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 Attention deficit and hyperactivity disorder (ADHD) classification method 

as a quantitative observation has been continually improved to assist medical 

practitioners. Currently, machine learning algorithms such as k-nearest 

neighbors (KNN), multilayer perceptron (MLP), and support vector machine 

(SVM) are widely used. This study proposed a feature extraction method for 

quantitative electroencephalography (qEEG) data derived from the 

continuous wavelet transform (CWT) to classify children with ADHD versus 

healthy subjects. Subsequently, this study compared the performance of the 

classification pipeline before and after the implementation of principal 

component analysis (PCA) on the features prior to processing with machine 

learning algorithms. The results revealed that the overall performance of the 

classifiers consistently improved after the implementation of PCA. The 

results highlight the varying impact of PCA on classifier performance, with 

KNN showing an improvement in testing accuracy from 61.84% to 69.21% 

following PCA implementation, while the other classifiers showed 

deterioration in performance. These findings suggest that while PCA may be 

beneficial for some classifiers, its impact on performance varies depending 

on the specific characteristics of the dataset and the classifier utilized. 

Moreover, this study provides insight for future implementation of the 

classification method for ADHD patients across a more specific clinical 

range of the spectrum. 
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1. INTRODUCTION 

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 

millions of children and adults worldwide, and is characterized by disruptive inattention, excessive activity, 

and impulsive actions [1]. ADHD impacts around 5–7% of children and 2–5% of adults globally [2].  

The most common methods for psychiatrists, pediatricians, neurologists, and psychologists on ADHD are 

clinical observations [3]. However, in recent years, methods based on brain electrical signals through spectral 

analysis have aided healthcare professionals in the diagnosis of ADHD [4]. Electroencephalography (EEG) is 

a non-invasive method for acquiring electrical activity originating from neurons in the brain that can be 

measured through the scalp [5]. This procedure involves placing electrodes on the scalp to record EEG 

signals. EEG has proven to be valuable tool in assisting the quantitative diagnosis of ADHD as it provides 

information about brain electrical activity [6].  

https://creativecommons.org/licenses/by-sa/4.0/
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EEG has evolved into quantitative EEG (qEEG), where EEG signals are mapped for their brain 

activity patterns using digital signals and mathematical algorithms [7]. In 2005, Niedermeyer [8] highlighted 

the role of qEEG in understanding brain activity patterns and their associations with cognitive disorders. The 

qEEG signal is a useful tool for measuring and analyzing brain activity that plays a crucial role in identifying 

specific patterns that indicate certain symptoms and aiding in the treatment of various mental health 

disorders, such as ADHD [9]. The frequency range of EEG signals vary, but the most common are delta  

(0.5-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), sigma (12-16 Hz), and beta (13-30 Hz) [10]. The study by  

Barry et al. [11] in 2007 found that children with ADHD exhibited lower brain activity in the beta frequency 

range (13-21 Hz) in the frontal area. This suggests that children with ADHD experience disruptions in their 

ability to focus attention and regulate behavior. In 2012, Loo and Makeig [12] found that brain activity 

patterns of children with ADHD differed from those categorized as neurotypical. They discovered that brain 

activity in children with ADHD showed lower beta frequency and higher theta frequency activity in the 

frontal and temporal areas, whereas neurotypical children exhibited more stable brain activity across the 

entire brain. 

The continuous wavelet transform (CWT) has been used to obtain detailed information about time 

series signals such as qEEG [13]. This methods generates time-frequency and nonlinear features that can 

serves as a quantitative tool to detect the activity of human brain [14]. QEEG studies in individuals with 

ADHD have indicated specific differences on brain activity such as lower brain activity levels and distinct 

frequencies [15]. Various machine learning algorithms, such as k-nearest neighbor (KNN), convolutional 

neural network (CNN), random forest, and support vector machine (SVM), have been applied to classify 

EEG signals as normal or indicative of ADHD or mental disorders such as depression [16]-[18]. In applying  

these algorithms, EEG signals data are collected and preprocessed before being input into the model. The 

model is then trained using qEEG signal data from individuals with and without ADHD, enabling it to 

distinguish between the two groups [19]. The use of machine learning algorithms to process qEEG signals 

offers numerous advantages, such as the ability to handle large datasets with high accuracy and the ability to 

address individual variability in the data [20]. Principal component analysis (PCA) is one of the most 

common techniques paired with machine learning algorithms to improve data variability, thereby enhance the 

classifier performance [21]. These studies demonstrate that machine learning can assist medical practitioner 

in the early clinical diagnosis of ADHD [22]. 

 

 

2. METHOD 

This study involved six stages, as illustrated in Figure 1. The stages included qEEG data acquisition, 

preprocessing, processing, PCA, classification model selection, and model evaluation. During EEG data 

acquisition, the focus was on gathering data from various electrode placements as sources of EEG signals. 

During the preprocessing stage, the EEG signals were filtered to remove any unwanted noise. In the next 

step, the processing stage involved of the CWT, followed by feature extraction from the data where the 

qEEG data was transformed to extract features needed for the classifier models. The processed qEEG data 

now consisting of these features, then went through the PCA stage, where PCA was performed to reduce the 

low variance data and emphasize higher-variance features. Subsequently, the machine learning classification 

employed three types of classifier models: KNN, multilayer perceptron (MLP), and SVM. After selecting the 

classification model, the study proceeded to the model evaluation stage, where the performance metrics were 

examined to assess the effectiveness of the models. 

