
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 1, April 2024, pp. 584~591

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i1.pp584-591 584

Journal homepage: http://ijeecs.iaescore.com

A new hybrid parallel genetic algorithm for multi-destination

path planning problem

Luthfiansyah Ilhamnanda Yusuf1, Aina Musdholifah2
1Master Program in Artificial Intelligence, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,

Yogyakarta, Indonesia
2Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,

Yogyakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Nov 24, 2023

Revised Jan 21, 2024

Accepted Feb 4, 2024

 This paper proposes a new parallel approach of multi objective genetic

algorithm for path planning problem. The main contribution of this work is

to reduce the population size that effect in decreasing processing times of
finding the optimum path for multi destination problem. This is achieved by

combining the local population of island parallel approach and global

population of global parallel approach. Various experiments have been

conducted to evaluate the new hybrid parallel genetic algorithm (HPGA) in
solving multi-objective path planning problems. Three different test areas

with 2 destinations were used to assess the performance of HPGA.

Furthermore, this work compares HPGA and sequential genetic algorithm

(SeqGA), as well as compared to other existing parallel genetic algorithm
(GA) methods. From experimental results show that proposed HPGA

outperform others, in term of processing time i.e., up to 3.6 times speedup

faster, and lowest GA parameter values. This proposed HPGA can be

utilized to design robots with fast and consistent path planning, especially
with various obstecles.

Keywords:

Genetic algorithm

Multi-destination

Multi-objective

Parallel genetic algorithm

Path planning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Aina Musdholifah

Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences

Universitas Gadjah Mada

Yogyakarta, Indonesia

Email: aina_m@ugm.ac.id

1. INTRODUCTION

Finding an optimal path in an environment or path planning (PP) is the main problem in developing

autonomous robots. PP algorithm allows autonomous robots to move independently without human

intervention, thereby increasing efficiency in processes that can utilize autonomous robots. The simplest form

of this problem is when path searching is carried out in a static environment [1]. In the real world,

autonomous robots have been used in various problems, including exploring other planets and looking for

victims in the search and rescue process [2]. Genetic algorithm (GA) is a metaheuristic algorithm inspired by

living things and based on Darwin's survival of the fittest theory, where the best individuals will survive

after undergoing long adaptation [3]. GA can be used to solve optimization problems, one of which is PP

problems [4], and many studies have shown GA can be good for solving PP problems.

In GA, population generation is the essential first step and dramatically influences the results.

Populations in GA are solution candidates that will be optimized. The solutions are stored in the

chromosomes of each individual. These chromosomes can be encoded to simplify the optimization progress.

Patle et al. [5] proposes matrix-binary encoding in GA to solve PP problem and gets a comparable result to

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A new hybrid parallel genetic algorithm for multi-destination … (Luthfiansyah Ilhamnanda Yusuf)

585

other intelligence navigational controllers. Population generation using heuristics has been tested and

performs better than fully random generation [6]. Next in the step are genetic operations. The primary genetic

operations are parent selection, crossover, and mutation. Parent selection and crossover are used to obtain

new solutions from an existing solution in the population. Intuitively, good alleles from parents can be

combined into better offspring if the suitable alleles are selected in crossover. If not, the offspring produced

will not necessarily be better than the parent's solution. Therefore, to maintain a good solution in the mating

pool, all population members do not carry out a crossover [7]. Mutation operators introduce uncertainty into

the obtained solution to explore new solutions. A good mutation operator needs to have 3 criteria:

reachability, unbiasedness, and scalability [4]. Xin et al. [8], proposed multi domain inversion to make more

offspring from chosen parents and pick the most optimum to be retained in the population. This method

speeds up convergence, gives better results, and is more robust to conventional GA.

