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 Electric vehicles (EVs) have gained importance in recent years, prompting 

the development of several control systems to improve their efficiency and 

performance. In this work, a quarter electric vehicle (QEV) was controlled 

using a conventional proportional integral derivative (PID) and fuzzy 

controller to examine and compare with the response of the adaptive neuro-

fuzzy inference system (ANFIS) controller. The response of the ANFIS 

controller was evaluated using MATLAB/Simulink according to different 

parameters and compared with those of other controllers. In addition, the 

simulation was based on different driving conditions such as the acceleration 

and deceleration modes and the type of road: wet and dry. The simulations 

were carried out on a longitudinal electric vehicle model based on a 

brushless DC motor, including the Pacejka tire model. The results showed 

that the ANFIS controller outperformed the PID and fuzzy logic controllers, 

providing superior dynamic responsiveness and stability when the ANFIS 

controller smoothly followed the input speed and the longitudinal slip value 

reached 3%. 
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1. INTRODUCTION  

The new generation of transportation promotes green technology that protects the environment from 

harmful CO2 and gas emissions by referring to Industry 4.0 [1], which supports the orientation towards 

electric vehicles (EVs) for their various advantages, namely zero emissions and low maintenance costs [2]. 

EVs are driven by electric motors and powered by lithium-ion batteries [3]. Instead of combustion engines 

which are less efficient by 50%, EVs can convert up to 90% of the energy consumed, thus providing 

instantaneous couple with various charges. In addition, EVs can restore energy through braking [4]. On the 

other hand, thanks to the lack of a gearbox and moving parts, EVs are characterized by a reduced size 

compared to those powered by the combustion engine [5]. 

In terms of electric car motorization, literature has highlighted various types of motors, such as the 

DC motor which was among the first motors used for its high torque and low speed, however, its 

disadvantages have limited its use namely: brushes and commutator require replacement due to the effect of 

mechanical aging associated with friction, also the motor requires high maintenance [6]. The other category 

is a brushless DC motor (BLDC), it is used in various fields and applications due to its low maintenance, 

https://creativecommons.org/licenses/by-sa/4.0/
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good manageability, high efficiency, and small size [7], [8]. It is built with a stator wound with wires to offer 

an adjustable flux density and a permanent magnet rotor with differential pole counts [9]. The stator coils, 

which are controlled by Hall sensors and powered by DC voltage, offer great efficiency and power density 

with less noise. By using sensorless predictive design, this design can be further enhanced by reducing metal 

losses, and ripple [10]. A BLDC motor drive is highly complex, requiring modeling, control scheme 

selection, simulation, and parameterization, among other things [11]. To ensure driver safety and proper 

vehicle handling, control modules like the body control unit are getting increasingly sophisticated and smart. 

The simplicity of control is important to note among the other benefits provided by EVs [12]. 

The categories of available controllers are conventional namely proportional integral derivative (PID) 

and adaptive among others fuzzy and adaptive neuro-fuzzy inference system (ANFIS) controllers [13], the 

PID control parameter tuning is very challenging and robustness is limited [14]. A fixed controller does not 

function properly at all speeds and an adaptive controller is preferable because of the load non-linearity and 

evolving machine requirements at different speed ranges [15]. Fuzzy control can take appropriate control 

parameters and do calculations more quickly than PID controller, which has difficulty taking the proper 

characteristics [16]. The benefits of both fuzzy and neuro-system control can be found in a neuro-fuzzy 

adaptive control system [17]. 

In this study, speed controller performances are analyzed and compared for conventional controller 

PID and adaptive fuzzy PID controller, as well as for an ANFIS controller. A quarter electric vehicle (QEV) 

drives the BLDC motor during the simulation of the comparison using MATLAB/Simulink. The following 

objectives can be used to express this paper's goals: to offer an exhaustive and effective method for designing 

a controller based on adaptive fuzzy PID (AFPID) and ANFIS.  

