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 Intelligence algorithm systems rely on a large dataset to effectively extract 
significant features that can recognize patterns for classification purposes 

and extensively utilized to assist the physicians in diagnosis of lung cancer. 

Extracting valuable features from the available dataset is crucial, especially 

in cases where additional real data may not be readily accessible. In this 
context, we propose a novel method called feature extraction based on 

centroid (FE_CXY) for lesion localization, utilizing a statistical approach. 

The approach begins with a segmentation process that employs image 

processing techniques to extract features of interest which is data centroid. 
This extracted data is then used to compute statistical measurements, 

revealing hidden patterns that contribute to distinguishing between lesion 

and non-lesion locations. The method’s efficiency is reflected in the 

development of robust models with improved performance in localizing lung 
lesions. The study’s statistical findings strongly indicate that FE_CXY plays 

a crucial role as an important feature for detecting lesion localization 

supported by a student’s t-test, which identifies a statistically significant 

difference in the patterns between lesion and non-lesion localization 
(p<0.05). By incorporating this method into lung cancer detection systems, 

we anticipate improved accuracy and efficacy, thereby benefiting early 

diagnosis and treatment planning. 
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1. INTRODUCTION 

Lung cancer remains the leading cause of cancer-related deaths in men aged 40 and above, as well 

as women aged 60 and above [1], [2]. Recent data indicate a concerning increase in its incidence, with over 

350 daily deaths due to the disease [2]. Lung cancer, also known as bronchogenic carcinoma, encompasses 

tumours that originate in the lung parenchyma or bronchi. It is typically classified into two types: small-cell 

https://creativecommons.org/licenses/by-sa/4.0/
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lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC tends to grow more rapidly than 

NSCLC but exhibits better response to chemotherapy. SCLC is further classified as “limited stage" (usually 

confined to the chest) or "extensive stage" (cancer that has spread beyond the chest) [3]. Lung nodules, 

clusters of cells found in the lungs, are common, often resulting from scarring due to previous lung 

infections. Although lung cancer symptoms are typically rare. Previous studies have associated various 

symptoms with lung nodules, such as shortness of breath, back discomfort, weight loss, weakness, and 

fatigue. Lung nodules are often incidentally detected during chest X-rays or computed tomography (CT) 

scans conducted for other purposes. While some lung nodules are cancerous, others are benign [4]. Early 

detection of lung nodules is crucial for improving survival rates. Smoking remains the primary cause of lung 

cancer, with male smokers at the highest risk. Interestingly, the number of packs smoked per year does not 

exhibit a straightforward correlation with lung cancer due to the complex interplay between smoking, 

environmental factors, and genetics [3], [5]. 

The complexity of medical data poses challenges for physicians in extracting relevant information, 

leading to longer screening, diagnosis, and prognosis times. Manpower shortages and human errors, such as 

eye fatigue and tiredness, can result in misdiagnosis and false interpretations. computer-aided diagnosis 

(CAD) systems can serve as a valuable second opinion for physicians, aiding in accurate diagnosis and 

improving the effectiveness of treatment. In recent times, researchers have focused on developing CAD 

systems that employ machine learning and deep learning techniques for early diagnosis by automatically 

learning and extracting features [6][8]. CAD systems for lung diagnosis typically consists of process such as 

segmentation, feature extraction, and classification. CAD systems can provide valuable insights for medical 

practitioners. But an accurate segmentation is crucial for efficiently lung cancer diagnosis, enabling the 

identification of lung regions and nodules [9]. CAD systems often used a two-step pattern recognition 

approach, combining feature extraction through neural networks or statistical classifiers. Researchers have 

made significant progress in training and classifying large datasets using feature extraction for pattern 

recognition [6], [10]. Medical image classification, a specialization that merges machine learning and 

computer vision, utilizes machine learning approaches to automate visual model acquisition, signal 

translation, and trainable image processing system construction [11]. These classifiers possess the ability to 

predict and classify diseases based on the employed machine learning methodologies, contributing to 

significant advancements in medical diagnostic knowledge using feature extraction and machine learning 

classifiers in medical imaging applications. 