Many studies have proposed many modified genetic operations. Lamini et al. [9], the same point

crossover is modified so that the offspring will produce the optimal solution from the selected parent. This

method improves the performance of the GA by reducing the iterations required for similar results. A new

crossover operator has also been proposed with the addition of local search. Apart from considering the

solution from the parent, the offspring also looks for solutions from neighboring parents. This modification

accelerates the convergence of solutions produced [10]. The closest node pairing crossover (CNCP) proposed

by [11] considers the distance between two genes in the crossover operation. CNCP gives a better solution

and a faster convergence rate. A mutation operator that mutates all genes inside the chromosome instead of

just one gene has been tested and gives a better result than other mutation methods [12]. A new mutation

operator has also been proposed where the most optimal parent is considered more during the calculation as it

is closer to the global optimum. The result is increased performance in convergence speed and stability of the

algorithm compared to ordinary GA [13].

Along with the development of GA, many modifications have been made to the essential workings

of this algorithm. One of them is the addition of the deletion operator. This deletion operator allows the GA

to have flexible chromosome lengths, thus allowing for more optimal solutions [14]. Several studies have used

the deletion operator in path planning problems and obtained good results [10], [15], [16]. Sarkar et al. [16] uses

circuit removal technique to remove any loop form when optimizing the robot path. In a smooth path

planning problem, Berzier curve can be used to create a smooth path for the robot. In [17] and [18] use GA

combined with Bezier curve method to solve smooth path planning problems with good results. Chen and

Gao [19] proposes GA with adaptive crossover mutation rate to solve path planning for soccer robots and

obtained good results.

Fitness functions are used to evaluate the generated solution. The fitness function will guide the

population toward the optimal solution, so a suitable fitness function is essential [4]. To increase the

efficiency of the GA, an appropriate fitness function is needed so that convergence can be achieved quickly

while providing the most optimal solution. Path length can be used to find the shortest path in the PP problem

and tested to give good results [6], [9], [10], [15], [20], [21]. Path smoothness can be used to minimize the

number of turns in the optimum solution and tested to give optimal results [10], [21] and reduce convergence

time [15]. Using energy usage as a fitness function where the robot minimizes any energy consumption when

maneuvering can also give optimal results [15], [22], [23]. Another fitness function that considers the safety

of the path the robot takes has also been tested and produced an excellent solution to the path planning

problem [6], [21].

Even though it has been proven to solve PP problems, GA has the disadvantage of high computation

and increasing problem complexity. The more iterations of the GA, the more fitness function calls that need

to be made, thereby increasing resource requirements [3]. In the problem of finding paths with many

destinations (multi-destination path planning), the increase in limited computing time causes the use of

algorithms in off-the-line problems [24]. To overcome this limitation, many instances of the GA can be

created, which can be run simultaneously to obtain one result, or what is usually called a parallel genetic

algorithm (PGA). PGA is an extension of regular GA that can be utilized with the help of multithreading

capabilities commonly found in modern processors. PGA can cut computing time without sacrificing results

because the algorithms are population-based, so there is no reduction in the search algorithm's capabilities.

With good implementation, the PGA will be able to beat ordinary GA in terms of computing time [25]. PGA

can also take advantage of the development of modern processors, which have many cores, especially on

GPUs [26].

Many studies highlight the use of parallel processing to increase the search speed of GA. PGA has

been tested to solve the vehicle routing problem based on cloud computing with the synchronizable kernels

method. The method has proven very efficient and can obtain a speedup of more than 13 times compared to

the conventional GA [27]. Amassmir et al. [28], an intelligence system to assist in making recruitment

decisions has been developed with sequential GA and PGA, and it can give a quality decision in a reduced

CPU time. PGA has also been used in hyperparameter optimization problems, and it can improve model

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 584-591

586

accuracy [29]. In scheduling problems, PGA has been tested, resulting in faster convergence, preventing

premature convergence [30], and improved execution time [31]. In PP problems, PGA has been tested, and

the resulting performance makes using GA in PP of unmanned aerial vehicles feasible in real-time [20].

In theory, the reduction in computing time produced by the PGA can be applied to solving PP problems with

multiple destinations and objectives (multi-destination path planning with multi-objective).