This paper is organized into three primary sections. Initially, it begins with a broad introduction, 

outlining the primary software employed in this study, which is MATLAB/Simulink. It also provides an 

overview of BLDC motors and fuzzy logic. The second section delves into the methodologies utilized for this 

simulation, which encompass the mathematical modeling of the BLDC motor, the quarter electric vehicle, 

and the design of the fuzzy controller. In the final section, we explore the simulation and its outcomes, 

concluding with a summary of our findings. 

 

 

2. METHODS 

2.1.  BLDC motor and fuzzy logic 

Brushless direct current denoted as BLDC motor is utilized in versatile industrial applications such as 

aerospace, and electric cars. thanks to its several advantages such as high efficiency and not causing sparks. 

This motor’s functioning is based on electronic commutation, and a sequence of commutation to feed the stator. 

To detect the right position of the rotor, the BLDC motor uses a sensorless technique, or it is equipped with 

three hall effect sensors (Ha, Hb, and Hc), which are placed close to the stator [18]. But, still, this motor suffers 

from some defaults as slow response to the set point and its speed is not constant in different loads Thus,  

a performant controller has to be established to control the system and improve its performance [19]. 

Fuzzy logic is an evolution of classical logic systems that delivers a basis of notions appropriate to 

the particular task of constructing knowledge-based representations in a context of uncertainty and 

imprecision. The representation of meaning in fuzzy logic is based on the semantics of test scores. In this 

method, a proposition is perceived as a system of flexible constraints. Reasoning is seen as the propagation of 

elastic constraints [20], [21]. Understanding BLDC motor drawbacks and the role of fuzzy logic unveils 

opportunities to revolutionize control strategies, enhancing motor response and overall efficiency. 

 

2.2.  Brushless DC motor: mathematical modeling 

2.2.1. Design of BLDC motor  

The BLDC motor drive's basic drive diagram is illustrated in Figure 1. The front end of the inverter 

receives DC power input, and the motor terminals are connected to the inverter output. Each phase of the 

motor is represented by a series-coupled inductance, resistance, and a voltage source with a back 

electromotive force (EMF). The structure necessary for assessing the BLDC motor's operating principle 

during the conduction mode. 

In a BLDC motor, the stator is made up of three-phase windings, while the rotor is constructed of 

permanent magnets implanted therein, Hall effect sensors as shown in Figure 2, which serve to electronically 

shift the rotor, detect its exact position by detecting whether the rotor magnetic poles are N or S as shown in 

Figure 2(a), and send a high or low signal accordingly. The commutation sequence can be figured out from 

the combination of these three signals from the Hall sensors. As a result, sequentially activating three-phase 

stator coils causes the motor shaft to rotate. Back EMF occurs as a result of rotation, and its shape is 

trapezoidal, as seen in Figure 2(b). Refer to for a summary of machine functionality [22]. 
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Figure 1. Diagram of the electrical circuit of the BLDC motor associated with the inverter 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. BLDC motor components and current and voltage behavior across three phases (a) transverse 

section of a BLDC motor revealing stator poles, rotor, and hall effect sensors and (b) currents and EMF 

waveforms of three phases A, B, and C of BLDC motor 

 

 

A few assumptions were made in the modeling phase of the BLDC motor, such as negligible losses, 

the value of inductances being constant, equal resistances in all phases, and EMFs of phases a, b, and c have 

the same magnitudes. In (1) shows the three-phase voltages of the motor. In (2) and (3) describe the 

electromagnetic and mechanical torque [9]. 

