) and clinical reports 

obtained in real-time can improve the effectiveness of fighting against diseases like COVID-19. 

The method discussed in the research article [13] aimed at extracting named entities for pituitary 

disorders using Chinese electronic medical records which contain information related to diagnosis and 

treatment. The authors have constructed a domain dictionary to perform feature matching through the CRF-

based model. To make data analysis and data management easier, the research article [14] reviewed practices 

to identify named entities and relationships between proteins and drugs or genes and diseases. Information 

extraction can help doctors in the decision-making by generating necessary information about diseases, and 

treatments and helps to avoid medical errors. The research article [15] discussed several techniques used in 

the NER and relation extraction. From the literature review, it was understood that the process of merging 

several entity types to perform proper matching to the entities helps to reduce ambiguity. 

The manual analysis of e-health records to extract valuable information is a tedious task.  

Silva et al. [16] have introduced an approach to extract valuable information from different resources. They 

have obtained 78.24% accuracy on the annotated Brazilian Portuguese dataset for entity and relation 

extraction. The authors have planned to use ontology concepts in future work. 

An active learning-based approach introduced in the article [17] used an intrinsic strategic sampling 

to generate the training data for clinical text understanding from radiological reports. The major contributions 

of the article include consistent labelling and human annotation. The authors of the article have used 

German-MedBERT and R-BERT models for information extraction. The methodology presented in the paper 

[18] describes the Danish NER and relation extraction dataset aiming to utilize the e-health records. 

A case study presented in the article [19] discussed a method to apply artificial intelligence in the 

NER for developing an ophthalmic disease registry. The NER in this existing work has shown 81.57% for 

precision, 80.99 recall and 81.28 F-score. The article [20] proposed a keyword-matching method to identify 

tumour-related entities and information. This existing method has applied regular expressions and rules to 

acquire sites of tumours. 

Jiang et al. [21] implemented machine learning for developing a hybrid named entity recognition 

and evaluated their method using a training corpus that consisted of 349 annotated notes. The test dataset 

used in this work had 477 annotated notes. To utilize important clinical notes from the Japanese case report 

corpus, Shibata et al. [22] evaluated the information extraction approach using NLP and machine learning.  

In that study, they have used manually annotated 113 types of entities. After preprocessing, there were 2,194 

sentences. The results of their research method reported a micro-averaged F1-score of 0.91 on the NER task. 

Zhang et al. [23] applied two machine learning models, namely, the CRF, and the long short-term 

memory (LSTM)-CRF, to identify entities from Chinese EHRs. This existing work has used a dictionary-

based approach as the baseline method. Regarding performance, the CRF-based model has improved 

precision and the LSTM-CRF-based model has improved the F1-score. 

Clinical information is required at various stages for patient handling. Machine learning-based 

methods presented in the paper [24] applied text mining to extract information from discharge summaries. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Clinical named entity extraction for extracting information from medical data (Dhanasekaran Kuttaiyapillai) 

1725 

This existing work used large-dimensional bags of features. The F1-score obtained on the concept extraction 

was 85.2. Bio-medical text mining plays a very important role in extracting entities from bio-medical articles. 

In this perspective, Cho and Lee [25] proposed the NER method using Bi-directional long short-term 

memory (Bi-LSTM) and CRF. This recent work has used the BioCreative II gene corpus and the disease 

corpus. The author has reported that they have achieved an F-score of 81.44%. 

 

 

3. METHOD 

The proposed clinical information extraction method works based on CNN. The first phase of the 

method involves pairs of sentence encoding for the given corpus. The knowledge represented in the form of 

contextual information vectors contains names of entities for the respective concepts (for example, disease 

names, medicines, treatment, and symptoms) towards Parkinson’s disease-related data analytics. The set of 

false positives is fully analyzed to generate tokens. The features are evaluated to define the medical concepts 

properly. 