2. METHOD

A static and fully-observable environment is used in this experiment. The size of the environment

and the number and shape of obstacles are determined before the experiment is carried out. The starting point

and destination points and their coordinates are determined at the beginning, but the order of the destination

points will depend on the fitness obtained by the agent.

The chromosome representation is a whole number representation, where each allele contains the

coordinates of the point traversed by the agent. Whole numbers are used to simplify computing. In one

individual, there are multiple chromosomes, where the number corresponds to the destination points needed

to be reached. The number of alleles inside a chromosome is determined by the parameter chromosome

length (m), and then the chromosome length is added by 2 (m+2) to accommodate the start and destination

points. This chromosome configuration is illustrated in Figure 1. The destination point is shuffled when the

individual is initialized so that the algorithm can accommodate different arrangements of destination points.

Figure 1. Chromosome configuration inside an individual

To select parents for crossover, tournament selection is used, and the mating pool is chosen to be

less than the total population. Then, elitism is used to keep the best individual in every generation to fill the

rest of the population. Figure 2 illustrates the single-point crossover and creep mutation process. For single-

point crossover, random allele as the crossover point resulting in two chromosomes combined from the two

parents, as illustrated in Figure 2(a). A modified creep mutation operator moves the point inside an allele to a

random point within a defined range. For example as illustrated in Figure 2(b), when the third allele of

Offspring 2’s second chromosome in Figure 2(a) undergoes a mutation, it will be mutated from (3,3) to (4,4)

and still within mutation step. In both operations, the first and the last allele on each chromosome are static

and will not undergo crossover and/or mutation because those two points are the start and destination points.

(a) (b)

Figure 2. Examples of genetic operators used are (a) single-point crossover and (b) modified creep mutation

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A new hybrid parallel genetic algorithm for multi-destination … (Luthfiansyah Ilhamnanda Yusuf)

587

Two fitness functions are used to calculate the quality of every individual. Line segments can be

created from every two adjacent alleles in a chromosome, and fitness can be calculated from all the line

segments created. The path length is the length of every line segment added, as in (2), and path collision is

the number of collisions of the line segment to all obstacles in the environment, as in (3). This path collision

is then used as a penalty for the line segment. If there’s a collision, the fitness obtained from the path length

function is multiplied by the number of collisions obtained from the path collision function as in (1).

𝐹 = ∑ (∑ 𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) × (𝐶(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) + 1)𝑛−1
𝑚 = 0)

𝑗
𝑖 = 0 (1)

𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) = √(𝑥𝑃𝑖,𝑚
− 𝑥𝑃𝑖,𝑚+1

)
2

+ (𝑦𝑃𝑖,𝑚
− 𝑦𝑃𝑖,𝑚+1

)
2

 (2)

𝐶(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) = ∑ {
10, 𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) ∩ 𝑜𝑏𝑠 ∈ 𝑜𝑏𝑠

0, 𝐿(𝑃𝑖,𝑚 , 𝑃𝑖,𝑚+1) ∩ 𝑜𝑏𝑠 = ∅

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑚𝑎𝑥]
𝑜𝑏𝑠=𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[0] (3)

The parallelization model used is a hybrid between the island and global parallelization model with

some modifications as illustrated in Figure 3. The process begins by creating several local populations inside

the slave nodes. After individuals are initialized in the local populations, each individual's fitness will be

calculated. Then, a selection is carried out for each local population and combined with a global population.

After all the parents are combined, an equal number of parents will be distributed back to the local population

to produce offspring by crossover and mutation inside the local population, as illustrated in Figure 3(a).

Figure 3(b) shows the thread execution of each of the processes. The experiment is using early stopping

technique and will trigger when there is no change in fitness of the best individual after some generation

(referred as patience value). This early stopping technique can fasten the execution time and measure the

convergence rate.