Elwahsh et al. [7] study involved the utilization of a deep neural learning cancer prediction model 

(DNLC) that consist of three stages. In the first stage, a deep network (DN) was used to select the best set of 

features from the datasets. Then training genomic or clinical data samples with a deep neural network 

(DNN). Finally, the DNLC model's ability to predict cancer at earlier stages was evaluated. The study found 

that when a traditional neural network was used, the number of hidden layers would increase, and weight 

matrices in the initial hidden layers close to the input layer would remain unchanged. Consequently, 

traditional neural networks were deemed unsuitable, highlighting the need for feature extraction and 

reduction techniques such as principal component analysis (PCA) and DNLC. Experimental results 

demonstrated that the proposed model achieved higher accuracy compared to earlier convolutional neural 

networks (CNN) and recurrent neural network (RNN) models, with an average accuracy of 93%, 

outperforming other methods in all scenarios [7].  

Suresh and Mohan in their study in 2022 [6] trained DCNNs using samples from the nodule region 

of interest (NROI) and further classified them into non-cancerous, benign, or malignant categories based on 

tumour patterns. They manually extracted a total of 26 features from traditional hand-crafted methods, 

defining discriminative features such as area, perimeter, eccentricity, contrast, correlation, energy, entropy, 

homogeneity, sum average, and sum entropy. These features were combined and trained using support vector 

machine (SVM) classifiers. Yang et al. [12], in 2021 introduced a generative adversarial network (GAN)-

based framework to generate visually normal-looking CT slices from CT slices with COVID-19 lesions. 

They developed a feature-matching strategy to enhance the realism of generated images by guiding the 

generator to capture the complex texture of chest CT images. By subtracting the output image from its 

corresponding input image, the localization map of lesions could be easily obtained. Kuwil [11] presented a 

new approach called feature extraction based on region of mines (FE_mines) that combined feature selection, 

reduction, and extraction. Three methods, namely FE_AM, FE_CM, and FE_UM, were used for different 

types of images. The statistical methodology relied on data distribution and employed measures of central 

tendency (MCT) and dispersion to investigate the distribution of data. The results demonstrated that the 

FE_mines approach achieved higher accuracy ranges (1 to 13%) within the three methods [11]. 

There is still a shortage of research on real-time data, even though the current CAD system has good 

classification accuracy [13]. Other than that, adding to many features into classifier would harm its 

performance. Some researchers had stated that finding meaningful patterns is more challenging when there 
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are numerous weakly informative features compared to when there are only a few from strong informative 

features. Many practical research design often results in suboptimal patterns, making it less likely to achieve 

statistically significant validation results [14]. Table 1 present an additional previous study on feature fusion 

of handcrafted features for CT scan related CAD task in similar domain with different type of features. 
 

 

Table 1. Previous studies on feature fusion of handcrafted features for CT scan related CAD task 
Reference Feature extracted Task 

[15] Geometrical features (area, perimeter, solidity, centroid, equivalent 

diameter, convex area, eccentricity and roundness) 

Statistical features (contrast, correlation, variance and homogeneity) 

Nodule vs non-nodule 

[16] Delta radiomics features (volume, diameter, boundary sharpness, shape, 

and texture) 

Lung cancer classification 

[17] Local binary pattern (LBP) based features Nodule vs non-nodule 

[18] Gabor features Lung cancer diagnosis 

[19] Wavelet features, texture features and histogram features Lung cancer prediction 

[20] Super pixels features Tumour vs non-tumour vs 

fundus (segmentation) 

[21] Morphological features, genomic features, and molecular features Tumour vs non-tumour 

 

 

This research employed an appropriate processing, training, and validation procedure tailored to the 

specific features of the data. This benchmarking process enhances the understanding of the relationship 

between proposed features and lung lesion detection and localization. The contributions of this paper can be 

summarized as follows:  

- Introduction of a novel method based on statistical analysis to identify patterns in lung CT scan images 

features for lesion localization. 