 

[

𝑣𝑎
𝑣𝑏
𝑣𝑐
] = [

𝑅 0 0
0 𝑅 0
0 0 𝑅

] [

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + [
𝐿 𝑀 𝑀
𝑀 𝐿 𝑀
𝑀 𝑀 𝐿

]
ⅆ

ⅆ𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐

] + [

𝑒𝑎
𝑒𝑏
𝑒𝑐
] (1) 

 

𝑇𝑒 =
𝑖𝑎⋅𝑒𝑎+𝑖𝑏⋅𝑒𝑏+𝑖𝑐⋅𝑒𝑐

𝜔
 (2) 

 

𝑇𝑒 = 𝑗𝑟�̇� + 𝐹𝜔 + 𝑇𝐿 (3) 
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Where: 

𝑣𝑖: phase voltages, (i refers to the three phases’ phases) 

𝑖𝑖: phase currents 

𝑒𝑖: back EMF 

𝑅: the stator resistance 

𝐿: the inductance 

𝑀: the mutual inductance 

ꞷ: the rotor speed 

jr: rotor inertia 

F: friction constant 

T: load torque 

 

2.2.2. Mathematical representation of trapezoidal EMF 

The generation of EMF is strongly dependent on the position of the rotor detected by Hall sensors as 

listed in Table 1, which is determined by the speed [23], as shown in (4). The shape of the back-EMF is given 

by f_i (θ). It is calculated based on (5) in a single period. 

 

[

𝑒𝑎
𝑒𝑏
𝑒𝑐
] = 𝐸 [

𝑓𝑎(𝜃)
𝑓𝑏(𝜃)

𝑓𝑐(𝜃)
], 𝐸 = 𝐾𝑒  ꞷ𝑟 (4) 

 

𝐾𝑒: the back-EMF constant 

𝜃: the position of the rotor 

ꞷ𝑟: the angular velocity of the rotor 

 

 

Table 1. The sequence of the hall effect during one period 
Rotor 

location 
Electrical 

degree 
Hall signal 

(ABC) 
Sample 
phase 

Sign relationship with the 
given value 

Open 
phase 

Turn off 
phase 

1 0-60 101 B + A C 

2 60-120 100 A - C B 
3 120-180 110 C + B A 

4 180-240 010 B - A C 

5 240-300 011 A + C B 
6 300-360 001 C - B A 

 

 

𝑓𝑎(θ) =

{
 
 
 

 
 
 

6

π
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π

6
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π
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π
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6
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  )
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6
< θ ≤

11π

6
  )

(
6

π
) θ − 12   (

11π

6
< θ ≤ 2π  )

  (5) 

 

2.3.  Modeling of the quarter electric vehicle 

The system's schematic representation can be found in Figure 3, featuring a composition of the 

Pacejka tire model and a BLDC in-wheel motor. To gain insight into the Pacejka model's properties, they are 

presented in Table 2. In (8) encapsulates the magic formula or Pacejka model, forming a critical element 

within the system. Additionally (6) and (7) represent the system's equations, delineating its behavior and 

dynamics. Notably, for this analysis, we omit consideration of longitudinal and lateral forces, focusing 

exclusively on specific aspects of the system's performance. the QEV representation in interaction with the 

road illustrated in Figure 3 is presented in this paper. The studied system is supposed to track a linear path. 

Adopting the Newton’s first law, the (6) is obtained. 

 

𝑚𝑣�̇�𝑥 = 𝐹𝑥 (6) 

 

where 𝑚𝑣 is the masse of the QEV (kg), �̇�𝑥 represents the velocity of the system (m/s) and the 𝐹𝑥 is 

longitudinal force depending on the interaction between the tire and the road surface acting on the wheel (N). 
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Newton's second principle is used to calculate 𝑇𝑒, the equation will be set as (7). Tire modeling is difficult due 

to its complicated behavior, but it is critical for vehicle dynamics. Based on empirical data, the Pacejka tire 

model defines the adhesion coefficient (μ) as an expression of longitudinal slip (σ) as illustrated in (8) [24]. 

 

𝑇𝑒 = 𝐽�̇�𝜔 + 𝐹𝑥𝑟𝑒𝑓𝑓 +𝑀𝑟𝑟 (7) 

 

Where Te is the electromagnetic torque produced (Nm), the moment of inertia of the driving wheel is defined 

by j (kg/m2), Ωω is the rotational velocity of the driving wheel (rads-1), reff is the effective radius (m), and 

Fxis the traction or braking force (N).  

