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 This paper proposes a new parallel approach of multi objective genetic 

algorithm for path planning problem. The main contribution of this work is 

to reduce the population size that effect in decreasing processing times of 
finding the optimum path for multi destination problem. This is achieved by 

combining the local population of island parallel approach and global 

population of global parallel approach. Various experiments have been 

conducted to evaluate the new hybrid parallel genetic algorithm (HPGA) in 
solving multi-objective path planning problems. Three different test areas 

with 2 destinations were used to assess the performance of HPGA. 

Furthermore, this work compares HPGA and sequential genetic algorithm 

(SeqGA), as well as compared to other existing parallel genetic algorithm 
(GA) methods. From experimental results show that proposed HPGA 

outperform others, in term of processing time i.e., up to 3.6 times speedup 

faster, and lowest GA parameter values. This proposed HPGA can be 

utilized to design robots with fast and consistent path planning, especially 
with various obstecles. 
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1. INTRODUCTION 

Finding an optimal path in an environment or path planning (PP) is the main problem in developing 

autonomous robots. PP algorithm allows autonomous robots to move independently without human 

intervention, thereby increasing efficiency in processes that can utilize autonomous robots. The simplest form 

of this problem is when path searching is carried out in a static environment [1]. In the real world, 

autonomous robots have been used in various problems, including exploring other planets and looking for 

victims in the search and rescue process [2]. Genetic algorithm (GA) is a metaheuristic algorithm inspired by 

living things and based on Darwin's survival of the fittest theory, where the best individuals will survive 

after undergoing long adaptation [3]. GA can be used to solve optimization problems, one of which is PP 

problems [4], and many studies have shown GA can be good for solving PP problems. 

In GA, population generation is the essential first step and dramatically influences the results. 

Populations in GA are solution candidates that will be optimized. The solutions are stored in the 

chromosomes of each individual. These chromosomes can be encoded to simplify the optimization progress. 

Patle et al. [5] proposes matrix-binary encoding in GA to solve PP problem and gets a comparable result to 
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other intelligence navigational controllers. Population generation using heuristics has been tested and 

performs better than fully random generation [6]. Next in the step are genetic operations. The primary genetic 

operations are parent selection, crossover, and mutation. Parent selection and crossover are used to obtain 

new solutions from an existing solution in the population. Intuitively, good alleles from parents can be 

combined into better offspring if the suitable alleles are selected in crossover. If not, the offspring produced 

will not necessarily be better than the parent's solution. Therefore, to maintain a good solution in the mating 

pool, all population members do not carry out a crossover [7]. Mutation operators introduce uncertainty into 

the obtained solution to explore new solutions. A good mutation operator needs to have 3 criteria: 

reachability, unbiasedness, and scalability [4]. Xin et al. [8], proposed multi domain inversion to make more 

offspring from chosen parents and pick the most optimum to be retained in the population. This method 

speeds up convergence, gives better results, and is more robust to conventional GA. 

Many studies have proposed many modified genetic operations. Lamini et al. [9], the same point 

crossover is modified so that the offspring will produce the optimal solution from the selected parent. This 

method improves the performance of the GA by reducing the iterations required for similar results. A new 

crossover operator has also been proposed with the addition of local search. Apart from considering the 

solution from the parent, the offspring also looks for solutions from neighboring parents. This modification 

accelerates the convergence of solutions produced [10]. The closest node pairing crossover (CNCP) proposed 

by [11] considers the distance between two genes in the crossover operation. CNCP gives a better solution 

and a faster convergence rate. A mutation operator that mutates all genes inside the chromosome instead of 

just one gene has been tested and gives a better result than other mutation methods [12]. A new mutation 

operator has also been proposed where the most optimal parent is considered more during the calculation as it 

is closer to the global optimum. The result is increased performance in convergence speed and stability of the 

algorithm compared to ordinary GA [13]. 

Along with the development of GA, many modifications have been made to the essential workings 

of this algorithm. One of them is the addition of the deletion operator. This deletion operator allows the GA 

to have flexible chromosome lengths, thus allowing for more optimal solutions [14]. Several studies have used 

the deletion operator in path planning problems and obtained good results [10], [15], [16]. Sarkar et al. [16] uses 

circuit removal technique to remove any loop form when optimizing the robot path. In a smooth path 

planning problem, Berzier curve can be used to create a smooth path for the robot. In [17] and [18] use GA 

combined with Bezier curve method to solve smooth path planning problems with good results. Chen and 

Gao [19] proposes GA with adaptive crossover mutation rate to solve path planning for soccer robots and 

obtained good results. 

