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System degradation is a common and unavoidable process that frequently oc-
curs in aerospace sector. Thus, prognostics is employed to avoid unforeseen
breakdowns in intricate industrial systems. In prognostics, the system health
status, and its remaining useful life (RUL) are evaluated using numerous sen-
sors. Numerous researchers have utilized deep-learning techniques to estimate
RUL based on sensor data. Most of the studies proposed solving this problem
with a single deep neural network (DNN) model. This paper developed a novel
turbofan engine RUL predictor based on several DNN models. The method
includes a time window technique for sample preparation, enhancing DNN’s
ability to extract features and learn the pattern of turbofan engine degradation.
Furthermore, the effectiveness of the proposed approach was confirmed using
well-known model evaluation metrics. The experimental results demonstrated
that among four different DNNs, the long short-term memory (LSTM)-based
predictor achieved the better scores on an independent testing dataset with a root-
mean-square error of 15.30, mean absolute error score of 2.03, and R-squared
score of 0.4354, which outperformed the previously reported results of turbofan
RUL estimation methods.
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1. INTRODUCTION

Prognostics and Health Management (PHM) stands as a burgeoning discipline with the primary objec-
tive of predicting the prospective health condition of a given system, pinpointing latent faults, and facilitating
punctual maintenance interventions to improve the reliability as well as the operational availability of the sys-
tem [[1]. As contemporary engineering systems, including aerospace, automotive, and manufacturing domains,
continue to grow in complexity, there arises an escalating demand for advanced PHM methodologies adept
at managing substantial datasets and furnishing precise prognostications [2], [3]. The concept of PHM has
evolved over the past few decades, driven by the need to improve system reliability, safety, and efficiency [4]].
Initially, PHM was mainly used in the aerospace industry to monitor the health of aircraft engines and to predict
their remaining useful life [5]]. With advancements in sensor technology, data analytics, and machine learning
algorithms, the scope of PHM has expanded to other domains [6]. Today, PHM is applied in a wide range of
applications, including wind turbines [7], medical devices, and infrastructure systems [8]].
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Despite the numerous advantages inherent in PHM, it is imperative to acknowledge the existence of
several challenges that warrant attention. A predominant challenge resides in the absence of standardized prac-
tices within the discipline, a factor that introduces complexity in the comparative evaluation of diverse PHM
methodologies [9]]. An additional obstacle pertains to the requisite acquisition of extensive sets of superior data
for the purpose of training predictive models. This process often incurs significant costs and consumes substan-
tial time, thereby presenting a formidable challenge [10]]. Additionally, PHM requires interdisciplinary exper-
tise, which may not always be readily available [11]. Deep learning (DL), a subset within the realm of machine
learning, has demonstrated remarkable promise in the domain of PHM owing to its capacity to comprehend
intricate correlations between input characteristics and predictive outcomes. Over recent years, methodologies
stemming from DL, including: convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
autoencoders, have found extensive application and utilization within PHM research endeavors [12].

Within the realm of fault diagnosis, the utilization of deep learning methodologies has been instru-
mental in discerning and categorizing faults by analyzing sensor data [13]. CNNs have been shown to be
effective in feature extraction from sensor signals, while RNNs have been used to capture temporal dependen-
cies between sensor measurements [[14]. Autoencoders have also been used for fault detection by learning the
normal operating conditions of a system and detecting deviations from these conditions [15]. In remaining
useful life (RUL) prediction, DL models have been used to predict the RUL of a system based on its current
and past health status [16]. CNNs and RNNs have been used to model the temporal evolution of system health,
while autoencoders have been used to learn the underlying feature representations of sensor data [[17]. Another
important application of deep learning in PHM is anomaly detection [18]. DL models have been used to rec-
ognize abnormal behaviour in sensor data, which can indicate potential faults or anomalies [[19]. CNNs and
autoencoders have been shown to be effective in detecting anomalies in sensor data [[10]. However, this study
focuses on RUL predication which is in the third level of PHM [20].

This article endeavors to furnish a comparative analysis concerning prevalent deep learning architec-
tures employed in prognostics for predicting RUL. Our emphasis will be on examining CNNs, RNNs, LSTM
networks, and gated recurrent unit (GRU) models. The performance of these architectures will be evaluated
based on prediction accuracy, computational complexity, and generalization ability to unseen data. Our aim
is to provide practitioners and researchers with an inclusive overview of these architectures and their relative
weaknesses and strengths for RUL prediction in prognostics. The validation of this methodology’s effective-
ness was conducted using the commercial modular aero-propulsion system simulation (C-MAPSS) turbofan
aero-engine benchmark datasets supplied by NASA.

The subsequent sections of this manuscript are structured as follows: section 2 furnishes a compre-
hensive overview delineating the background and pertinent literature that form the foundation of this study.
Section 3 delineates the suggested approach for conducting research, while section 4 examines and scrutinizes
the obtained results from empirical experiments. Section 5 goes over the findings and analysis. Finally, Section
6 encapsulates the conclusions drawn from this study and delineates prospective avenues for future research.

2.  RELATED WORK

In the aerospace sector, ensuring safety and reliability stands as a paramount consideration governing
operational efficiency. Across various industries, rotating machinery assumes a pivotal role, yet remains sus-
ceptible to failure due to demanding operational environments and prolonged usage hours [21]]. Failures within
these systems can lead to operational disruptions and substantial financial ramifications. Exploring the moni-
tored relationship between device data and its associated RUL has garnered significant attention in data-driven
prognostics. Numerous machine learning algorithms, particularly NN methods, have been devised to unveil
the correlation between the collected feature data and the anticipated RUL. The benefit of employing NNs
for PHM lies in their ability to model intricate, highly nonlinear, multidimensional structures without a prior
understanding of the system’s physical behavior. Diverse forms of device data, like raw sensor readings, can
serve as direct inputs for these models. However, establishing natural confidence limits for deep neural network
(DNN) methodologies applied to prognostic issues demonstrate encouraging outcomes RUL prognostication
remains a challenge [22]], DNN-based approaches to prognostic problems show promising results [20].

Fentaye et al. [22] employed the traditional multilayer perceptron (MLP) technique to forecast
the RUL of bearings during laboratory testing, demonstrating superior predictive performance compared to
reliability-based alternatives. Fink et al. [23] presented a multi-layer neural network approach employing
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multi-valued neurons specifically designed to address the challenge of forecasting the performance and degra-
dation time series. A case study was carried out with a specific focus on consider the deterioration of a railway
turnout system. Khawaja et al. [24] devised a neural network method for predicting confidence that includes
a confidence distribution node, addressing the limitation in neural network techniques where obtaining explicit
confidence limits for RUL predictions proves challenging. Additionally, several fuzzy logic approaches have
been integrated to MLP networks to enhance learning acquisition for PHM. Using RNN, Malhi ef al. [235]
proposed employing RNNs and competitive learning techniques for long-term prognostics regarding the health
status of machinery. They utilized the continuous wavelet (WT) to preparation vibration singles obtained from
a faulty rolling bearing, subsequently employing these preprocessed indicators as inputs for their model. The
authors in the authors recommended an long short-term memory (LSTM) approach for RUL prediction in aero
engines. This method was proposed to address scenarios involving highly intricate operations, hybrid faults,
and substantial noise levels, thereby enhancing the capabilities beyond those offered by the norm RNN. Zhao et
al. [26] applied LSTM networks to a tool wear health monitoring task. They integrated both frequency and time
domain functions within their approach, Ren et al. [20] introduced an optimized DL technique designed for
collaborative estimation of RUL in multiple bearings. They substantiated the method’s viability and superiority
through numerical evaluations conducted on a real dataset. Liao et al. [27]] introduced an innovative restricted
Boltzmann machine designed for representation learning aimed at determining the RUL of machines. This
approach incorporates a novel regularization term along with an unsupervised self-organizing map algorithm.
The study from Zhang et al. [28] presented a multi-objective DBN ensemble approach. This method com-
bined one of the evolutionary algorithms with a conventional DBN training approach to concurrently develop
multiple DBNs, emphasizing both accuracy and diversity in their construction.

