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Abstract 
The public transport infrastructure of a city is one of the most important indicators of its economic 

growth and development. Here we investigate the statistical properties of the public transport network in 
Shenyang to explore its various properties based on complex network theory. The statistical properties of 
the public transport system consist of the degree of a node, the average shortest path length, the 
clustering coefficient of a node, the average clustering coefficient, and the degree distribution. In contrast 
with the small world evolution model, we find that the public transport system of Shenyang, a network of 
public transportation routes connected by bus links, is a small-world network characterized by a Poisson 
degree distribution. Simulation results show that the public transport network exhibits small world behavior 
with N=148. 
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1. Introduction 

Transportation infrastructures are of crucial importance to the development of a country. 
They support movement of goods and people across the country, thereby driving the national 
economy [1]. Roadways, railways, and airways are the major means of transport in China. 
Understanding of these transportation systems is important for reasons of policy, administration 
and efficiency. 

The intricate structure of interactions of many natural and social systems has been 
object of intense research in the new area of complex networks. Most of the effort in this area 
has been directed to find the topological properties of real world networks and understand the 
effects that these properties cast on dynamical processes taking place on these complex 
networks. For instance, the small-world characteristic, where each node of the network is only a 
few connections apart from any other, permits a quick spreading of information through the 
network, being fundamental in processes of global coordination and feedback regulation [2]. 

During the past few years, since the explosion of the complex network science that has 
taken place after works of Watts and Strogatz [3] as well as Barabasi and Albert [4, 5] a lot of 
real-world networks have been examined, such as Internet, WWW, world-wide airport network, 
commutation networks, electric networks, food webs, cell metabolism, scientific research 
cooperation relations, and citation networks [6-8]. The pioneering work of Watts and Strogatz [3] 
opened a completely new field of research. Its main contribution was to show that many real-
world networks have properties of random graphs and properties of regular low dimensional 
lattices. A model that could explain this observed behavior was missing and the proposed 
”small-world” model of the authors turned the interest of a large number of scientist in the 
statistical mechanics community in the direction of this appealing subject [9]. A model was 
proposed for the evolution of weighted evolving networks in an effort to understand the 
statistical properties of real-world systems. The topology of these systems was found to be 
having small-world network features and a two-regime power-law degree distribution.  

Despite this, at the beginning little attention has been paid to transportation networks- 
mediums as much important and also sharing as much complex structure as those previously 
listed. However, during the last few years several public transport systems have been 
investigated using various concepts of statistical physics of complex networks [10]. 
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In this paper, we have studied a part of data for the public transport system in 
Shenyang and we have analyzed their nodes degrees, the average shortest path length, the 
clustering coefficient, the average clustering coefficient, and the degree distribution. In contrast 
with the small world evolution model, our analysis shows that the public transport system has 
small-world network features and has a Poisson distribution. 
 
 
2. The Model of Public Transport Network  

To analyze various properties of the public transport system one should start with a 
definition of a proper network topology. The idea of the space L and P, proposed in a general 
form in [11] and used also in [12] is presented at Figure 1. The first topology (space L) consists 
of nodes representing bus, tramway or underground stops and a link between two nodes exists 
if they are consecutive stops on the route. The node degree k in this topology is just the number 
of directions (it is usually twice the number of all public transport system routes) one can take 
from a given node while the distance l equals to the total number of stops on the path from one 
node to another [10]. 

Although nodes in the space P are the same as in the previous topology, here an edge 
between two nodes means that there is a direct bus, tramway or underground route that links 
them. That is to say, if a route A  consists of nodes ia ( 1,2, ,i n  ),then in the space P the 

nearest nerghbors of the node 1a are 2 3, , , na a a . Consequently the node degree k  in this 

topology is the total number of nodes reachable using a route and the distance can be 
interpreted as a number of transfers one has to take to get from one stop to another.  

Another idea of mapping a structure embedded in two-dimensional space into another, 
dimensionless topology was used, where a plan of the city roads has been mapped into an 
information city network. In the last topology a road represents a node and an intersection 
between roads - an edge, so the network shows information handling that has to be performed 
to get oriented in the city [10]. 

In the paper, we consider the second topology (space P). Such an several other types 
of network systems: Internet, railway or airport networks. 