(a) (b)

Figure 3. Inner working of the proposed hybrid parallel genetic algorithm (HPGA) with

(a) the general flow of the algorithm and (b) processes on each thread

The experiment of this research was execute using procedures shown in Figure 4. The proposed

method HPGA is compared to sequential genetic algorithm (SeqGA), island parallel genetic algorithm

(IPGA), and global parallel genetic algorithm (GPGA). Three different environments with an area of 15×12

and 2 destination points are used, shown in Figure 5. Parameter testing is performed on all the methods tested

to find the best parameter, then best parameter is used to create a new model and performance comparison is

made between all the method tested.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 584-591

588

Figure 4. Test design to evaluate performance of the proposed method

3. RESULTS AND DISCUSSION

To evaluate the performance of all the methods, grid search was used. All parameter tested is shown

in Table 1 and the best parameters shown in bold. The best parameter is chosen by evaluating the minimum

fitness achieved, consistency of delivering an optimal and collision-free path, and the execution time. The

best parameters are then used to compare all the methods tested and the results are shown in Table 2. Other

methods use higher maximum population, mating pool, tournament length, and patience value to achieve a

comparable result to HPGA.

Table 1. Parameters tested for the best performance on each method
No Parameter Tested parameters

HPGA SeqGA GPGA IPGA

1 Chromosome length 3, 4 3, 4 3, 4 3, 4

2 Maximum population 2000, 3000,

4000, 5000

2000, 3000, 4000,

5000, 6000

2000, 3000, 4000,

5000, 6000

2000, 3000, 4000,

5000, 6000

3 Mating pool 400, 800 400, 800, 1200, 1600 400, 800, 1200, 1600 400, 800, 1200, 1600

4 Tournament length 2, 3 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5

5 Mutation probability 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3

6 Mutation step 2 2 2 2

7 Migration count - - - 2, 3, 4, 5, 6

8 Patience 10 10, 25 10, 25 10, 25

Table 2. Performance of all the methods in all test area with different scenarios
Area Method Best fitness from 50 trials Average

Generation

Average execution

Time (sec) Minimum Maximum Average

Area 1 SeqGA 30.02 58.72 31.57 45 5.00

GPGA 30.02 64.29 32.59 45 2.25

IPGA 30.02 58.19 31.07 50 2.48

HPGA 30.02 31.96 30.23 74 1.55

Area 2 SeqGA 26.43 32.01 26.67 43 5.29

GPGA 26.43 28.90 26.72 43 2.24

IPGA 26.43 35.41 26.97 49 2.45

HPGA 26.43 27.69 26.50 70 1.49

Area 3 SeqGA 30.20 56.13 30.99 45 4.72

GPGA 30.20 32.43 30.37 46 2.20

IPGA 30.20 32.01 30.42 51 2.45

HPGA 30.20 31.69 30.33 76 1.53

Figure 5 illustrates output paths with the lowest minimum fitness value generated on the three

different areas. The generated path on first area in Figure 5(a) shows the generated path in area 1 start from

(14,2) and goes through (12,2), (11,10), and arrive at the first destination (7,11) then continues to (13,10),

(5,5), (2,4) and arrive at the second destination (1,1). Figure 5(b) shows the generated path in area 2 start

from (1,1) and goes through (4,2), (5,5), (6,6) and arrive at the first destination (4,11) then continues to (4,9),

(8,8), (12,7) and arrive at the second destination (13,10). Figure 5(c) shows the generated path in Area 3 start

from (3,9) and goes through (1,6), (4,5), (5,3) and arrive at the first destination (1,1) then continues to (4,2),

(4,2), (9,10) and arrive at the second destination (13,11). All the generate path shows a good overall path

with no collision with the obstacle.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A new hybrid parallel genetic algorithm for multi-destination … (Luthfiansyah Ilhamnanda Yusuf)

589

(a) (b) (c)

Figure 5. Example of the path generated for (a) area 1, (b) area 2, and (c) area 3 with the chromosome

configuration

Table 2 shows that all the methods are able to achieve an optimum and collision-free path shown by

the same low minimum fitness. GPGA and SeqGA have comparably higher maximum and average fitness.