In another study from Zheng et al. [29], the C-MAPPS benchmark dataset was used to predict the
RUL of the turbofan engine using LSTM based on on-time sequence representation. The use of CNN to
estimate the RUL of the same engine was proposed in [20]. The process uses a time window method as input
feature to the suggested model. Hence, more degradation data should be collected. As a result, the dimension
of model inputs has increased, causing difficulty in the development of the DNN model, that is, how to set
up network nodes and network layers to avoid overfitting and reduce time and computational expenses while
also avoiding getting stuck in local minimum points. Muneer et al. [30] provide four data-driven prognostic
models that employ DNNs with an attention mechanism to precisely estimate the turbofan engines’ RUL.
Without requiring a prior understanding of prognostics or signal processing, the models increase DNN feature
extraction by utilizing a sliding time window method. To enhance the prediction of RUL for turbofan engines,
Muneer et al. [31] also provide a novel attention-based deep CNN design. The suggested model makes use
of multivariate temporal information by selecting features based on the processability metric and preparing
samples using a time window technique. Another study recently conducted by Peng ez al. [1]. As a technique
for RUL prediction, the combination of 1-D CNNs with LSTM and full convolutional layer (1-FCLCNN) was
proposed. This technique extracts the spatial and temporal characteristics from the FD003 and FD0OO1 datasets
produced by the turbofan engine using LSTM and 1-FCLCNN. Researchers have also focused a great deal of
emphasis on CNN applications in RUL-related disciplines [[16]. Babu et al. [19] the deep CNN method was
initially applied for RUL prediction. CNN fared better than the MLP, SVM, and SVR models, according to the
data. The CNN method, which was suggested by [19] was examined and tested using the C-MAPSS dataset,
yielding an RMSE of 18.45.

Similarly, Li et al. [10] suggested a deep CNN time window method for improved signal extraction.
The method was tested on NASA’s turbofan engine (C-MAPSS dataset) degradation problem and demonstrated
a significant advantage. Even with the CNN model’s high performance, additional optimization is still needed
because it still takes longer to train than other shallow approaches. Furthermore, the recommended method has
a heavy computational load. Wen et al. [32] created a brand-new residual CNN (ResCNN). ResCNN makes
use of the residual block, which can help solve the vanishing/exploding gradient problem by using shortcut
connections to bypass several convolutional layer blocks. Moreover, the k-fold ensemble method helped to
enhance ResCNN. NASA’s C-MAPSS benchmark dataset was used to test the suggested ensemble ResCNN.
A new technique for deep features learning for RUL predictions utilizing multi-scale CNN (MS-CNN) and
time-frequency representation (TFR) has been provided in another work suggested by [33]]. The bearing de-
terioration signal’s non-stationary character can be efficiently shown by TFR. By using WT, we were able to
accumulate time series deterioration signals and create TFRs that are rich in valuable information. These TFRs
were high dimensional, thus bilinear interpolation was utilized to reduce their size before they were utilized
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as inputs for the DL models. Nevertheless, the suggested method [33] exhibits a few limitations. Initially,
the algorithm’s training duration is sluggish, necessitating an enhancement in computational speed. Secondly,
utilizing a graphical processing unit becomes imperative to assist in handling the primary TFR processing.

Additionally, Li et al. [34] aimed to enhance machines’ RUL estimation by introducing a network
structured as a controlled acyclic graph that merges LSTM and CNN to predict RUL. Li et al. [34] observed
that when employing a singular timestamp as input, padding signals within the same training batch adversely
impacted the overall predictive capability of the integrated approach. To mitigate this issue, the authors adopted
their proposed method to create a short-term sequence, moving the time window (TW) in increments of du-
ration single-phase. Additionally, they replaced the conventional linear function, based on the degradation
mechanism, with a piece-wise RUL technique. In conclusion, the authors affirmed that augmenting the length
of the time window could enhance the accuracy of their proposed model. In another study conducted by Zhang
et al. [35] they employed CNN-based extreming gradient boosting (CNN-XGB) utilizing an extended of TW.
This approach aimed to address challenges within aero-engine systems that often function across diverse oper-
ating conditions. These variations might impact the system’s degradation path differently, potentially hindering
the accuracy of RUL prediction. The suggested method underwent validation utilizing NASA C-MAPSS tur-
bofan aero-engine datasets. It resulted in an RMSE of 20.3, with a reported training duration of 621.7 seconds.
Wang et al. [36] proposed the MS-CNN to estimate the RUL of rolling bearing. The suggested approach by
Liu ef al. [36] aims to overcome the capability to learn local and global features synchronously limited to
conventional CNN. Convolution filters with varying dilution rates were combined to form a dilated convolution
block capable of learning features in a variety of receptive fields. Concatenating numerous stacked, integrated,
and dilated convolution blocks varied depths allowed for the extraction of local and global features. The pro-
posed method’s effectiveness was validated by a benchmark dataset bearing called PRONOSTIA. Hence, in
this study, we aimed to investigate different DNN models for RUL estimation to determine the technique with
an excellent feature extraction and high capability to expect the RUL of a turbofan engine.

3. MATERIALS AND METHODS

This research utilizes a comparative analysis method to assess how effectively four prominent deep
learning models can predict the RUL of various engines units. The proposed DNN-based models are rigorously
trained and evaluated using well-known performance metrics. The initial section of the proposed methodology
is dedicated to describing the four candidate deep learning models, while the subsequent sections outline the
final two stages of the methodology.

3.1. Candidate model training and optimization

This part offers an in-depth overview of the DNN structures and optimization strategies implemented
for creating candidate models to predict the RUL of turbofan engines. To achieve this goal, several commonly
used NN architectures, including CNNs, RNNs, gated recurrent unit (GRU), and LSTM, were employed in
this study. In addition, we applied the randomized hyperparameter search method, similar to that described
in [34], to enhance the performance of the DNN models. This approach involves conducting a random search
across a broad hyperparameter space, allowing for the identification of optimal hyperparameters with limited
computational efforts. Specifically, we randomly sampled hyperparameters, created models using these param-
eters, and evaluated their performance. Subsequent subsections will provide concise descriptions of each DNN
architecture used in this study for the RUL prediction of turbofan engines.