 

𝜇(𝜎) = 𝐷 𝑠𝑖𝑛(𝐶𝑡𝑎𝑛−1(𝐵𝜎 − 𝐸 (𝐵𝜎 − 𝑡𝑎𝑛(𝐵𝜎))))  (8) 

 

Where the parameters B is the stiffness factor, D is the shape factor, C is the peak value and E is the 

curvature factor [25]. The values of B, C, D and E for various types of asphalt road conditions are provided 

in Table 2. 

 

 

 
 

Figure 3. Model of QEV incorporating BLDC motor on a road, depicting force FX, vehicle speed, and 

effective radius 

 

 

Table 2. Pacejka equation coefficients adapted to road conditions 
 Dry Wet Snow Ice 

B 10 12 5 4 

C 1.9 2.3 2 2 
D 1 0.82 0.3 0.1 

E 0.97 1 0.1 1 

 

 

As depicted in (9), the longitudinal force Fx is determined by the coefficient of adhesion and the 

normal force Fv exerted on the wheel. In (10) provides a general expression for the slip ratio, which depends 

on both wheel linear speed and vehicle speed. In (11) and (12) are derived specifically for acceleration and 

deceleration modes, respectively, and provide an overview of these distinct operating conditions. 

 

𝜇 =
𝐹𝑥

𝐹𝑣
  (9) 

 

𝜎 =
𝑟𝜔−𝑣𝑥

𝑚𝑎𝑥 (𝑣𝑥,𝑟𝜔)
 (10) 

 

𝜎 = 1 −
𝑣𝑥

𝑟𝑒𝑓𝑓 𝜔
  (11) 

 

𝜎 =
𝑟𝑒𝑓𝑓 𝜔

𝑣𝑥
− 1 (12) 

 

2.4.  The conception of the speed controller 

The design of the controller is based on fuzzy logic and the neural network represented in Figure 4 

forming the ANFIS controller. The main purpose of fuzzy logic is to make decisions in the absence of 

reliable, accurate, or complete data [26]. It was initiated based on models or knowledge using fuzzy rules. 

The result of fuzzy inference processes is the transformation of ordinary input data into understandable and 

interpretable output data through operations of fuzzification and defuzzification, and fuzzy rules, membership 

functions (MF) as illustrated in Figure 4(a) [27]. 
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The fuzzy inference system (FIS) is subdivided mainly into two categories-Mamdani and  

Takagi-Sugeno. Nevertheless, the fundamental core of a FIS lies in the establishment of the rule base, which 

presents two major obstacles: the establishment of a rule base requires expert knowledge of the field of study, 

and the refinement of the MF base is a key element of the process to reduce the output error. The present 

study utilizes an ANFIS to attain the identification and fine-tuning of a FIS [28]. The global structure of the 

ANFIS shares the same elements as the FIS, except for the neural network component which Includes 

numerous nodes that resemble human neurons [29]. it is a multi-layer controller It resembles a FIS but 

incorporates back-propagation to reduce errors. In ANFIS, fuzzy if-then rules of the Takagi and Sugeno type 2 

are employed for making inferences. This rule base is part of the ANFIS control structure, which comprises 

five interconnected network layers and encompasses: fuzzification, knowledge base, neural network, and 

defuzzification [30]. 

During the evaluation, data was generated and fed into the neuro-fuzzy designer. The FIS was 

constructed using a grid-based partition and featured two input variables: U and V, with a single output 

denoted by Y, which is specified by the function Y0=f(U, V). Here, U represents the error input (denoted by 

"e"), and V stands for the rate of change of the error, denoted by "de". The FIS data was trained using a 

hybrid optimization technique with zero error tolerance and 100 epochs, and with the data training the FIS, 

controller reached 2.66844 10-8. Considering these factors, Figure 4(b) illustrates the structure of the five-

layer ANFIS. 