- Utilization of appropriate statistical analysis techniques to extract hidden features in lung CT scan images. 

- Employment of a quantitative approach to enhance the performance and efficiency of machine learning 

and deep learning models. 

The structure of this paper is as follows: section 2 describes the methodology used for analysis. The 

experiments and results are presented in Section 3. Section 4 discusses the outcomes, while section 5 presents 

the conclusion and future work.  
 

 

2. METHOD 

In this section, an overview of the dataset used will be provided, along with the data processing and 

statistical approach employed. The statistical measurements employed in this method is to explain the 

strength of the selected features and reveals hidden patterns inside these features. The experimentation was 

conducted using MATLAB (R2022a) on a notebook equipped with an AMD Ryzen 7 Pro 5850U CPU @ 1.9 

GHz processor, 16 GB RAM, and the Windows 11 64-bit operating system. Based on Figure 1, the proposed 

work is divided into three (3) main stages, which are data collection, pre-processing, and the introduction of 

an innovative approach known as FE_CXY, which is used to extract features for lesion localization coupled 

with statistical analysis. 
 

2.1.  Data collection  
The data used in this study consisted of Axial-cut Lung CT Scan Images obtained from the Imaging 

Unit at the Advanced Medical and Dental Institute (AMDI), USM. The ethical application was approved for 

the collection of data with the study code: USM/JEPeM/21110721. There are 990 CT scan images from with 

a resolution of 512×512 were acquired with slice thickness 1.25 mm from thorax regions have been used in 

this experiment. These images were in digital imaging and communications in medicine (DICOM) format 

and were imported into MATLAB software after being sorting them into files. Then the images were 

converted from DICOM to grayscale in bmp format because it is easier to handle in MATLAB software. 
 

2.2.  Pre-processing 

In the initial phase of data processing, the procedure involves two critical segments: one is focused 

on isolating the lungs, and the other is dedicated to extracting lesions within the lungs. The forthcoming 

section will provide a detailed breakdown of the steps involved in each of these stages, illustrated in Figure 2. 

This process of segmentation holds immense significance. It’s responsible for pinpointing objects or 

delineations within the image, a crucial step in identifying the specific area of interest. By dividing the image 

into distinct regions, it becomes possible to extract meaningful information, specifically valuable features [13].  

The application of a CT scan yields intricate views of the body’s soft tissues, encompassing detail of blood 

vessels, muscle tissue and organs [22]. Hence, the extraction of the lung region from CT images plays  
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a pivotal role. It significantly narrows down the scope of search when identifying lung lesions, making the 

process more efficient and accurate. 

In this study, the process of isolating the lung region involved a technique based on thresholding [23]. 

Initially, the image undergoes thresholding, which is a fundamental method in image segmentation [24].  

It offers a simple yet remarkably effective way to separate an image into a foreground and background. This 

is achieved by converting grayscale images into binary format. Next, to precisely locate the lung region in a 

CT scan image, we employ a method known as connected component analysis (CCA) [25]. This technique 

operates on a binary image, where ‘False’ values represent background pixels and ‘True’ values represent 

foreground or object pixels. Once region boundaries of regions are identified, it proves beneficial to extract 

regions that are contiguous and not divided by a boundary. These sets of connected pixels form cohesive 

units, enabling the image to be partitioned into distinct segments. Segmenting lung lesions and non-lesions 

involves several steps. The initial lung segmentation process yields images with low contrast, making it 

challenging to distinguish between lesions and non-lesions. Therefore, we begin by enhancing the image 

quality using local contrast stretching. Once the image quality is improved, areas of high contrast are 

identified to represent potential lung lesion regions. Subsequently, the enhanced image is converted into a 

binary format, and Otsu’s thresholding is applied to extract potential lesions and non-lesions. Despite these 

efforts, there are still challenges that require additional computational resources for image segmentation.  

To simplify lung lesion detection and classification in subsequent tasks, the number of non-lesions needs to 

be minimised. This is achieved by extracting several geometrical features using the equations provided in 

Table 2. By considering the diameter and roundness ranges of lung lesions, we reduce the number of non-

lesions in the segmented images [26]. The output images from these processes will be used as input for the 

next step of the main proposition of this paper. 
 