3.1.1. RNNs

Traditional DNNs have a limitation in that the individual neuron weights cannot identify exact rep-
resentations of features for the corresponding RUL due to the complex system structure. To overcome this
limitation, RNNs address this issue by incorporating a loop mechanism that operates over time steps. Specifi-
cally, a sequence vector {1, ..., x,} through a recurrence formula r; = f,(r:—1,x+), where f represents the
activation function, « represents a set of parameters used at each time step ¢, and x; is the input at timestep ¢
[37]. This research explores three types of recurrent neurons for developing candidate RNN-based models: a
basic RNN unit, GRU, and LSTM unit. The parameters controlling the connections between the hidden layers
and input, as well as the connections between activations starting from the hidden layer and extending to the
output layer, remain constant throughout each time step in a vanilla recurrent neuron. The operation of a fun-
damental recurrent neuron during the forward passing can be formulated in a specific manner, which will be
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elaborated on in the subsequent sections.
at — g(Wa[a<t71>,Xt] + ba) (1)

At each timestep ¢, the activation function g is denoted by g, where ¢ represents the current timestep
and X represents the input at that timestep. The bias is represented by b,, and W, represents the cumulative
weights at timestep ¢ for the activation output denoted by a’. The output of the activation, a’, can be utilized to
generate forecasts for y; at time ¢, if required.

The model employs an embedding layer to map the RUL into a vector space of dimension R20,
transforming semantic relationships into geometric ones. The successive layers of the DNN examine these
geometric shapes in order to identify and understand complex feature representations, which are then evaluated
by the output layer to make predictions, employing a singular sigmoid unit. Despite the effectiveness of DNNs
using basic RNN neurons in several domains, these models encounter challenges pertaining to the vanishing
gradient problem and their limited capacity to capture long-term relationships. In order to address these obsta-
cles, the scholarly community has suggested alternate designs for recurrent neurons, namely the GRU [38]] and
the LSTM [39], which have shown improved performance in mitigating the vanishing gradients problem and
aiding the acquisition of long-term dependence [40]].

Nascer et al. [41] presented a GRU model that demonstrates enhanced efficacy in the task of long-
term relationship learning within time-series datasets. The operational characteristics of the GRU may be
mathematically described using the following set of equations:

H' = tanh(W, [T, « H', X'] + b,) 3)
L, =o(W,.[H*Y Xt +b,) 4)
Ly = oW [H Y, X +b,) ©)
H' =T, -H +(1-T,) - H=Y 6)
ot = H' )

W,., W, and W,, are the weight matrices, while b, b., and b, are the bias terms for the input X,
at each time step t. o represents the logistic regression function, and a! is the activation value at time step
t. Except for GRU neurons, the RNN model employing GRU is similar to those using plain RNN neurons.
Table 2] shows the GRU-based RNN model architecture for RUL estimation. Hochreiter and Schmidhuber [39]
added the LSTM neuron, which improved on the RNN unit and made the GRU more robust. The following
differences between GRU and LSTM cells:

— In standard LSTM units, there is no significant gate like I',. used in the computation of ",

— LSTM units utilize two distinct gates, namely the output gate I', and the update gate I',,, instead of just
relying on an update gate I',,. The activation outputs of the LSTM unit for other hidden units in the network
are computed by the output gate, which monitors the visibility of the content in the memory cell (H?).
In contrast, the update gate regulates the extent of information replacement on the previous hidden state,
H®=1 in order to get the updated hidden state, H*. This process entails the determination of the extent to
which information stored in memory cells should be discarded in order to guarantee optimal functionality.

— LSTM units employ two apparent gates in place of a single update gate I',, found in GRU units. These are
the output gate I', and the forget gate I',,. The output gate is responsible for regulating the visibility of the
memory cell content H* in calculating the activation outputs of the LSTM unit for other hidden units in the
network. The forget gate, on the other hand, manages the degree to which the previous memory content
H(=1 is overwritten to produce H*. This involves determining the extent to which information in the
memory cell should be disregarded to maintain effective functioning.

— A key difference between LSTM and GRU architectures is that in LSTM, the content of the memory cell
H* might not be the same as the activation value a! at time t.
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Furthermore, the LSTM model which is based on the RNN method was developed with an architec-
tural design that has a strong resemblance to both the GRU and basic RNN models. The only differentiation
exists in the use of LSTM units inside the recurrent layers. Figure 1 is structure of a deep RNN-based model

proposed for RUL estimation.
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Figure 1. Structure of a deep RNN-based model proposed for RUL estimation

3.1.2. CNNs

CNNs are particularly effective at processing learning tasks that entail complex spatial patterns in
high-dimensional input data. Such challenges are prevalent in various domains, including, but not limited to,
image processing [42], video analysis [43]], analysis of amino acid sequences [41]], [44] and the examination of
time-series failure signals. The primary objective of CNNs is to learn hierarchical filters capable of transform-
ing large input data into precise class labels while employing a minimal number of trainable parameters. This
transformation is accomplished through sparse interactions between the input data and trainable parameters,
facilitated by a mechanism known as parameter sharing. This method allows CNNs to acquire representations
that are equivariant, also known as feature maps, of the intricate and spatially organized input data [45]. In a
deep CNN, the units in the deep layers have the ability to indirectly interact with a significant percentage of the
input data. This is achieved through the use of pooling operations. Pooling operations streamline the output at
a particular point by employing a statistical summary, enabling the network of the model to acquire intricate
properties from this compacted representation map [[10]. The topmost section of the CNN typically includes
many fully connected layers (FCL), including the output layer, leveraging the intricate information acquired by
the preceding layers to make predictions.

The architecture based on CNN that is used for the RUL prediction, which consists of two convolution-
maxpool blocks in the embedding layer, a global average layer, and an output layer of the sigmoid neuron. The
learning efficiency of the CNN model is significantly improved through the use of multiple non-linear feature
extractions. This enables the model to autonomously learn hierarchical data representations. Consequently, the
size of the convolution kernel and the quantity of convolution layers greatly influence the model’s predictive
capabilities. Figure 2]illustrates the CNN architecture designed for RUL estimation in this study. The initial
input data are in a two-dimensional (2D) format, where one dimension represents the feature number in a 1D
format, and the other dimension corresponds to the sensor’s time sequence, also in 1D.

Fully Connected Layer

Tnput 30 ¥14 —

e Dropout
*  Regularization g RUL
Prediction

ing Layer [

Time Sequence L |
ID Conv & Maspool 1D Conv & Maxpool | T

Feature Map 5*1 Flatten Layer

Figure 2. The proposed architecture for RUL prediction using a deep CNN
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After that, the CNN model processes the input data through four convolutional layers, each with a
similar structure, to extract features. These extracted features are then integrated with a convolutional layer
equipped with a single filter, sized 3 x 1. After the feature maps are flattened, they are connected to a fully
connected layer. To mitigate overfitting, a dropout method is applied. The activation function for each layer is
the ReLU. In this research, the optimization of the model is handled by the Stochastic Gradient Descent (SGD)
algorithm. Considering the current characteristics of the turbofan aeroengine datasets, our models has been
adjusted to impose a higher penalty for delayed (lag) predictions. The formulation of this loss is specified as
follows in the study.