 
(a)                                                              (b) 

 
Figure 1. Explanation of the Space L (a) and the space P (b) 

 
 
3. Topological Analysis of the Public Transport Network 

Degree of a node is the number of nodes it is directly connected to. Degree of a node i  
is defined as: 
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In a directed network, in-degree (out-degree) of a node is the number of in-coming (out-

going) links. In the public transport network of Shenyang, in-degree ( in
ik ) and out-degree ( out

ik ) 

of the public transport stand for the number of bus terminating-into and number of bus 
originating-from, respectively. We observe that for a very large number of nodes in the public 

transport network in out
i ik k .  
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In a network, the distance between two nodes, labeled  i  and j  respectively, is defined 

as the number of edges along the shortest path connecting them. The average shortest path 
length L  of the network, then, is defined as the mean distance between two nodes, averaged 
over all pairs of nodes. 

The average shortest path length ( L ) for a directed network with N  nodes is defined 
as: 

 

, 1;
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Where ijL  is the shortest path length from node i  to j .  

In terms of network topology, clustering, also known as transitivity, is a typical property 
of acquaintance networks, where two individuals with a common friend are likely to know each 
other [7]. In terms of a generic graph G, transitivity means the presence of a high number of 
triangles. The clustering coefficient ( iC ) of a node is defined as the ratio of number of links 

shared by its neighboring nodes to the maximum number of possible links among them. In other 
words, iC is the probability that two nodes are linked to each other given that they are both 

connected to i [13].  
There are two definitions of the clustering coefficient. Here, we adopt the widely used 

definition given by Watts and Strogatz [3]. 
 

number of triangles connected to vertex 

number of triples centered on vertex 
i

i
c

i
 .                                               (3) 

 

A quantity ic  (the local clustering coefficient of node i ) is first introduced, expressing 

how likely 1jma   for two neighbors j  and m  of node i . Its value is obtained by counting the 

actual number of edges (denoted by ie ) in iG  (the subgraph of neighbors of i ). The local 

clustering coefficient is defined as the ratio between ie  and ( 1)i ik k  , the maximum possible 

number of edges in the network [2]: 
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For vertices with degree 0 or 1, for which both numerator and denominator are zero, 

they are defined as 0ic  .  

Then the clustering coefficient for the whole network is the average. 
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1 N
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                                                                                                                          (5) 

 

Where 0 1ic  , 0 1C   and ic  is the clustering coefficient of node i . 

From the above definitions, it can be seen that C  is a measure of the relative number 
of triangles, and is strictly in the interval [0, 1], with the upper limit attained only for a fully 
connected graph. In a social acquaintance network, for example, 1C   if everyone in the 
network knows each other. In addition, it has to be noted that even though the BA model 
successfully explains the scale-free nature of many networks, it has 0C   and thus fails to 
describe networks with the high clustering, such as social networks. 
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Here we only analyzed a part of data for the public transport system in Shenyang. 
Moreover we chose numbers of nodes in the public transport network of Shenyang 148N  . 

One should notice that other surveys exploring the properties of transportation networks 
have usually dealt with smaller numbers of vertices, such as N = 76 for U-Bahn network in 
Vienna [12], N = 124 in Boston Underground Transportation System [14] or N = 128 in Airport 
Network of China [15]. 

Regular lattices are clustered, but do not exhibit the small-world effect in general. On 
the other hand, random graphs show the small-world effect, but do not show clustering. Thus, it 
is not surprising to see that the regular lattice model and the ER random model both fail to 
reproduce some important features of many real networks. After all, most of these real-world 
networks are neither entirely regular nor entirely random. The reality is that people usually know 
their neighbors, but their circle of acquaintances may not be confined to those who live right 
next door, as the lattice model would imply. On the other hand, cases like links among Web 
pages on the WWW were certainly not created at random, as the ER process would expect [16]. 

Aiming to describe a transition from a regular lattice to a random graph, Watts and 
Strogatz [3] introduced an interesting small-world network model, referred to as WS small-world 
model. The WS small-world model algorithm as follows: 

1) Start with order: Begin with a nearest-neighbor coupled network consisting of N 

nodes arranged in a ring, where each node i  is adjacent to its neighbor nodes, 1, 2, , 2i k  , 

with k  being even. 
2) Randomization: Randomly rewire each edge of the network with probability p; varying 

p in such a way that the transition between order ( 0p  ) and randomness ( 1p  ) can be 

closely monitored. 
The work on WS small-world networks has started an avalanche of research on new 

models of complex networks, including some variants of the WS model. A typical variant was 
the one proposed by Newman and Watts [17], referred to as the NW small-world model lately. In 
the NW model, one does not break any connection between any two nearest neighbors, but 
instead, adds with probability p a connection between a pair of nodes. Likewise, here one does 
not allow a node to be coupled to another node more than once, or to couple with itself.  