 

 
 

Figure 1. The workflow of proposed method 
 

 

Table 2. Geometrical features used with equations 
Geometric features used Equation and function  

Diameter (f1) mean ([stats.MajorAxisLength stats.MinorAxisLength],2); (1) 

Roundness (f2) 4π × Area

Perimeter2
 

(2) 

Centroid (f3) regionprops(bw,"Centroid") (3) 

 

 

2.3.  Statistical approach for enhanced detection 

This section holds paramount importance in our research. Feature extraction plays a pivotal role in 

enabling CAD systems to accurately identify true-positive lesions [27]. The good features can differentiate 

between lesion and non-lesion. Furthermore, we want to highlight the contribution of centroid (f3) as  

a valuable feature that enhances the precision of lung lesion localization. In the preceding step, centroids 

(FE_CX, FE_CY) for both lesions and non-lesions were derived using a MATLAB function. Figure 3 

provides a visual representation of the proposed innovative approach, which encompasses three main 

processes: feature extraction, statistical analysis, and lung lesion detection. 
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Figure 2. Block diagram representing outlining the pre-processing 
 

 

 
 

Figure 3. Block diagram representing statistical approach for enhanced detection 
 

 

At the outset, we included a set of segmented images, comprising lesion samples and non-lesion 

samples, for this study. Subsequently, we extracted centroid values for both the lung lesion and non-lesion 

samples. The centroid of a circle, often referred to as the circle's central point, coincides with its radius 

measured from the circle's edges [28]. It's represented by two coordinates, known as X and Y. In our 

representation, FE_CX signifies the X-coordinate, while FE_CY represents the Y-coordinate, as illustrated in 

Figure 3. To delve deeper into the information provided by centroids and unearth their hidden insights, we 

will conduct a statistical analysis. 

Sample standard deviations (s) were employed to describe the centroid feature pattern for both 

lesion and non-lesion samples. These sample standard deviations were calculated using (1). 
 

𝑠 = √∑ (𝑥𝑖−𝑥)
2𝑁

𝑖=1

𝑁−1
 (1) 

 

Where: 𝑠 = sample standard deviation, 𝑁 = the number of observations for each lesion/non-lesion, 𝑥𝑖 = the 

centroid value of lesion/non-lesion and 𝑥 = the centroid mean value of lesion/non-lesion. 

The analysis of residuals plays a critical role in validating the accuracy of a model. These residual 

values, derived from data at hand, serve as approximations of the model's margin of error. The residual 

calculated using (2). 
 

𝑟 = 𝑥 − 𝑥0 (2) 
 

where 𝑟 = residual, 𝑥 = the centroid value for lesion/non-lesion and 𝑥0 = the centroid mean value for 

lesion/non-lesion. The distance between two points can be described as the measurement of the straight line 

that connects these two points in a two-dimensional plane. The formula to find distance between two points is 

usually given by: 
 

𝑑 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 (3) 
 

where 𝑑 = distance, (𝑋2 − 𝑋1) = coordinates of the first point and (𝑌2 − 𝑌1) = coordinates of the second 

point. 

Student’s t-test or also known as T-test was used for a quantitative comparison of centroid FE_CXY 

values between lesions and non-lesions. Student’s is defined in the (4). 
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𝑡 =
�̅�1−�̅�2

√(𝑠1
2/𝑛1)+(𝑠2

2/𝑛2)

 (4) 

 

where �̅� = mean, 𝑠 = standard deviation and 𝑛 = number of values in each group. 

In this study, the standard deviation, residual, and distance were utilized to measure the extent of 

motion of lesions and non-lesions within the CT slices based on the centroid coordinates (X, Y). With the 

information from the standard deviation of FE_CXY, student’s t-test will be conducted to detect the 

difference between centroid data of lesion and non-lesion. This analysis is to prove that FE_CXY is a 

valuable feature for intelligent algorithm system in detecting the lesion of lung cancer. 
 