N

1
loss = N E:w(yz —9i)? (8)

i=1

Where y; is the actual value and ; is the predicted value. N is the validation set sample count. Penalty
coefficient w is set to 1 if real value y; exceeds anticipated value ¢;, and to 2 if actual value is less than expected
value.

3.2. Data pre-processing and normalization

In practical scenarios, raw data from sensors, operational parameters, and run-to-failure information
are typically accessible. To prepare the data for training and testing, it is necessary to standardize the values of
each sensor, as the scales may be different. In the experiment conducted, data from 21 sensors were utilized,
and any anomalous or unvarying data was excluded. The normalization technique used is Min-Max scaler, was
applied to each feature to scale the data into a range between 0 and 1. In addition, for systems where the health
decay is not linear from the beginning of operations, piece-wise functions can be used to enhance the precision
of the estimated RUL! .. Also, if information about varying workloads, operational environments, and specific
modes of deterioration is available, it can be integrated into the RUL estimation model to further refine its
accuracy in certain applications. Figure [3] explains the measurement and the raw input of FD0O1 dataset for

RUL of each sensor.
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Figure 3. RUL display plot for each sensor measurement and the raw input of FDOO1 dataset

The second method is Min-Max normalization, which involves scaling the raw data from the sensors to
fit within the range of 0 and 1. To achieve this, the sensor’s minimum and maximum readings data are identified,
and these values are used to map the data onto the range -1 and 1. The normalized sensor output Z; is calculated
by taking the ratio of the difference between the original sensor output z; and the minimum value, to the range,
which is the difference between the maximum and minimum values. It is important to note that normalization
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is necessary because different sensors may have different value scales, and normalizing the data allows for
fair comparison and accurate training and testing of the models. Furthermore, in certain applications, such
as those with non-linear RUL decay, piece-wise functions can be used to adjust the estimated RUL!,,. goals.
Incorporating knowledge of different workloads, operational environments, and deterioration modes into the
RUL estimation model can also improve its accuracy if such information is available.

Xg _ X~ min?cl- ©)

max x; — minx;

Additionally, to incorporate multivariable temporal information, a time window (TW) approach is
adopted, as previously done in a study [10]. For the training dataset FDOO1, a TW length of 30 was selected,
and all historical data within the TW was extracted to form a high-dimensional input vector. This vector has a
length of 14 x 30, using 14 out of the 21 available sensors as raw input features. In this study, the developed
DNN-based models were specifically intended to forecast the RUL of aero-engines operating under a single
condition. Consequently, the FDOO1 dataset, which comprises data collected under a single operating condition,
was chosen for experimental analysis. The structure of the network used for feature extraction was adapted to
align with the dynamic qualities of the operational data of an aero-engine, which can vary across different
operating conditions.

3.3. Performance metrics

In this study, prognostic performance was assessed using three metrics: R-squared (R?), mean ab-
solute error (MAE), and RMSE. The rationale behind the selection of these three indicators is their extensive
application in cutting-edge model performance assessment. The first evaluation metric, RMSE, is presented:

RMSE = (10)
MAE is the sum of anticipated errors or the mean of all absolute errors:
1
MAE = — Xp—X 11
w2 |Xr = X1 (11)

Thus, X p is estimated data, X is the ground truth data, and n is the number of samples. Statistical
measure is R2 shows how much of the variation of a dependent variable can be accounted for by an independent
variable:

RSS

2
=1—- —
R TSS

(12)
where TSS is the total sum of squares, RSS is the sum of residual squares, and R? is the determination coeffi-
cient.

3.3.1. Prognostic procedure

Figure [4] shows the multi-phase prognostic experimental strategy. Preprocessing began with the ex-
traction of 14 raw sensor values and normalization to scale the FDOO1 dataset inside the [-1, 1] range. We
then produced training and testing datasets with time sequence information limited to Ntw. DNN models used
pre-provided 2D standardized data. It was unnecessary to manually construct signal processing features like
skewness and kurtosis. Thus, no prognostics or signal processing knowledge is required. This was followed by
building the proposed deep neural network models for life RUL prediction and specifying their hidden layer
count, convolution filter size, and other parameters. The DNN models were trained using normalized train-
ing data and labeled RUL values for training samples. Back-propagation learning and mini-batches in SGD
updated the network’s weight. To train each epoch, the data were randomly divided into several tiny batches
of 512 samples. Use the micro batch mean loss function to tweak each layer’s weights in the training deep
neural network model. Experimental experiments determined the best batch size of 512 samples, which was
employed in all case studies. To assure convergence, a variable learning rate was used, starting at 0.005 for the
first 25 optimization epochs and then progressing to 0.001. DNN candidate models cannot exceed 250 training
epochs by default.

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 1, January 2026: 283-299



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 291

Data Processing Training DNN Candidate Models

i \ i | | |
! C-MAPSS Dataset ! a— Build DNN Architecture |
| ¢ | | / |
i Feature selection i i Initialize DNN Parameters i
e * e ! 5
! Construct time-order characteristics | ' Train DNN using back-propagation |
: v : | :
E Data normalization E 3 End training DNN E
i v i i model i
E Labeling and splitting RUL | N !

. .. . —
dataset into training and testing ‘

Train DNN model
v

Input testing dataset

v
Output RUL
estimations

'

Evaluate findings

Figure 4. Prediction process of our proposed approach

4. EXPERIMENTAL RESULTS

This section presents a summary of the experimental findings and discusses their significance. Firstly,
the C-MAPSS benchmark dataset is introduced in the first subsection. Secondly, the experimental results and
performance analysis are presented in the second subsection. Finally, the last subsection provides a comparative
analysis with existing literature.

4.1. Benchmark dataset for C-MAPSS

The C-MAPSS dataset serves as a widely utilized resource in advanced prognostic research, compris-
ing four sub-datasets that depict the engine’s behavior under diverse operational conditions and mechanisms
of failure [46]. Each subset includes both training and testing sets, accompanied by actual RUL values. These
subsets are characterized by 21 sensors and three operational settings [47]]. Each engine unit undergoes distinct
levels of deterioration, gradually degrading over time until it reaches a point of system failure, marking the
culmination of an unhealthy operational cycle. As a result, sensor recordings in the testing set cease before the
occurrence of the system fault. The dataset is presented in a compressed text format, where individual rows
signify data snapshots taken within a single operational cycle, and each column corresponds to a distinct vari-
able. Tablel [I|provide comprehensive details about the dataset. The objective of the experiment was to predict
the RUL of the engine unit in the testing set and that of a single-engine unit. For the purposes of this research,
only the first subset of data labeled FD0O1 was utilized for the verification of the DNN models. Consequently,
this data subset consisted of 100 training samples and 100 test samples.