Fitness functions are used to evaluate the generated solution. The fitness function will guide the 

population toward the optimal solution, so a suitable fitness function is essential [4]. To increase the 

efficiency of the GA, an appropriate fitness function is needed so that convergence can be achieved quickly 

while providing the most optimal solution. Path length can be used to find the shortest path in the PP problem 

and tested to give good results [6], [9], [10], [15], [20], [21]. Path smoothness can be used to minimize the 

number of turns in the optimum solution and tested to give optimal results [10], [21] and reduce convergence 

time [15]. Using energy usage as a fitness function where the robot minimizes any energy consumption when 

maneuvering can also give optimal results [15], [22], [23]. Another fitness function that considers the safety 

of the path the robot takes has also been tested and produced an excellent solution to the path planning 

problem [6], [21]. 

Even though it has been proven to solve PP problems, GA has the disadvantage of high computation 

and increasing problem complexity. The more iterations of the GA, the more fitness function calls that need 

to be made, thereby increasing resource requirements [3]. In the problem of finding paths with many 

destinations (multi-destination path planning), the increase in limited computing time causes the use of 

algorithms in off-the-line problems [24]. To overcome this limitation, many instances of the GA can be 

created, which can be run simultaneously to obtain one result, or what is usually called a parallel genetic 

algorithm (PGA). PGA is an extension of regular GA that can be utilized with the help of multithreading 

capabilities commonly found in modern processors. PGA can cut computing time without sacrificing results 

because the algorithms are population-based, so there is no reduction in the search algorithm's capabilities. 

With good implementation, the PGA will be able to beat ordinary GA in terms of computing time [25]. PGA 

can also take advantage of the development of modern processors, which have many cores, especially on 

GPUs [26]. 

Many studies highlight the use of parallel processing to increase the search speed of GA. PGA has 

been tested to solve the vehicle routing problem based on cloud computing with the synchronizable kernels 

method. The method has proven very efficient and can obtain a speedup of more than 13 times compared to 

the conventional GA [27]. Amassmir et al. [28], an intelligence system to assist in making recruitment 

decisions has been developed with sequential GA and PGA, and it can give a quality decision in a reduced 

CPU time. PGA has also been used in hyperparameter optimization problems, and it can improve model 
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accuracy [29]. In scheduling problems, PGA has been tested, resulting in faster convergence, preventing 

premature convergence [30], and improved execution time [31]. In PP problems, PGA has been tested, and 

the resulting performance makes using GA in PP of unmanned aerial vehicles feasible in real-time [20].  

In theory, the reduction in computing time produced by the PGA can be applied to solving PP problems with 

multiple destinations and objectives (multi-destination path planning with multi-objective). 

 

 

2. METHOD 

A static and fully-observable environment is used in this experiment. The size of the environment 

and the number and shape of obstacles are determined before the experiment is carried out. The starting point 

and destination points and their coordinates are determined at the beginning, but the order of the destination 

points will depend on the fitness obtained by the agent. 

The chromosome representation is a whole number representation, where each allele contains the 

coordinates of the point traversed by the agent. Whole numbers are used to simplify computing. In one 

individual, there are multiple chromosomes, where the number corresponds to the destination points needed 

to be reached. The number of alleles inside a chromosome is determined by the parameter chromosome 

length (m), and then the chromosome length is added by 2 (m+2) to accommodate the start and destination 

points. This chromosome configuration is illustrated in Figure 1. The destination point is shuffled when the 

individual is initialized so that the algorithm can accommodate different arrangements of destination points. 

 

 

 
 

Figure 1. Chromosome configuration inside an individual 

 

 

To select parents for crossover, tournament selection is used, and the mating pool is chosen to be 

less than the total population. Then, elitism is used to keep the best individual in every generation to fill the 

rest of the population. Figure 2 illustrates the single-point crossover and creep mutation process. For single-

point crossover, random allele as the crossover point resulting in two chromosomes combined from the two 

parents, as illustrated in Figure 2(a). A modified creep mutation operator moves the point inside an allele to a 

random point within a defined range. For example as illustrated in Figure 2(b), when the third allele of 

Offspring 2’s second chromosome in Figure 2(a) undergoes a mutation, it will be mutated from (3,3) to  (4,4) 

and still within mutation step. In both operations, the first and the last allele on each chromosome are static 

and will not undergo crossover and/or mutation because those two points are the start and destination points. 