 

3. RESULTS AND DISCUSSION  

This section focuses on result of the proposed approach, which is based on a simple idea of 

obtaining different formulas of lung CT slice and determining the FE_CXY utilizing statistical analysis to 

discriminate between lesions and non-lesions. To avoid overwhelming readers with numerous equations and 

mathematical formulas, a concise analysis will be provided. There are two parts inside this section: analysis 

of potential lung lesion segmentation and result of further analysis of FE_CXY. 
 

3.1.  Analysis of potential lung lesion segmentation 

As previously described, unwanted non-lesion was removed by applying diameter and roundness 

features as filters. This resulted in a significant reduction in false lesions. The counts of both lesions and non-

lesions before and after this filtering process are presented in Table 3 and illustrated in Figure 4. Table 3 

highlights five specific images where a noticeable decrease in both lesion and non-lesion counts is evident. 

This process has made it easier to easy to figure out lesion in the proposed method. In Figure 5, six non-

lesion samples were randomly selected from these consecutive slices. As depicted in the figure, it's evident 

that non-lesions outnumber lung lesions. This is a typical observation, as non-lesions often include 

representations of blood vessels or various tissues [29]. 
 

 

Table 3. Comparison of lesion and non-lesion in segmented images before and after filtering 
Image No. of lesion and non-lesion before filtering No. of lesion and non-lesion after filtering 

1 48 12 

2 191 16 

3 288 13 

4 338 20 

5 366 29 

 

 

     
Image 1 Image 2 Image 3 Image 4 Image 5 

 

Figure 4. Segmented images of lesion and non-lesion after filtering using geometric features 
 

 

 
 

Figure 5. Represent the 20 lung CT consecutive slices 
 

 

3.2.  Statistical analysis of FE_CXY 

In this experiment, the contributions of feature extraction approaches which are used in this work 

are evaluated. Choosing the right features is a crucial step in designing a pattern recognition system, as it 

enables the system to automatically identify the most relevant attributes within the feature set. To create a 

classification system that operates effectively, it is essential to select features that accurately capture the 

significant distinctions between the two classes under consideration, which in this case are lesions and non-

lesions [30]. 
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3.2.1. Trend and pattern analysis 

The Figures in this section serve the purpose of providing a visual representation of the data, aiding 

in comprehending the overall trends and variations in centroid features for both lesion and non-lesion 

samples. In Figures 6 and 7, we present a plot illustrating the distribution of FE_CX and FE_CY for six 

identified lesions (L1, L2, L3, L4, L5, and L6) and six non-lesions (NL1, NL2, NL3, NL4, NL5, NL6) within 

the 20 consecutive slices of lung CT. The plot in Figure 6 corresponds to the X-coordinate of the FE_CX and 

Y-coordinate of FE_CY in Figure 7. The x-axis denotes the CT slices, while the y-axis represents the 

centroid (FE_CX and FE_CY) values. On close examination, consistent trends of data dispersion are 

noticeable in lesions (Figure 6(a) and Figure 7 (a)). This consistent trend is characterized by a straight, 

horizontal line that maintains a constant value throughout the FE_CX and FE_CY values of lesions. But for 

FE_CX and FE_CY of non-lesions, there exhibits a discernible trend of fluctuation within the graph in Figure 6(b) 

and Figure 7(b). The significance of FE_CXY lies in its capacity to unveil the movement patterns of lesions 

across different slices. When we graph the values of FE_CXY for both lesion and non-lesion samples, a clear 

trend in the data emerges. Non-lesions tend to display ascending or descending patterns, while lesions exhibit 

a more consistent pattern. This is because of the shape of the lesion and non-lesion in the collocated of the 

lung CT scan. Essentially, if lesion presence in one slice, then it is expected to be appear in the preceding 

slices at the same location (FE_CXY) as previous slice. Conversely, the non-lesion transforms into new 

shapes, so if they are detected in one slice there are high chances that they will not be present in the exact 

location (FE_CXY) in the next slice of the series [31]. 
 