Table 1. Description of C-MAPSS benchmark dataset
C-MAPSS Dataset FDO0O01

Engine units for training 100
Engine units for testing 100
Operating conditions 1

Fault modes 1
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4.2. Analyses of candidate model performance and experimental results for 100 testing engines

This subsection discusses the prognostic performance of the suggested DNN-based models for RUL
estimation. An analysis was conducted to investigate the effects of various factors on the outcomes, such as the
quantity of concealed layers and residual scatter plots for each model. The comparison of the deep structure
of the proposed four models with that of other prominent NN architectures demonstrated the proposed DNN-
based models’ effectiveness. Additionally, the proposed approach’s superiority was proven by comparing the
most recent state-of-the-art prognostic outcomes on the same C-MAPSS dataset. Figure [5] shows the RNN-
based model prediction for 100 engine units in the FDOO1 dataset. The graph’s X-axis represents the actual
RUL values, where the Y-axis of the graph denotes the predicted RUL values across the whole testing dataset.
Figure [6] shows FDOO1 test dataset residual analysis of an LSTM-based model (best model).

RUL Actual vs. Predicted

350

300

250

200

Predicted RUL

0 0 100 150 200 50 300 330
Actual RUL

Figure 5. Sorting predication for the 100 testing engine units in FD0O1 using the LSTM-based model

LSTM Residual counts

Count

Residual

LSTM Residual Scatter Plot

Residual

160
Predicted

Figure 6. FDOO1 test dataset residual analysis of an LSTM-based model (best model)

5.  RESULT AND ANALYSIS

After analysing the evaluation metrics, it becomes evident that the decision tree classifier (DTC) and
XGBoost Classifier (XGBC) models display the most elevated accuracy scores in comparison to the other mod-
els. Nonetheless, when scrutinizing the precision and recall scores, it is clear that the DTC exhibits the lowest

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 1, January 2026: 283-299



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 293

values. This means that the DTC is more likely than the other models to produce a larger number of false posi-
tives and a lower number of true positives. Conversely, the XGBC model showcases the highest precision and
recall scores, indicating that it has a lower probability of producing false positives and a higher probability of
generating true positives than the other models. Residual analysis is a popular assessment measure in regression
issues that tries to assess the goodness of fit of a model by establishing residuals and studying residual plots.
A residual (e) is precisely the discrepancy between the observed and predicted values of a dependent variable
(y) and its corresponding estimated value (¢);). The residual (e;) for the (i)h data point may be expressed as
follows:

€ =i —Yi (13)

The evaluation of a regression model can be conducted through residual analysis, a method that as-
sesses the model’s suitability by investigating the plots of residual. A residual (e) represents the disparity
between the dependent variable’s measured value (y;) and its predicted value (y;) for a specific data point (2).
Residual analysis is instrumental in identifying whether the model tends to under- or over-estimate. Over-
estimation occurs when e; > 0, indicating consistent over-prediction (7;) compared to actual scores (y;).
Conversely, under-estimation is indicated by e ; <, signifying persistent predictions of (¢;) being lower than
(yi)-

Residual plots unveil valuable insights into model behavior by revealing patterns of under- or over-
estimation. An ideal regression model achieves a balance between over- and under-estimation, resulting in a
symmetric distribution of residuals (ei) around 0, with approximately equal instances above and below zero.
These insights are graphically presented using scatter plots and distribution plots, illustrating the distribution of
(ei) around 0. The extent of skewness in the residual distribution indicates the model’s bias, with a more skewed
distribution suggesting greater bias, and conversely. Figures 6 display the residual analysis of the LSTM-based
model for the FDOOI test data.

5.1. Analysis of experimental results and the performance of candidate models for single-engine pre-
diction

This section assesses and examines several DNN models for predicting the RUL of turbofan engines.
The actual and predicted RUL values of the testing units are compared to enhance the analysis of prognostic
performance. This comparison is illustrated in Figure 7, where the testing units are arranged in ascending
order based on their actual RUL. Figure 7 also presents the RUL prediction results obtained from the LSTM
architecture in the initial validation test, including two randomly selected examples. Figure 7(a) shows the
RUL estimation for Engine #53, while Figure 7(b) illustrates the RUL prediction for Engine #91. Furthermore,
the predicted RUL values generated by the proposed LSTM architecture demonstrate a close agreement with
the actual RUL for two randomly selected engines, as further illustrated in Figure 8.

Engine 53 Actual vs. Predicted RUL Engine 91 Actual vs. Predicted RUL
200
— RUL 140 —— RUL
N
175 Pradicted RUL ‘\_\ Predicted RUL
120 i
150 1 el
Tl 100 k!
125 W | \\\
= 100 A =%
2 N 2 N
= oy 60 I
N ~~
50 Py 40 W, L)
%W, |
25 My 20 \"‘\
Y N
o 0 S~
o 25 s 75 100 135 150 155 200 0 0 M@ &0 8@ 100 120 140
time_in_cycles time_in_cycles
(a) (b)

Figure 7. Displays the results of the RUL forecast obtained from the LSTM architecture in the initial
verification test; (a) depicts the RUL estimate for the first randomly chosen example, Engine #53 and
(b) exhibits the RUL prognosis for the second randomly chosen example, Engine #91
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Figure 8 presents the RUL prediction results obtained using the proposed GRU architecture in the
second validation test. The comparison between actual and predicted RUL values demonstrates the effective-
ness of the GRU model in capturing degradation trends. In particular, Figure 8(a) illustrates the RUL forecast
for the first randomly selected example, Engine #2, while Figure 8(b) depicts the RUL forecast for the second
randomly selected example, Engine #51.

200 Engine 2 Actual vs. Predicted RUL Engine 51 Actual vs. Predicted RUL
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Figure 8. Presents the RUL prediction results obtained through the proposed GRU architecture in the second
validation test; (a) illustrates the RUL forecast for the first randomly chosen example (Engine #2) and
(b) depicts the RUL forecast for the second randomly chosen example (Engine #51)

The second verification test, which employed a candidate model based on a GRU, demonstrated the
model’s capacity to accurately predict the RUL for two randomly selected instances (engines 2 and 52), as
shown in Figure 0] The third verification test utilized a S-RNN candidate model architecture. The results
showed that the RUL estimation was less precise compared to the other two RNN techniques, specifically GRU
and LSTM. In this figure, Figure 9(a) displays the RUL forecast for the first randomly selected example, Engine
#5, while Figure 9(b) illustrates the RUL forecast for the second randomly selected example, Engine #54.
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Figure 9. The RUL prediction outcomes utilizing the proposed S-RNN architecture in the third verification
test are presented (a) displays the RUL forecast for the first randomly chosen example (Engine #5) and (b)
illustrates the RUL forecast for the second randomly chosen example (Engine #54)

Ultimately, the fourth verification test employed the suggested CNN candidate model, showcasing
the predicted RUL findings in Figure The CNN-based model had relatively inferior performance in both
instances. Therefore, in this work, the LSTM-based model exhibited greater performance in comparison to the
CNN, S-RNN, and GRU models in both evaluated scenarios. In this figure, Figure 10(a) shows the estimated
RUL for the first randomly selected example, Engine #55, while Figure 10(b) illustrates the forecasted RUL for
the second randomly selected instance, Engine #95.
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Figure 10. Displays the results of the RUL forecast generated from the proposed CNN architecture during the
fourth verification test; (a) shows the estimated RUL for the first randomly chosen example, Engine #55 and
(b) illustrates the forecasted RUL for the second randomly chosen instance, Engine #95