 

 

  
(a) (b) 

 

Figure 2. Examples of genetic operators used are (a) single-point crossover and (b) modified creep mutation 
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Two fitness functions are used to calculate the quality of every individual. Line segments can be 

created from every two adjacent alleles in a chromosome, and fitness can be calculated from all the line 

segments created. The path length is the length of every line segment added, as in (2), and path collision is 

the number of collisions of the line segment to all obstacles in the environment, as in (3). This path collision 

is then used as a penalty for the line segment. If there’s a collision, the fitness obtained from the path length 

function is multiplied by the number of collisions obtained from the path collision function as in (1). 

 

𝐹 = ∑ (∑ 𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) × (𝐶(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) + 1)𝑛−1
𝑚 = 0  )

𝑗
𝑖 = 0  (1) 

 

𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) = √(𝑥𝑃𝑖,𝑚
− 𝑥𝑃𝑖,𝑚+1

)
2

+ (𝑦𝑃𝑖,𝑚
− 𝑦𝑃𝑖,𝑚+1

)
2

 (2) 

 

𝐶(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) = ∑ {
10,  𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1)  ∩  𝑜𝑏𝑠 ∈  𝑜𝑏𝑠

0, 𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1)  ∩  𝑜𝑏𝑠 =  ∅

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑚𝑎𝑥]
𝑜𝑏𝑠=𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[0]  (3) 

 

The parallelization model used is a hybrid between the island and global parallelization model with 

some modifications as illustrated in Figure 3. The process begins by creating several local populations inside 

the slave nodes. After individuals are initialized in the local populations, each individual's fitness will be 

calculated. Then, a selection is carried out for each local population and combined with a global population. 

After all the parents are combined, an equal number of parents will be distributed back to the local population 

to produce offspring by crossover and mutation inside the local population, as illustrated in Figure 3(a). 

Figure 3(b) shows the thread execution of each of the processes. The experiment is using early stopping 

technique and will trigger when there is no change in fitness of the best individual after some generation 

(referred as patience value). This early stopping technique can fasten the execution time and measure the 

convergence rate. 

 

 

  
(a) (b) 

 

Figure 3. Inner working of the proposed hybrid parallel genetic algorithm (HPGA) with 

(a) the general flow of the algorithm and (b) processes on each thread 

 

 

The experiment of this research was execute using procedures shown in Figure 4. The proposed 

method HPGA is compared to sequential genetic algorithm (SeqGA), island parallel genetic algorithm 

(IPGA), and global parallel genetic algorithm (GPGA). Three different environments with an area of 15×12 

and 2 destination points are used, shown in Figure 5. Parameter testing is performed on all the methods tested 

to find the best parameter, then best parameter is used to create a new model and performance comparison is 

made between all the method tested. 
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Figure 4. Test design to evaluate performance of the proposed method 

 

 

3. RESULTS AND DISCUSSION 

To evaluate the performance of all the methods, grid search was used. All parameter tested is shown 

in Table 1 and the best parameters shown in bold. The best parameter is chosen by evaluating the minimum 

fitness achieved, consistency of delivering an optimal and collision-free path, and the execution time. The 

best parameters are then used to compare all the methods tested and the results are shown in Table 2. Other 

methods use higher maximum population, mating pool, tournament length, and patience value to achieve a 

comparable result to HPGA. 
 

 

Table 1. Parameters tested for the best performance on each method 
No Parameter Tested parameters 

HPGA SeqGA GPGA IPGA 

1 Chromosome length 3, 4 3, 4 3, 4 3, 4 

2 Maximum population 2000, 3000, 

4000, 5000 

2000, 3000, 4000, 

5000, 6000 

2000, 3000, 4000, 

5000, 6000 

2000, 3000, 4000, 

5000, 6000 

3 Mating pool 400, 800 400, 800, 1200, 1600 400, 800, 1200, 1600 400, 800, 1200, 1600 

4 Tournament length 2, 3 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5 

5 Mutation probability 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 

6 Mutation step 2 2 2 2 

7 Migration count - - - 2, 3, 4, 5, 6 

8 Patience 10 10, 25 10, 25 10, 25 

 
 