This means GPGA and SeqGA can’t prevent premature convergence because of slow rate of convergence

throughout the entire population when using early stopping technique. Meanwhile, HPGA can achieve a low

maximum and average fitness compared to other methods. This means that HPGA is very stable in solving a

two-destination PP problem and can always deliver a near-optimum path without collision.

When looking at the average generation, other methods have a lower average generation. This is

because other methods use a higher population than HPGA to achieve a similar result. The use of a higher

population leads to an increase in execution time. While a low generation can mean a faster convergence, it

can also lead to premature convergence when combined with an early stopping technique. HPGA can prevent

premature convergence even when combined with early stopping with low patience value. When everything

is considered HPGA can more consistently produce collision-free path results with faster execution times.

All tested parallel GA methods provide faster execution time than the SeqGA. GPGA could achieve

up to 2.4 times speed up, IPGA up to 2.2 times, and HPGA up to 3.5 times speed up. HPGA could prevent

premature convergence when combined with early stopping technique. HPGA method has a higher speedup

compared to the other three methods with the maximum speedup value achieved in Area 2 with a value of 3.6

times. All the speedup comparisons are shown in Figure 6.

Figure 6. Speedup visualization of all the methods compared to SeqGA

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 584-591

590

4. CONCLUSION

In this experiment, GA is used to solve PP problems with multi-destination and multi-objective.

Then a hybrid parallel method combining island and global parallel was proposed. HPGA resulted in an

overall speedup of up to 3.6 times compared to the SeqGA. HPGA also shows a good result when combined

with early stopping, preventing premature convergence while improving the overall execution time. This is

likely contributed by implementing a global population filled by selecting parents from local populations,

resulting in semi-random individuals inside the global population in every generation. The semi-randomness

of the global population means that the best individual changes almost every generation and is only

unchanged when all the local populations are close to converging. For the next experiment, a more improved

and efficient code can be used to further improve the performance of GA for solving PP problems with multi-

destination and multi-objective.

ACKNOWLEDGEMENTS

This work was partially supported by Department of Computer Science and Electronics, Universitas

Gadjah Mada under the Publication Funding Year 2024.

REFERENCES
[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajectory planning algorithms: a general overview,”

in Mechanisms and Machine Science, 2015, pp. 3–27. doi: 10.1007/978-3-319-14705-5_1.

[2] J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo, “Path planning for autonomous mobile robots: a review,”

Sensors, vol. 21, no. 23, p. 7898, Nov. 2021, doi: 10.3390/s21237898.

[3] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia Tools and

Applications, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.

[4] O. Kramer, Genetic algorithm essentials, vol. 679. in Studies in Computational Intelligence, vol. 679. Cham: Springer

International Publishing, 2017. doi: 10.1007/978-3-319-52156-5.

[5] B. K. Patle, D. R. K. Parhi, A. Jagadeesh, and S. K. Kashyap, “Matrix-binary codes based genetic algorithm for path planning of

mobile robot,” Computers & Electrical Engineering, vol. 67, pp. 708–728, Apr. 2018, doi: 10.1016/j.compeleceng.2017.12.011.

[6] K. Li, Q. Hu, and J. Liu, “Path planning of mobile robot based on improved multiobjective genetic algorithm,” Wireless

Communications and Mobile Computing, vol. 2021, pp. 1–12, Apr. 2021, doi: 10.1155/2021/8836615.

[7] T. V. Mathew, “Genetic algorithm,” 2012. [Online]. Available: http://datajobstest.com/data-science-repo/Genetic-Algorithm-

Guide-[Tom-Mathew].pdf

[8] J. Xin, J. Zhong, F. Yang, Y. Cui, and J. Sheng, “An improved genetic algorithm for path-planning of unmanned surface vehicle,”

Sensors, vol. 19, no. 11, p. 2640, Jun. 2019, doi: 10.3390/s19112640.

[9] C. Lamini, S. Benhlima, and A. Elbekri, “Genetic algorithm based approach for autonomous mobile robot path planning,”

Procedia Computer Science, vol. 127, pp. 180–189, 2018, doi: 10.1016/j.procs.2018.01.113.