5.2. Comparison with literature

In this section, a comparative analysis is presented between the proposed four Deep Neural Network
(DNN)-based predictors and state-of-the-art techniques for RUL prediction. Prior research has utilized diverse
DL techniques to predict RUL using the C-MAPSS benchmark dataset. Table 2]summarizes the comparison of
the proposed deep candidate models with contributions from the current literature. While the table exclusively
presents available metrics, it underscores the promising outcomes achieved by the proposed DNN-based pre-
dictor. The experimental findings affirm that the proposed DNN-based predictors exhibit superior performance
compared to other methods previously employed for predicting RUL on the independent testing dataset of the
benchmark. It is noteworthy that, with the exception of a single study reporting better results, the proposed
DNN-based predictors consistently outperform prior approaches. Table [2] presents a comparison between our
proposed GRU-based and LSTM-based models and the previous models reported in the literature. The experi-
mental results show that our proposed models outperform all the previous models. The only study that achieved
better performance is presented by [[10], who used five convolution layers with different filter sizes. However,
the network structure of our proposed DNN model is different. Through the combination of the Time-Warping
(TW) approach and temporal information of signals, the LSTM-based predictor demonstrates proficiency in
capturing long-range relationships and extracting characteristics from the time-frequency domain.

Table 2. Compares the proposed DNNs-based approach to comparable literature contributions

L FDO001

Prediction model MAE RMSE R2
Proposed CNN Predictor 8.54 21.88 0.2852
Proposed SRNN Predictor 545 17.13 0.4201
Proposed GRU Predictor 2.18 16.32 0.4350
Proposed LSTM Predictor 2.03 15.30 0.4354
Echo State Network with Kalman Filter [48]  Not Reported  63.46 ~ Not Reported
SVM [48] Not Reported ~ 29.82  Not Reported
MLP [19] Not Reported 37.56 Not Reported
Deep CNN [19] Not Reported 18.45  Not Reported
DW-RNN [49] Not Reported 22.52 Not Reported
MTL-RNN [49] Not Reported ~ 21.47  Not Reported

Experimental results indicate that an augmentation in the sliding TW corresponds to enhanced ac-

curacy in predicting RUL. The proposed improved LSTM-based model exhibits precise RUL predictions for
aero-engines without necessitating an in-depth understanding of engine construction, failure mechanisms, or
specialized knowledge and expertise. This study streamlines the modeling process and serves as a practical
decision-making tool for aircraft engine maintenance and health management.
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6. CONCLUSION

To conclude, achieving effective predictive maintenance and preventing catastrophic failures and ca-
sualties can be accomplished through the use of a reliable and accurate estimate of RUL. Furthermore, the in-
creasing adoption of intelligent manufacturing has led to the increased interest in data-driven RUL techniques
among academic and engineering communities. Four distinct DNN models were developed in this study to
accurately predict the RUL of a turbofan engine. The models were trained and evaluated using the C-MAPSS
benchmark dataset. Precisely forecasting the RUL of aero-engines is crucial for enhancing the dependabil-
ity and security of aero-engine systems. The LSTM-based and GRU-based learning models exhibit superior
prediction accuracy compared to the other models when their results are compared. Moreover, as the level of
deterioration intensifies, the forecast outcomes become increasingly precise. Although the suggested method
has shown encouraging experimental outcomes, there is potential for additional enhancement of the structure
in future research. More precisely, the suggested method will be expanded to encompass the forecasting of
RUL for additional subsets of data and for turbofan engines running in varying situations. As the operating cir-
cumstances get more complicated, predicting the RUL becomes increasingly problematic, therefore requiring
additional analysis.

FUNDING INFORMATION

The study mentioned in this paper is funded by Universiti Teknologi PETRONAS through the Yayasan
Universiti Teknologi PETRONAS Fundamental Grant (015LCO-311) and Yayasan Universiti Teknologi
PETRONAS Prototype Grant (015PBC-027).

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this study.

REFERENCES

[1]  C.Peng, Y. Chen, Q. Chen, Z. Tang, L. Li, and W. Gui, “A remaining useful life prognosis of turbofan engine using temporal and
spatial feature fusion,” Sensors, vol. 21, no. 2, p. 418, 2021.

[2]  A. Muneer, S. M. Taib, S. M. Fati, A. O. Balogun, and 1. A. Aziz, “A hybrid deep learning-based unsupervised anomaly detection
in high dimensional data,” Computers, Materials & Continua, vol. 70, no. 3, 2022.

[3] J. Wei, P. Bai, D. Qin, T. C. Lim, P. Yang, and H. Zhang, “Study on vibration characteristics of fan shaft of geared turbofan engine
with sudden imbalance caused by blade off,” Journal of Vibration and Acoustics, vol. 140, no. 4, p. 041010, 2018.

[4] P. Zschech, J. Bernien, and K. Heinrich, “Towards a taxonomic benchmarking framework for predictive maintenance: The case of
nasa’s turbofan degradation,” in ICIS, 2019.

[5] H. Tuzcu, Y. Sohret, and H. Caliskan, “Energy, environment and enviroeconomic analyses and assessments of the turbofan engine
used in aviation industry,” Environmental Progress & Sustainable Energy, vol. 40, no. 3, p. €13547, 2021.

[6] Y. You, J. Sun, B. Ge, D. Zhao, and J. Jiang, “A data-driven m2 approach for evidential network structure learning,” Knowledge-
Based Systems, vol. 187, p. 104810, 2020.

[71  F. N.B. Sohaidan, A. Muneer, and S. M. Taib, “Remaining useful life prediction of turbofan engine using long-short term memory,”
in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). IEEE, 2021,
pp. 1-6.

[8] P.R.D.O.Da Costa, A. Akcay, Y. Zhang, and U. Kaymak, “Attention and long short-term memory network for remaining useful
lifetime predictions of turbofan engine degradation,” International journal of prognostics and health management, vol. 10, no. 4,
2019.

[91 S. Ghorbani and K. Salahshoor, “Estimating remaining useful life of turbofan engine using data-level fusion and feature-level
fusion,” Journal of Failure Analysis and Prevention, vol. 20, pp. 323-332, 2020.

[10] X.Li, Q.Ding, and J.-Q. Sun, “Remaining useful life estimation in prognostics using deep convolution neural networks,” Reliability
Engineering & System Safety, vol. 172, pp. 1-11, 2018.

[11] F. Elasha, S. Shanbr, X. Li, and D. Mba, “Prognosis of a wind turbine gearbox bearing using supervised machine learning,” Sensors,
vol. 19, no. 14, p. 3092, 2019.

[12] G. Hou, S. Xu, N. Zhou, L. Yang, and Q. Fu, “Remaining useful life estimation using deep convolutional generative adversarial
networks based on an autoencoder scheme,” Computational Intelligence and Neuroscience, vol. 2020, 2020.