With 0p  , the NW model reduces to the original nearest-neighbor coupled network, 

and if 1p   it becomes a globally coupled network. The NW model is somewhat easier to 

analyze than the original WS model because it does not lead to the formation of isolated 
clusters, whereas this can indeed happen in the WS model. For sufficiently small p  and 

sufficiently large N , the NW model is essentially equivalent to the WS model. Today, these two 
models are together commonly termed small-world models for brevity [16]. 
The WS model and the NW model can be generated as follows (Figure 2) [16]. 
 
 

 
 

(a) The WS small-world model; (b) The NW small-world model 
 

Figure 2. The Small-world Model 
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According to the NW small-world model with 0.4, 4p k   and 148N  ， the 

average shortest path length and clustering coefficient, 1.5215 and 0.4587, respectively. When 
the NW small-world model with 0.2, 4p k  and 148N  ， the average shortest path length 

and clustering coefficient, 1.7353 and 0.2576, respectively.  
Small-world networks are characterized by a very small average shortest path length 

( L ) and a high average clustering coefficient (C ). Shortest path length from node i  to j , ijL , 

is the number of bus needed to be taken to go from i  to j by the shortest route.  

We found the average shortest path length of the public transport network to be
1.9392L  , which is of the order of that of a random network of same size and average degree. 

The average clustering coefficient of the public transport network was found to be 0.5385C  , 
which is an order of magnitude higher than that of the comparable random network. These two 
properties indicate that the public transport network is a small-world network. ANI [1] has also 
been found to be small-world networks. In particular, ANI has average shortest path length and 
clustering coefficient, 2.2593 and 0.6574, respectively. 

 

 
Table 1. The Statistical Properties of the Various Networks with N=148 

The statistical properties 
the public transport 

network 
NW small-world network with 

p=0.4, k=4 
NW small-world network with 

p=0.2, k=4 
the average shortest path 

length(L) 
1.9392 1.5215 1.7353 

the average clustering 
coefficient(C) 

0.5385 0.4587 0.2576 

 

 
Table 1 shows the statistical properties of the various networks with N=148, which 

consists of the public transport network and NW small-world network with different parameters. 
Our analysis shows that while the public transport network is similar to the ANI [1] in some 
aspects, it has differences in some features as reflected in its network parameters. We find that 
the public transport network has small-world network features, in contrast to NW small-world 
network. 

Since the public transport network is a small network, we analyze the cumulative 
degree distribution. We find that the cumulative degree distribution of the public transport 
network follows a Poisson as seen in Figure 3. As we can see from Figure 4 and Figure 5, the 
cumulative degree distribution of the NW small-world model also follow a Poisson. 

Figure 3 shows typical plots for degree distribution in the public transport network of 
Shenyang. Let us notice that the number of nodes of degree k = 1 is smaller as compared to the 
number of nodes of degree k = 2 since k = 1 nodes are ends of transport routes. Still some 
nodes (hubs) can have a relatively high degree value (in some cases above 20) but the number 
of such vertices is very small. Degree distributions obtained for the public transport network is 
Poisson distribution as the NW small-world model is. 

 

 
 

Figure 3. Degree Distribution in the Public 
Transport Network of Shenyang 

Figure 4. Degree Distribution in NW Small-
world Network with p=0.2, k=4and N=148 
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Figure 5. Degree Distribution in NW Small-world Network with p=0.4, k=4and N=148 
 
 
4. Conclusion 

In this study we have collected and analyzed a part of data for the public transport 
network in Shenyang. Sizes of this network is N=148. Using the concept of different network 
topologies we show that in the space P, where distances are measured in numbers of passed 
bus/tramway stops. Its topology was found to be having small-world network features. Many of 
our results are similar to features observed in other works regarding transportation networks: 
underground, railway or airline systems [1], [10-11], [14-15]. All such networks tend to share 
small-world properties. 
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