[10] M. Nazarahari, E. Khanmirza, and S. Doostie, “Multi-objective multi-robot path planning in continuous environment using an

enhanced genetic algorithm,” Expert Systems with Applications, vol. 115, pp. 106–120, Jan. 2019, doi:

10.1016/j.eswa.2018.08.008.

[11] M. Chattoraj and U. R. Vinayakamurthy, “A self adaptive new crossover operator to improve the efficiency of the genetic

algorithm to find the shortest path,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 23, no. 2,

p. 1011, Aug. 2021, doi: 10.11591/ijeecs.v23.i2.pp1011-1017.

[12] S. Ullah, A. Salam, and M. Masood, “Analysis and comparison of a proposed mutation operator and its effects on the

performance of genetic algorithm,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 25, no. 2,

p. 1208, Feb. 2022, doi: 10.11591/ijeecs.v25.i2.pp1208-1216.

[13] H. Guo, Z. Mao, W. Ding, and P. Liu, “Optimal search path planning for unmanned surface vehicle based on an improved genetic

algorithm,” Computers & Electrical Engineering, vol. 79, p. 106467, Oct. 2019, doi: 10.1016/j.compeleceng.2019.106467.

[14] Q. Li, W. Zhang, Y. Yin, Z. Wang, and G. Liu, “An improved genetic algorithm of optimum path planning for mobile robots,” in

Sixth International Conference on Intelligent Systems Design and Applications, IEEE, Oct. 2006, pp. 637–642. doi:

10.1109/ISDA.2006.253911.

[15] Y. Li, Z. Huang, and Y. Xie, “Path planning of mobile robot based on improved genetic algorithm,” in 2020 3rd International

Conference on Electron Device and Mechanical Engineering (ICEDME), IEEE, May 2020, pp. 691–695. doi:

10.1109/ICEDME50972.2020.00163.

[16] R. Sarkar, D. Barman, and N. Chowdhury, “Domain knowledge based genetic algorithms for mobile robot path planning having

single and multiple targets,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, pp. 4269–

4283, Jul. 2022, doi: 10.1016/j.jksuci.2020.10.010.

[17] M. Elhoseny, A. Tharwat, and A. E. Hassanien, “Bezier curve based path planning in a dynamic field using modified genetic

algorithm,” Journal of Computational Science, vol. 25, pp. 339–350, Mar. 2018, doi: 10.1016/j.jocs.2017.08.004.

[18] J. Ma, Y. Liu, S. Zang, and L. Wang, “Robot path planning based on genetic algorithm fused with continuous bezier

optimization,” Computational Intelligence and Neuroscience, vol. 2020, pp. 1–10, Feb. 2020, doi: 10.1155/2020/9813040.

[19] X. Chen and P. Gao, “Path planning and control of soccer robot based on genetic algorithm,” Journal of Ambient Intelligence and

Humanized Computing, vol. 11, no. 12, pp. 6177–6186, Dec. 2020, doi: 10.1007/s12652-019-01635-1.

[20] V. Jamshidi, V. Nekoukar, and M. H. Refan, “Analysis of parallel genetic algorithm and parallel particle swarm optimization

algorithm UAV path planning on controller area network,” Journal of Control, Automation and Electrical Systems, vol. 31, no. 1,

pp. 129–140, Feb. 2020, doi: 10.1007/s40313-019-00549-9.

[21] K. S. Suresh, R. Venkatesan, and S. Venugopal, “Mobile robot path planning using multi-objective genetic algorithm in industrial

automation,” Soft Computing, vol. 26, no. 15, pp. 7387–7400, Aug. 2022, doi: 10.1007/s00500-022-07300-8.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A new hybrid parallel genetic algorithm for multi-destination … (Luthfiansyah Ilhamnanda Yusuf)

591

[22] R. Shivgan and Z. Dong, “Energy-efficient drone coverage path planning using genetic algorithm,” in 2020 IEEE 21st

International Conference on High Performance Switching and Routing (HPSR), IEEE, May 2020, pp. 1–6. doi:

10.1109/HPSR48589.2020.9098989.