Furthermore, the proposed method performs word recognition, addition, normalization, mapping, 

and adaptive combining. As part of convolutional learning on features, the fine-tuning looks at the 

neighbouring entity which leads to better information in the combining stage. The softmax function gives the 

output of named entity classification for different categories. 

 

3.1.  Dataset 

The BC5CDR dataset is collected from the Kaggle repository which includes training data, testing 

data, and validation data. Text annotations are increasing the expressiveness of texts present in the document. 

The following labels are used in the dataset: B-begin entity, I-Inside entity, and O-outside entity. Table 1 

provides the details of the type of data along with size. 
 
 

Table 1. Dataset details 
Data type Size 

Train data 919 KB 
Test data 960 KB 

Train_Dev data 1.83 MB 

 

 

3.2.  Detecting clinically named entities using CNN-RME 

The main functional components of the proposed method are input clinical dataset, tokenization,  

text embedding, CNN-RME, POS Tagger, dependency parser, named entity recognition, and visualization. 

Tokenization splits the input texts into words. As part of encoding, the words were embedded in the form of 

vectors. The input to this task is the maximum length of an entity-embedded sentence and an entity-

embedded sentence. Once completed with embedding, the algorithm proceeds with the “RME” cycle, 

convolutional learning, max-pooling, and Softmax function. During the extraction of entities and related 

information, we used 1-D convolutional filters which are of varied widths. The width of each filter denotes 

the n-gram length used for the filter. Figure 2 illustrates the clinical NER-RME architecture, where ‘r’ 

denotes the recurring nature of the process until the stopping condition is reached. 

 

3.3.  The RME mechanism 

The “RME” mechanism involves multiple steps such as recognizing entities in the text, mapping 

those entities to target labels or entity types, and then extracting structured information based on recognized 

entities. In the recognition step, named entities, for example, persons, disease names, symptoms, dates, 

hospitals, and locations, are located and identified from the dataset. This step uses tokenization, part-of-

speech tagging, and NER. Clinical NER models extract words or phrases that are entities and assign them 

specific labels or types. 

In the mapping step, named entities were mapped to predefined categories. These categories 

represent the specific medical information extraction task. For example, disease, symptom, treatment, or 

medicine. The mapping step helps to extract useful information. 

The extraction step produces structured information from the mapped entities. For each entity type, 

attributes and their associated values were extracted for the specific information task. For example, the entity 

type “patient” includes attributes such as “name”, “age”, “place”, “city”, and “country”. The extracted 

information can be presented in the form of a graph or table. Figure 3 shows an example of named entities 

recognized. Figure 4 shows an example of mapped entity types and Figure 5 shows an example of extracted 

information. 
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Figure 2. The architecture of the clinical NER method 

 

 

 
 

Figure 3. Example named entities recognized 

 

 

 
 

Figure 4. Example mapped entity types 

 

 

  
 

Figure 5. Example extracted information 

 

 

3.4.  Loss function 

Let N be the number of tokens, C be the number of entity classes, yij be a binary indicator to check 

whether the correct label for the token ‘i’ is class j, and yiĵ be the predicted probability that the token ‘i’ 

belongs to class j. Now, the loss function is defined as (1). 

 

L(y, ŷ) = −
1

N
∑ ∑ yij. log(yiĵ)

C
j=1

N
i=1   (1) 

 

The mini-batches formed from the dataset improve the efficiency during training. The regularization 

techniques applied in the present work add terms to adjust the loss function to avoid overfitting. The dropout 

method reduces the co-adaptation between different units during training. 

 

 

4. RESULTS AND DISCUSSION 

The Spacy 2.0 for the experimental analysis used necessary features for advanced natural language 

processing. The experiment is conducted in the Jupyter Notebook with an Anaconda environment.  

The present method based on CNN utilized functions such as POS tagger, dependency analyzer, and NER. 