 

   

   
(a) 

 

   

   
(b) 

 

Figure 6. Distribution for FE_CX for (a) lesion and (b) non-lesion 
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(a) 

 

   

   
(b) 

 

Figure 7. Distribution for FE_CY (a) lesion and (b) non-lesion 

 

 

3.2.2. Further analysis 

A statistical approach was applied to conduct a thorough examination and derive results to analyze 

the motion patterns between lesions and non-lesions, specifically focusing on the spread of X and Y centroid 

coordinates. In particular, standard deviation, residual, and distance metrics were computed for this 

experiment. These metrics furnish crucial insights into the localization of lesions. 

Table 4 summarizes the standard deviation and residual values for the centroid feature, allowing for 

a direct comparison between lesions and non-lesions. It shows that lesions have smaller standard deviation 

and residual values compared to non-lesions. For lesions, the standard deviation ranges from 0.072 to 0.352 

for CX and 0.165 to 0.442 for CY, while for non-lesions, it ranges from 1.223 to 7.072 for CX and 0.967 to 

6.780 for CY. Similarly, the residual values for lesions are smaller, ranging from 0.116 to 0.508 for CX and 

0.072 to 1.021 for CY, whereas for non-lesions, they range from 1.932 to 5.053 for CX and 1.219 to 3.429 

for CY. The graphs in Figure 8 serve to visualize the differences between lesions and non-lesions more 

clearly based on the standard deviation and residuals of FE_CXY values, which cannot be seen in Table 4. 

Figure 8(a) represents the standard deviation values, and Figure 8(b) represents the residual values. The 

height of the bars in the graph signifies that lesions have small values in standard deviation and residual of 

FE_CXY, while non-lesions have large values in standard deviation and residual of FE_CXY. 
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Table 4. Description of standard deviation and residual for centroid 
Lesion/non-lesion Standard deviation (CX) Residual (CX) Standard deviation (CY) Residual (CY) 

L1 0.352 0.287 0.193 0.188 

L2 0.202 0.488 0.312 0.270 

L3 0.064 0.128 0.165 0.201 

L4 0.212 0.508 0.442 1.021 

L5 0.252 0.505 0.260 0.506 

L6 0.072 0.116 0.331 0.072 

NL1 1.692 5.025 1.537 2.002 

NL2 1.223 3.289 0.967 1.884 

NL3 1.640 1.932 1.581 1.219 

NL4 1.752 6.780 1.656 3.384 

NL5 3.728 3.891 5.053 3.113 

NL6 7.072 3.208 4.69 3.429 

 

 

  
(a) (b) 

  

Figure 8. Graph of (a) standard deviation of centroid and (b) residual for centroid 
 

 

In Table 5, the average distances for both lesion and non-lesion samples are outlined. According to 

the table, lesions exhibit smaller average distances, falling within the range of 0.162 to 0.446. Conversely, 

non-lesions display larger average distances, ranging from 0.603 to 1.686. The Figure 9 represent average 

and distances distribution for six lesions and six non-lesions. Figure 9(a) serves as a visual representation of 

the data presented in Table 5. This graph specifically illustrates the average distance of centroids. Lesions are 

represented by the blue bars, while non-lesions are depicted by the red bars. Upon examination, it's evident 

that all lesions exhibit smaller values for average distance in compared to non-lesions. The multiple box-plot 

diagram depicted in Figure 9(b) offers a comparative view of the distance distribution for each lesion (L1, 

L2, L3, L4, and L6) and non-lesion (NL1, NL2, NL3, NL4, NL5, and NL6). This graphical representation 

allows for a rapid assessment of how distances were distributed among lesions and non-lesions. The graph 

clearly illustrates that the majority of non-lesion (orange) boxplots are of larger size in comparison to the 

lesion (blue) boxplots. This discrepancy arises from differences in distance values and the respective counts 

of lesions and non-lesions. 