The main principle of ANFIS with two inputs, U and V, and a single output Y, might be expressed 

as shown below: 

Rule 1: If U is A1 and V is B1, then Y1=p1U+q1V+r1. 

Rule 2: If U is A2 and V is B2, then Y2=p2U+q2V+r2. 

Here, Ai and Bi denote the parameters of the fuzzy sets for each input in the precondition part, while p i, qi, 

and ri denote the linear parameters in the consequent part. The ANFIS structure consists of five layers and is 

used for two inputs and one output. 

 

 

 
(a) 

 
(b) 

 

Figure 4. General architecture of the ANFIS controller (a) the structure of five layers ANFIS and the layer of 

the inputs and (b) input-output mapping 

 

 

Fuzzifying layer 1: the expression for each adaptive node (i) within this layer, is outlined as (13). In 

this context, 𝐴𝑖 (or 𝐵𝑖corresponds to a linguistic label associated with this particular node, while 𝑒 (or 𝑒 ̇ ) 
signifies the input for node i. The input variables are commonly characterized using the Gaussian 

membership function as defined in (14), with c as the center, and σ denoting the width of the membership 

function. 

 

𝐿1,𝑖 = 𝜇𝐴𝑖(𝑒) 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑗  

𝐿1,𝑖 = 𝜇𝐵𝑖(�̇�) 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑗 (13) 

 

𝑓(𝑥; 𝜎, 𝑐) = 𝑒
−(𝑥−𝑐)2

2𝜎2  (14) 

 

Implication layer 2: its output is the cumulative total of all acquired signals. As illustrated in (15), 

the formula for the output node of this layer is given by (15). The firing strength of a rule is indicated by each 

node output. 

 

𝐿2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑒)𝜇𝐵𝑖(�̇�) 𝑓𝑜𝑟 𝑖 = 1,2, … 𝑗2 (15) 
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Normalizing layer 3: this layer exclusively comprises fixed nodes, each labeled as N. Each of these 

nodes, denoted as the ith node, calculates the firing strength of the ith rule relative to the total firing strength of 

all rules. According to the node in (16) for this layer. 

 

𝐿3,𝑖 = �̅� =
𝑤𝑖

∑ 𝑤𝑖
𝑗2

𝑖=1

 (16) 

 

Defuzzifying layer 4: in this layer, each node labeled as i is adaptive, and its function is defined by (17). 

In this context, �̅� represents the normalized firing strength of layer 3, and (𝑝𝑖 , 𝑞𝑖, 𝑟𝑖i) denotes the parameter 

set for this particular node. These settings in this layer are referred to as consequential settings, and they are 

subject to adjustment during the learning process. 

 

  𝐿4,𝑖 = 𝑊𝑖̅̅ ̅𝑓𝑖 = 𝑊𝑖̅̅ ̅(𝑝𝑖𝑒 + 𝑞𝑖�̇� + 𝑟𝑖) (17) 

 

Combining layer 5: in this layer, there is a single node labeled as '⅀' that determines the total output as the 

sum of all entering signals. As represented in (18), this node's summation is expressed as (18). 

 

𝐿5,𝑖 = ∑ 𝑊𝑖̅̅ ̅𝑓𝑖
𝑗2

𝑖=1 =
∑ 𝑤𝑖 𝑓𝑖
𝑗2

𝑖=1

∑ 𝑤𝑖
𝑗2

𝑖=1

 (18) 

 

 

3. SIMULATION AND DISCUSSION 

The QEV system simulation, performed using MATLAB/Simulink as shown in Figure 5, 

incorporates two crucial factors: the driver's initial speed and the road type. In this study, we assume a 

constant vehicle speed of 60 km/h. The driver's velocity is represented as a filtered speed input to 

approximate real-world acceleration and deceleration as shown in Figure 6. The parameters of the BLDC motor 

are depicted in Table 3, and those of the modeled system QEV in Table 4. Where R, L, and j are the stator 

resistance, inductance, and rotor inertia respectively. The electric vehicle parameters are m, j, 𝜇𝑟𝑟, reff, and g 

which represent, respectively, the mass of QEV, moment of inertia of the driving wheel, coefficient of rolling 

resistance, wheel radius, and gravity acceleration. 