The NER part of the Spacy module was adapted for this present clinical NER approach. The training of a 

clinical NER model is carried out for detecting and classifying entities of interest including disease entities, 

medications, procedures, and symptoms. Dropout used with the CNN prevents overfitting by randomly 
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setting a fraction of input neurons during training. It helps to prevent co-adaptation of units for improving the 

generalization performance. During training, when the dropout was 0.5 it had 50% drop-out units. The results 

are presented in Figures 6 to 9. 

The following measures are used to assess the performance of the proposed NER technique. 

Precision calculates the accuracy of positive entity predictions whereas recall considers the number of 

relevant entities captured in the process. The F1-measure is used to maintain the balance between precision 

and recall because missing important clinical entities leads to low recall. Further, incorrect identification of 

non-existent entities leads to low precision. 

− TP = Number of correctly predicted positive entities. 

− FP = Number of incorrectly predicted entities as positive. 

− FN = Number of incorrectly predicted negative entities. 

− TN = Number of entities correctly predicted as negative. 

− Precision = TP/(TP+FP) 

− Recall = TP/(TP+FN) 

− F1-score = 2*precision*recall/(precision+recall) 

The load_data_spacy() returns training data and unique labels. The cross-entropy loss helps to improve the 

effectiveness of mapping each token to one of the entity classes. 
 

 

 
 

Figure 6. Loss 
 

 

 
 

Figure 7. Validation result 
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The precision and recall of the NER model depend on the correctness of tagged named entities.  

The degree of correctness is measured based on the phrase boundaries. Let us consider the phrase “acute 

Parkinson’s disease”. If the tag misses “acute”, the NER system needs to decide whether the entity is a true 

positive or not. 

In a normal case, it is possible to consider this phrase as a “true positive”. But, for a severe disease 

that requires more effective treatment, it may be required to consider the whole term. Therefore, the phrase 

will be treated as a false positive in this case. The train_spacy() returns an F1-score for validation and an  

F1-score for testing. 

 

 

 
 

Figure 8. Test result 

 

 

 
 

Figure 9. Iteration-wise F1-score 
 

 

Figure 10 shows the test result after RME tasks. This paper compares the present method with other 

methods like HMM, CRF, ERNIE-Doc-BiLSTM-CRF NER, and biGRU-CRF. Table 2 presents the 

comparative analysis of the proposed method and other methods. The task of the proposed clinical NER 

method is to determine the entity type and its boundary. This paper uses a unique NER method which checks 

the consistency of how the entity-related information accurately corresponds to the true target labels.  

The quantitative analysis of our method shows that this CNN-RME method can obtain the optimal 

performance on the performance measures, namely, precision, recall, and F1-score. CNN depends on the 

network structure that contains rich feature maps. Each convolutional operation performed on these feature 

maps leads to more feature acquisition that handles complex relationships present in the medical data.  

This provides more information about the model. The proposed method may benefit from CNN-RME 
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without adversely impacting NER performance. However, further in-depth studies may be needed to confirm 

its performance, especially regarding NER in the complex domain. 

 

 

 
 

Figure 10. Test result after RME tasks 
 

 

Table 2. Comparison of results 
Method/Measures Precision Recall F1-measure 

Hybrid approach 72.63-79.10 70.14-77.70 73.79 

MCD 92.4 90.7 91.5 

CRF 92.03 89.7 89.4 
ERNIE-Doc-BiLSTM-CRF NER 86.72 83.39 85.02 

biGRU-CRF - - 87.8 

Proposed method 92.57 92.22 92.1 

 

 

5. CONCLUSION 

The automatic mapping of text to knowledge bases or databases is a difficult task. This paper 

presented research gaps identified through the review of related methods that have been discussed for disease 

data analytics. Moreover, a clinically NER method presented in this paper was developed with a combination 

of CNN-based deep learning and RME analysis for analyzing medical data for information extraction.  

This proposed method has created a better data science approach and effective mapping of named entities to 

medical concepts. Furthermore, this research work has studied existing works related to NER in the 

information extraction process. The future study will try to increase the effectiveness of clinical data 

analytics through other deep learning methods. 
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