[13] G. Zhao, S. Wu, and H. Rong, “A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine,”
Journal of Xi’an Jiaotong University, vol. 51, no. 11, pp. 150-155, 2017.

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 1, January 2026: 283-299



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 297

[14]
[15]
[16]
[17]
[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35]

Z. Zhang, X. Si, C. Hu, and Y. Lei, “Degradation data analysis and remaining useful life estimation: A review on wiener-process-
based methods,” European Journal of Operational Research, vol. 271, no. 3, pp. 775-796, 2018.

Z.Zhao, B. Liang, X. Wang, and W. Lu, “Remaining useful life prediction of aircraft engine based on degradation pattern learning,”
Reliability Engineering & System Safety, vol. 164, pp. 74-83,2017.

L. Wen, Y. Dong, and L. Gao, “A new ensemble residual convolutional neural network for remaining useful life estimation,” Math.
Biosci. Eng, vol. 16, no. 2, pp. 862-880, 2019.

J. Wang, J. Zhang, and X. Wang, “A data driven cycle time prediction with feature selection in a semiconductor wafer fabrication
system,” IEEE Transactions on Semiconductor Manufacturing, vol. 31, no. 1, pp. 173182, 2018.

A. Z. Hinchi and M. Tkiouat, “Rolling element bearing remaining useful life estimation based on a convolutional long-short-term
memory network,” Procedia Computer Science, vol. 127, pp. 123-132, 2018.

G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network based regression approach for estimation of remaining useful
life,” in Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19,
2016, Proceedings, Part I 21. Springer, 2016, pp. 214-228.

L. Ren, Y. Sun, H. Wang, and L. Zhang, “Prediction of bearing remaining useful life with deep convolution neural network,” IEEE
access, vol. 6, pp. 13 041-13 049, 2018.

X. Chen, S. Wang, B. Qiao, and Q. Chen, “Basic research on machinery fault diagnostics: Past, present, and future trends,” Frontiers
of Mechanical Engineering, vol. 13, pp. 264-291, 2018.

A. Fentaye, A. Baheta, S. Gilani, and K. Kyprianidis, “A review on gas turbine gas-path diagnostics: State-of-the-art methods,
challenges and opportunities,” Aerospace, vol.6, no.7, 2019.

O. Fink, E. Zio, and U. Weidmann, “Predicting component reliability and level of degradation with complex-valued neural net-
works,” Reliability Engineering & System Safety, vol. 121, pp. 198-206, 2014.

T. Khawaja, G. Vachtsevanos, and B. Wu, “Reasoning about uncertainty in prognosis: a confidence prediction neural network
approach,” in NAFIPS 2005-2005 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2005, pp.
7-12.

A. Malhi, R. Yan, and R. X. Gao, “Prognosis of defect propagation based on recurrent neural networks,” IEEE Transactions on
Instrumentation and Measurement, vol. 60, no. 3, pp. 703-711, 2011.

R. Zhao, J. Wang, R. Yan, and K. Mao, “Machine health monitoring with Istm networks,” in 2016 10th international conference on
sensing technology (ICST). IEEE, 2016, pp. 1-6.

L. Liao, W. Jin, and R. Pavel, “Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health
assessment,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7076-7083, 2016.

C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief networks ensemble for remaining useful life estimation in
prognostics,” IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2306-2318, 2016.

S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-term memory network for remaining useful life estimation,” in 2017
IEEE international conference on prognostics and health management (ICPHM). IEEE, 2017, pp. 88-95.

A. Muneer, S. M. Taib, S. Naseer, R. F. Ali, and I. A. Aziz, “Data-driven deep learning-based attention mechanism for remaining
useful life prediction: Case study application to turbofan engine analysis,” Electronics, vol. 10, no. 20, p. 2453, 2021.

A. Muneer, S. M. Taib, S. M. Fati, and H. Alhussian, “Deep-learning based prognosis approach for remaining useful life prediction
of turbofan engine,” Symmetry, vol. 13, no. 10, p. 1861, 2021.

L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional neural network-based data-driven fault diagnosis method,” IEEE
Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5990-5998, 2017.

J. Zhu, N. Chen, and W. Peng, “Estimation of bearing remaining useful life based on multiscale convolutional neural network,”
IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 3208-3216, 2018.

J. Li, X. Li, and D. He, “A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction,”
IEEE Access, vol. 7, pp. 75 464-75 475, 2019.

X. Zhang et al., “Remaining useful life estimation using cnn-xgb with extended time window,” IEEE Access, vol. 7, pp. 154 386-154
397, 2019.

H. Liu, R. Yuan, Y. Lv, H. Li, E. D. Gedikli, and G. Song, “Remaining useful life prediction of rolling bearings based on segmented
relative phase space warping and particle filter,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-15, 2022.
A. Muneer, A. Alwadain, M. G. Ragab, and A. Alqushaibi, “Cyberbullying detection on social media using stacking ensemble
learning and enhanced BERT,” Information, vol. 14, no. 8, p. 467, 2023.

K. Cho, B. Van Merri“enboer, D. Bahdanau, and Y. Bengio, “On the properties of neural machine translation: Encoder-decoder
approaches,” arXiv preprint arXiv:1409.1259, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.

S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, and A. Muneer, “LSTM inefficiency in long-term dependencies regression prob-
lems,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 30, no. 3, pp. 16-31, 2023.

S. Naseer, R. F. Ali, A. Muneer, and S. M. Fati, “lamidev-deep: Valine amidation site prediction in proteins using deep learning and
pseudo amino acid compositions,” Symmetry, vol. 13, no. 4, p. 560, 2021.

V. Durairajah, S. Gobee, and A. Muneer, “Automatic vision based classification system using DNN and SVM classifiers,” in 2018
3rd International Conference on Control, Robotics and Cybernetics (CRC). IEEE, 2018, pp. 6-14.

A. Muneer and S. M. Fati, “Efficient and automated herbs classification approach based on shape and texture features using deep
learning,” IEEE Access, vol. 8, pp. 196 747-196 764, 2020.

S. Naseer, R. F. Ali, S. M. Fati, and A. Muneer, “Computational identification of 4-carboxyglutamate sites to supplement physio-
logical studies using deep learning,” Scientific Reports, vol. 12, no. 1, p. 128, 2022.

S. Naseer and Y. Saleem, “Enhanced network intrusion detection using deep convolutional neural networks,” KSII Transactions on
Internet and Information Systems (TIIS), vol. 12, no. 10, pp. 5159-5178, 2018.

D. K. Frederick, J. A. DeCastro, and J. S. Litt, “User’s guide for the commercial modular aero-propulsion system simulation
(c-mapss),” Tech. Rep., 2007.

Remaining useful life estimation of turbofan engine: a sliding time window ... (Alawi Alqushaibi)



298 a ISSN: 2502-4752

[47] R.Huang, L. Xi, X. Li, C. R. Liu, H. Qiu, and J. Lee, “Residual life predictions for ball bearings based on self-organizing map and
back propagation neural network methods,” Mechanical systems and signal processing, vol. 21, no. 1, pp. 193-207, 2007.