 

 

 
 

Figure 5. Driver's speed input (acceleration and deceleration) on different types of road (dry and wet) 
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Figure 6. The QEV model simulation on SIMULINK including BLDC motor and PACEJKA tire model 

 

 

Table 3. BLDC motor parameters 
Symbol Value 

m 270 kg 
J 0.75 kg.m2 
𝜇𝑟𝑟 0.025 

reff 0.32 m 

g 9.81 m.s-2 

 

 

Table 4. System QEV parameters 
Parameters Value 

R: stator resistance 0.2 Ω 
L: inductance 8.5 e-4 H 

jr: rotor inertia 1 kg.m2 

 

 

In the first stage, between 0 s and 10 s, the simulation was run on a dry road, and then on a wet road 

between 10 s and 20 s, as depicted in Figure 5. Figure 6 shows the speed demanded by the driver, which 

contains two main phases of acceleration and deceleration during driving on dry and wet roads. The response 

of the studied controllers: ANFIS, fuzzy controller, and PID are depicted on Figures 7 and 8. Figure 7(a) 

illustrates the linear wheel speed in phases of acceleration and deceleration, clearly showing that the ANFIS 

controller smoothly tracks the input speed, while the fuzzy controller and the PID do not reach the speed set 

by the driver. The vehicle speed delivered by the three controllers is shown in Figure 7(b) which shows the 

fast response of the ANFIS controller. 

 

 

 
(a) 

 
(b) 

 

Figure 7. System response of the three controllers (a) linear wheel speed response and (b) controller 

comparison for vehicle speed during acceleration and deceleration phases on various road types 
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The longitudinal force Fx in Figure 8(a) is taken into account to compare the controllers' 

performances. It reaches 1535.8 N, 1540 N, and 1320 N for ANFIS, fuzzy, and PID respectively during 

acceleration, and -1389 N, -1380.78 N, and -1325 N during deceleration on a dry road. ANFIS and the fuzzy 

controller have close values during the two phases of operation. However, between 5 s and 10 s, the 

variations of the fuzzy controller are more significant than those provided by the ANFIS controller. Still, the 

PID has a lower value of longitudinal force than the others, which mainly justifies the fact that it does not 

reach the required speed. Figure 8(b) presents the longitudinal slip of the vehicle. The ANFIS controller 

provides the value of the slip ratio by 3% during acceleration compared to the other controllers, and it 

provides a negative value in deceleration which is -2.61%. 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. Longitudinal behavior of QEV(a) slip ratio of the QEV resulting from controllers and  

(b) longitudinal force during acceleration and deceleration on dry and wet road 

 

  

4. CONCLUSION 

This paper carried out an analysis of an electric vehicle quarter model driven by a BLDC motor, 

including the Pacejeka tire model. In addition, the performance of three different system controllers was 

compared: the adaptive ANFIS controller, the conventional PID controller, and the fuzzy controller.  

The simulation results demonstrate the superiority of the ANFIS controller in terms of performance and 

efficiency on different types of roads, namely wet and dry, during acceleration and deceleration. Considering 

that the vehicle is traveling at 60 km/h on the road, the study firmly establishes that the ANFIS controller 

consistently outperforms the other studied controllers, offering better control, responsiveness, and 

adaptability to the dynamic characteristics of the electric vehicle model. This significant performance can be 

attributed to the ANFIS controller's ability to exploit the advantages of fuzzy logic and neural networks, 

resulting in a more robust and adaptive control system. 
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