Table 2. Performance of all the methods in all test area with different scenarios 
Area Method Best fitness from 50 trials Average 

Generation 

Average execution 

Time (sec) Minimum Maximum Average 

Area 1 SeqGA  30.02 58.72 31.57 45 5.00 

GPGA 30.02 64.29 32.59 45 2.25 

IPGA 30.02 58.19 31.07 50 2.48 

HPGA 30.02 31.96 30.23 74 1.55 

Area 2 SeqGA  26.43 32.01 26.67 43 5.29 

GPGA 26.43 28.90 26.72 43 2.24 

IPGA 26.43 35.41 26.97 49 2.45 

HPGA 26.43 27.69 26.50 70 1.49 

Area 3 SeqGA  30.20 56.13 30.99 45 4.72 

GPGA 30.20 32.43 30.37 46 2.20 

IPGA 30.20 32.01 30.42 51 2.45 

HPGA 30.20 31.69 30.33 76 1.53 

 

 

Figure 5 illustrates output paths with the lowest minimum fitness value generated on the three 

different areas. The generated path on first area in Figure 5(a) shows the generated path in area 1 start from 

(14,2) and goes through (12,2), (11,10), and arrive at the first destination (7,11) then continues to (13,10), 

(5,5), (2,4) and arrive at the second destination (1,1). Figure 5(b) shows the generated path in area 2 start 

from (1,1) and goes through (4,2), (5,5), (6,6) and arrive at the first destination (4,11) then continues to (4,9), 

(8,8), (12,7) and arrive at the second destination (13,10). Figure 5(c) shows the generated path in Area 3 start 

from (3,9) and goes through (1,6), (4,5), (5,3) and arrive at the first destination (1,1) then continues to (4,2), 

(4,2), (9,10) and arrive at the second destination (13,11). All the generate path shows a good overall path 

with no collision with the obstacle. 
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(a) (b) (c) 

 

Figure 5. Example of the path generated for (a) area 1, (b) area 2, and (c) area 3 with the chromosome 

configuration 

 

 

Table 2 shows that all the methods are able to achieve an optimum and collision-free path shown by 

the same low minimum fitness. GPGA and SeqGA have comparably higher maximum and average fitness. 

This means GPGA and SeqGA can’t prevent premature convergence because of slow rate of convergence 

throughout the entire population when using early stopping technique. Meanwhile, HPGA can achieve a low 

maximum and average fitness compared to other methods. This means that HPGA is very stable in solving a 

two-destination PP problem and can always deliver a near-optimum path without collision. 

When looking at the average generation, other methods have a lower average generation. This is 

because other methods use a higher population than HPGA to achieve a similar result. The use of a higher 

population leads to an increase in execution time. While a low generation can mean a faster convergence, it 

can also lead to premature convergence when combined with an early stopping technique. HPGA can prevent 

premature convergence even when combined with early stopping with low patience value. When everything 

is considered HPGA can more consistently produce collision-free path results with faster execution times. 

All tested parallel GA methods provide faster execution time than the SeqGA. GPGA could achieve 

up to 2.4 times speed up, IPGA up to 2.2 times, and HPGA up to 3.5 times speed up. HPGA could prevent 

premature convergence when combined with early stopping technique. HPGA method has a higher speedup 

compared to the other three methods with the maximum speedup value achieved in Area 2 with a value of 3.6 

times. All the speedup comparisons are shown in Figure 6. 

 

 

 
 

Figure 6. Speedup visualization of all the methods compared to SeqGA 
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4. CONCLUSION 

In this experiment, GA is used to solve PP problems with multi-destination and multi-objective. 

Then a hybrid parallel method combining island and global parallel was proposed. HPGA resulted in an 

overall speedup of up to 3.6 times compared to the SeqGA. HPGA also shows a good result when combined 

with early stopping, preventing premature convergence while improving the overall execution time. This is 

likely contributed by implementing a global population filled by selecting parents from local populations, 

resulting in semi-random individuals inside the global population in every generation. The semi-randomness 

of the global population means that the best individual changes almost every generation and is only 

unchanged when all the local populations are close to converging. For the next experiment, a more improved 

and efficient code can be used to further improve the performance of GA for solving PP problems with multi-

destination and multi-objective. 
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