[23] A. V. Le, N. H. K. Nhan, and R. E. Mohan, “Evolutionary algorithm-based complete coverage path planning for tetriamond tiling

robots,” Sensors, vol. 20, no. 2, p. 445, Jan. 2020, doi: 10.3390/s20020445.

[24] Y. Xue and J.-Q. Sun, “Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm,”

Applied Sciences, vol. 8, no. 9, p. 1425, Aug. 2018, doi: 10.3390/app8091425.

[25] T. Harada and E. Alba, “Parallel genetic algorithms: a useful survey,” ACM Computing Surveys, vol. 53, no. 4, pp. 1–39, Jul.

2020, doi: 10.1145/3400031.

[26] J. R. Cheng and M. Gen, “Accelerating genetic algorithms with GPU computing: a selective overview,” Computers & Industrial

Engineering, vol. 128, pp. 514–525, Feb. 2019, doi: 10.1016/j.cie.2018.12.067.

[27] M. Abbasi, M. Rafiee, M. R. Khosravi, A. Jolfaei, V. G. Menon, and J. M. Koushyar, “An efficient parallel genetic algorithm

solution for vehicle routing problem in cloud implementation of the intelligent transportation systems,” Journal of Cloud

Computing, vol. 9, no. 1, p. 6, Dec. 2020, doi: 10.1186/s13677-020-0157-4.

[28] S. Amassmir, S. Tkatek, O. Abdoun, and J. Abouchabaka, “An intelligent irrigation system based on internet of things (IoT) to

minimize water loss,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 25, no. 1, p. 504, Jan.

2022, doi: 10.11591/ijeecs.v25.i1.pp504-510.

[29] M. Farsi et al., “Parallel genetic algorithms for optimizing the SARIMA model for better forecasting of the NCDC weather data,”

Alexandria Engineering Journal, vol. 60, no. 1, pp. 1299–1316, Feb. 2021, doi: 10.1016/j.aej.2020.10.052.

[30] J. Luo, S. Fujimura, D. El Baz, and B. Plazolles, “GPU based parallel genetic algorithm for solving an energy efficient dynamic

flexible flow shop scheduling problem,” Journal of Parallel and Distributed Computing, vol. 133, pp. 244–257, Nov. 2019, doi:

10.1016/j.jpdc.2018.07.022.

[31] M. R. Rathomi and R. Pulungan, “A coarse-grained parallelization of genetic algorithms,” International Journal of Advances in

Intelligent Informatics, vol. 4, no. 1, p. 1, Apr. 2018, doi: 10.26555/ijain.v4i1.137.

BIOGRAPHIES OF AUTHORS

Luthfiansyah Ilhamnanda Yusuf is a master student in artificial intelligence at

Universitas Gadjah Mada (UGM). Received a bachelor degree in computer science from

Universitas Amikom Yogyakarta in 2022. His research interests include genetic algorithms,

machine learning, and natural language processing. He can be contacted at email:

luthfiansyahilhamnandayusuf@mail.ugm.ac.id.

Aina Musdholifah received a bachelor and master degrees in computer science,

Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia, in 2003 and 2006, respectively, and

Ph.D. in Computer Science from Universiti Teknologi Malaysia (UTM). She is currently an
Associate Professor and a member of the Intelligent System Laboratory, Department of

Computer Science and Instrumentation, UGM, Yogyakarta. Her research interests include

genetics algorithm, machine learning, fuzzy logic, and bioinformatics. She can be contacted at

email: aina_m@ugm.ac.id.

https://orcid.org/0009-0008-0341-3982
https://scholar.google.com/citations?view_op=list_works&hl=en&user=Dq9Jb-0AAAAJ
https://www.webofscience.com/wos/author/record/JWP-4385-2024
https://orcid.org/0000-0002-9076-6389
https://scholar.google.com/citations?hl=en&user=YKq7Q2QAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36548648700
https://www.webofscience.com/wos/author/record/GLV-2414-2022