 

 

Table 5. Description of average distance for centroid 
Average distance 

L1 L2 L3 L4 L5 L6 NL1 NL2 NL3 NL4 NL5 NL6 

0.340 0.253 0.162 0.446 0.337 0.203 1.109 0.603 0.898 0.964 1.499 1.686 

 

 

Figure 10 displays boxplots showing the standard deviation of FE_CXY for both lesions and non-

lesions included in the study. Figure 10(a) shows FE_CX, while Figure 10(b) shows FE_CY. In both graphs, 

the boxplot for lesions appears smaller compared to non-lesions. This is because all lesions had relatively 

small standard deviation values. Comparison of the results from Figures 8-10 reveals no significant 

differences when considering only 12 lesions and non-lesions versus all lesions and non-lesions in the study. 

The patterns observed in Figures 8-10 may explain the varying trends between lesions and non-lesions seen 

in Figures 6 and 7. Specifically, the centroid data for lesions exhibited a more consistent trend compared to 

non-lesions, likely due to the greater dispersion of FE_CXY values for non-lesions, characterized by larger 

standard deviation, residual, distance, and average distance values compared to lesions, which had smaller 

standard deviation values. 
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(a) (b) 

  

Figure 9. Graph of (a) average distance and (b) distance of FE_CXY of lesions and non-lesions 

 

 

  
(a) (b) 

  

Figure 10. Boxplot for (a) FE_CX and (b) FE_CY of lung lesion and non-lesion 

 

 

To further investigates the performance of FE_CXY, we conducted a student’s t-test to determine if 

there are statistically significant differences between lesions and non-lesions. Additionally, we trained and 

tested two different sets of features: one without FE_CXY and one with FE_CXY, using a CNN model. The 

selection of features to pair with FE_CXY was based on a literature review and the opinion of radiologist 

regarding lung lesion diagnosis. The results revealed a p-value of 0.000 for both FE_CX and FE_CY, 

indicating statistically significant differences between lesions and non-lesions, with p-values below 0.05. 

Regarding the CNN model's performance, Table 6 illustrates an improvement of 1.33% in accuracy and 

2.25% in F1-score when FE_CXY is included in the feature set, achieving 92% accuracy and 83.33%  

F1-score, compared to 90.67% accuracy and 81.08% F1-score without FE_CXY. 

FE_CXY emerges as a potent feature, as underscored by the student's t-test results which reveal 

substantial distinctions in trends. By integrating such effective features, it becomes possible to construct 

robust models characterized by high performance and efficiency in pinpointing lung lesions. The accuracy 

presented in Table 7 reveals that our proposed features achieved convincing results that outperformed all 

compared features with 92% accuracy. While extensive research has delved into a multitude of techniques for 

feature extraction, incorporating an excessive number of features can overly complicate classifier models. 

Hence, it is imperative to selectively include only those features that contribute meaningfully. There have been 

studies where good classification rates were achieved using only two features, as indicates in [14], [32], [33]. 

 

 

Table 6. Performance evaluation between proposed features other features 
Model Accuracy F1-score 

Diameter+roundness 90.67% 81.08% 

Diameter+roundness+FE_CXY 92.00% 83.33% 
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Table 7. Model accuracy for proposed features with similar investigations 
Reference Features  Accuracy 

[20] Super pixels features 83.40% 

[15] Geometrical features and statistical features 84.00% 

[34] Tumour shape and boundary features 89.80% 

Our study Diameter+roundness+FE_CXY 92.00% 

 

 

4. CONCLUSION  

In conclusion, this approach utilises the centroid feature (FE_CXY) in detecting lesion localisation, 

aided by statistical analysis to uncover hidden information. The statistical findings highlight the potential of 

FE_CXY as an alternative feature for lesion detection system. By understanding the distribution of centroid 

data within lung CT scan images, it becomes possible to extract powerful features that provide valuable 

insights of the lesion. Future research endeavours will focus on implementation of FE_CXY as effective 

features to simplify machine learning and deep learning models. These models can serve as valuable second 

opinions, assisting medical doctors and physicians in accurately interpreting medical modalities. Moreover, 

they have the potential to enhance screening, diagnosis, and prognosis processes by providing uninterrupted 

and faster analysis. 
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