[48] C. Louen, S. Ding, and C. Kandler, “A new framework for remaining useful life estimation using support vector machine classifier,”
in 2013 Conference on Control and Fault-Tolerant Systems (SysTol). IEEE, 2013, pp. 228-233.

[49] K. Aggarwal, O. Atan, A. K. Farahat, C. Zhang, K. Ristovski, and C. Gupta, “Two birds with one network: Unifying failure
event prediction and time-to-failure modeling,” in 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp.

1308-1317.
BIOGRAPHIES OF AUTHORS
Alawi Alqushaibi ©© k4 B © is an academic researcher who has focused his research interests in
\ the areas of machine learning, data science, optimization, feature selection, classification, data ana-
{! = !] lytics, and image processing, specifically in Generative Adversarial Networks (GANs). He received
S his B.Sc. degree in Computer Networks and Security from Universiti Teknologi Malaysia in 2012,

@ and his Master’s degree by research from Universiti Teknologi PETRONAS in 2021. During his
\ < academic journey, He has acquired knowledge and skills in conducting independent research, pro-
7 M ducing academic writing, and teaching computer science courses. He can be contacted at email:
i

alawi_18000555 @utp.edu.my.

Mohd Hilmi Hasan © & Ed © Dr Mohd Hilmi Hasan is an associate professor and chair of the
computer and information sciences department at Universiti Teknologi Petronas. He joined UTP in
2004 and his research interests in data science and data analytics led to his attachment to the Centre
for Research in Data Science. His work in industry-based projects involves the whole spectrum of the
data science cycle and managing big data, including the study and development of appropriate system
architecture and platforms. He also carries out fundamental research in fuzzy logic type-2 for which
he has secured several grants from the Malaysia government. Dr Hasan sits on the panel of assessors
for the Malaysia accreditation body, and on the panel for the Malaysia Board of Technologists’ Seoul
Accord initiative. He can be contacted at email: mhilmi_hasan@utp.edu.my.

Said Jadid Abdulkadir > k4 Ed © is a (Senior Member, IEEE) received the B.Sc. degree in com-
puter science from Moi University, the M.Sc. degree in computer science from Universiti Teknologi
Malaysia, and the Ph.D. degree in information technology from Universiti Teknologi PETRONAS.
He is currently an Associate Professor with the Department of Computer and Information Sciences,
Universiti Teknologi PETRONAS. His research interests include machine learning, deep learning
architectures, and applications in predictive and streaming analytics. He is serving as a Executive
Committee Member for IEEE Computational Intelligence Society Malaysia chapter and the Editor-
in-Chief for platform journal. He can be contacted at email: saidjadid.a@utp.edu.my.

Shakirah Mohd Taib [/ & Ed 2 is a lecturer and researcher at Center for Research in Data Sci-
ence (CERDAS), Institute of Autonomous Systems and Autonomous Facilities (IAS), in Universiti
Teknologi PETRONAS (UTP), Malaysia. She obtained a bachelor’s degree in information technology
from Universiti Utara Malaysia and Master of Computing from University of Tasmania, Australia.
She has more than 15 years working experience at Universiti Teknologi Petronas (UTP). Her area
of specialization includes data science, machine learning, knowledge discovery and information re-
trieval using Artificial Intelligence techniques. Shakirah is a member of international organization
such as IEEE, Malaysia Board of Technologists (MBOT) and Association for Information Systems
(AIS). She can be contacted at email: shakita@utp.edu.my.

Safwan Mahmood Al-Selwi || 0 B = received his bachelor’s degree in software engineering from
Taiz University, Yemen, in 2012, and his master’s degree in computer applications from Bangalore
University, India, in 2018. He is currently a Research Assistant in the Computer and Information
Sciences department at Universiti Teknologi PETRONAS (UTP), Malaysia. His research interests
include artificial intelligence, machine learning, predictive and time-series analysis, metaheuristic
algorithms, and optimization. He has a total experience of 8 years both in academic institutions
and in the industry. His industry working experience is related to Android applications and website
development. He can be contacted at email: safwan_21002827 @utp.edu.my.

Indonesian J Elec Eng & Comp Sci, Vol. 41, No. 1, January 2026: 283-299


https://orcid.org/0000-0002-3001-1224
https://scholar.google.com/citations?user=7B_-M3YAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57217202651
https://www.webofscience.com/wos/author/record/33372047
https://orcid.org/0000-0002-4065-3968
https://scholar.google.com/citations?user=zNr37wYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55057475700
https://orcid.org/0000-0003-0038-3702
https://scholar.google.com.my/citations?user=Uzr-hNoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58045042200
https://orcid.org/0000-0001-6598-3536
https://scholar.google.com/citations?hl=en&user=z_2OKNYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=25646737000
https://orcid.org/0009-0000-2742-213X
https://scholar.google.com/citations?user=t0_UIMMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58398242300

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 299

Mohammed Gamal Ragab 3 received his Bachelor of Science degree in Software Engineering
from Universiti Teknologi PETRONAS in 2019, where he demonstrated a keen interest in machine
learning, computer vision, and data analysis, and has a particular interest in metastatic studies. Fol-
lowing the completion of his undergraduate degree, Mohammed continued his studies at Universiti
Teknologi PETRONAS, pursuing a master’s degree by research in Machine Learning. Currently,
Mohammed is continuing his academic pursuits by pursuing a Ph.D. in Information Technology at
Universiti Teknologi PETRONAS. His ongoing research builds on his previous work, focusing on
the development of new and innovative techniques for optimizing the performance of deep learning
models. He can be contacted at email: mohd.gamal 20497 @utp.edu.my.

Ebrahim Hamid Sumiea 2 b B © received his B.S. degree in Software Engineering from the
renowned Asia Pacific University of Technology & Innovation (APU) in 2014, where he honed his
skills in various programming languages and software development methodologies. He is eager to ex-
plore the fusion of technology and business, Ebrahim pursued a Masters in Management. Currently,
Ebrahim is undertaking his Ph.D. at Universiti Teknologi PETRONAS, delving deeper into the realm
of artificial intelligence. His research primarily revolves around Reinforcement Learning, specifically
in the area of Deep Deterministic Policy Gradient (DDPG). His work aims to leverage DDPG’s po-
tential to address complex problems, demonstrating the powerful capacity of Al to transform various
sectors. He can be contacted at email: ebrahim_22006040 @utp.edu.my.

Remaining useful life estimation of turbofan engine: a sliding time window ... (Alawi Alqushaibi)


https://orcid.org/0000-0001-5226-4962
https://www.scopus.com/authid/detail.uri?authorId=57217725313
https://orcid.org/0000-0002-2829-0842
https://scholar.google.com/citations?hl=en&user=CCcBFUcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57958269800

	Introduction
	Related Work
	Materials and Methods
	Candidate model training and optimization
	RNNs
	CNNs

	Data pre-processing and normalization
	Performance metrics
	Prognostic procedure


	Experimental Results
	Benchmark dataset for C-MAPSS
	Analyses of candidate model performance and experimental results for 100 testing engines

	Result and Analysis
	Analysis of experimental results and the performance of candidate models for single-engine prediction
	Comparison with literature

	Conclusion