 

 

 
 

Figure 1. Flow chart of the research stages 

 

 

2.1.  EEG data acquisition 

This study used secondary datasets from two sources; Mohammadi et al. [23] dataset and the Pereda 

et al. [24] dataset. Both datasets were collected through a similar experiment, which gathered eyes closed and 

eyes opened qEEG signals from the participants while performing visual and cognitive tasks. Detailed 

information regarding both datasets is provided in Table 1. The Mohammadi et al. [23] dataset was obtained 

from the IEEE Dataport platform uploaded by Mohammadi et al. [23] from the Tehran University of Medical 
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Sciences, Tehran. The qEEG signal data of the dataset of Mohammadi et al. [23] were recorded using an SD-

C24 device with a 24-bit ADC at a sampling rate of 128 Hz from 19 channels located at Fz, Cz, Pz, C3, T3, 

C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, and O2. Mohammadi et al. [23] conducted a study with 

60 participants, including 30 subjects with ADHD and 30 healthy subjects. The Pereda et al. [24] dataset was 

sourced from the Figshare platform and uploaded by Pereda et al. [24] to the University of La Laguna, Spain. 

EEG eyes closed and eyes opened data from the 33 participants were recorded using a Nihon Kohden 

Neurofax EEG-9200 device with a 16-bit ADC at a sampling rate of 256 Hz from eight channels located at 

Fp1, Fp2, C3, C4, T3, T4, O1, and O2. 

 

 

Table 1. Quantitative EEG datasets information 

Source 
Participants Sampling 

rate 
ADC Bit 

ADHD Control 

Mohammadi et al. [23] 
30 subjects (22L; 8P; 9.62 ± 1.75 

years old) 
30 subjects 

(25L; 5P; 9.85 ± 1.77 years old) 
256 Hz 24 bit 

Pereda et al. [24] 
19 subjects 

(19L; 8.50 ± 1.74 years old) 

14 subjects 

(14L; 8.21 ± 1.74 years old) 
128 Hz 16 bit 

 

 

2.2.  Preprocessing 

Raw qEEG data must be preprocessed to ensure the data are free from noise and signal artifacts. 

Both datasets were converted into data frames and normalized from digital signals to analog voltage data 

with microvolt magnitudes as expressed in (1). Subsequently, the sensor position montage was arranged 

according to the international 10-20 standard montage system for 19 and 8 channels. The output of the 

conversion from a digital signal to analog requires knowledge of the device reference voltage and analog-to-

digital converter bit depth, as provided in the dataset information.  

 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 =  
𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑅𝑒𝑎𝑑𝑖𝑛𝑔

2𝑁−1
∙  𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (1) 

 

2.3.  Processing 

2.3.1. Continuous wavelet transforms 

The wavelet transform is an orthogonal function that serves as a tool to decompose data, functions, 

or operators into different frequency components and then analyze each component with a resolution adapted 

to its scale. A signal in time-domain is processed using the wavelet transform in frequency-domain signals 

within a specified frequency range, generate time-frequency coefficients. One type of wavelet 

transformation, the CWT, involves processing a signal with a specified continuous frequency rather than 

discrete frequency intervals. The resulting wavelet coefficient was used as the basis for feature extraction for 

each channel per subject [25]. 

CWT enables the time-frequency analysis of a signal, allowing the identification and 

characterization of features at different scales within the signal. This transformation is based on the use of a 

scaled continuous and shifted wavelet function [26]. The CWT of a signal 𝑓(t) with respect to a wavelet 

function 𝜓(𝑡) is defined as the multiplication of the original signal and shifted and scaled wavelet functions 

in the time domain. The mathematical formula for the CWT is expressed in (2) as follows: 

 

𝐶𝑊𝑇 (𝑎, 𝑏) =  |𝛼|−
1

2 ∙ ∫[𝑓 (𝑡)] ∙ 𝜓 [
𝑡−𝑏

𝛼
] 𝑑𝑡 (2) 

 

where  represents the scale factor, b represents the translation factor, 𝑓(t) represents the original signal, and 

𝜓 [
𝑡−𝑏

𝛼
] represents the scaled and shifted wavelet functions. The type of wavelet used in this study was the 

Morlet wavelet with the mathematical formula in (3) with: 

 

𝜓(𝑡) = exp−
𝑡2

2 cos(5𝑡) (3) 

 

2.3.2. Feature extraction 

Feature extraction involved the extraction of the features from the EEG signals of each channel per 

participant in both datasets. The participant qEEG data were divided into frequency bands using the wavelet 

method with 1-4 Hz for delta, 4-8 Hz for theta, 8-16 Hz for alpha, 16-32 Hz for beta, and 32-64 Hz for 

gamma bands. The CWT method generates two coefficients:those  with low-frequency information are called 
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approximation coefficients, and those with high-frequency information are called detail coefficients. The 

coefficients from the CWT were computed mathematically to obtain four features; the average of signal 

power or energy, signal entropy, mean, and standard deviation. Therefore, the total features generated from 

each participant would be the sum of all channels multiplied by the two coefficients and four features, 

resulting in a total of 152 features per participant from the Mohammadi et al. [23] dataset with 19 channels 

and 64 features per participant from the Pereda et al. dataset. The total number of features for each 

participant was multiplied by five frequency bands. Therefore, the number of inputs for the machine learning 

models was 300 for the Mohammadi et al. [23] dataset and 165 for the Pereda et al. [24] dataset. 

 

2.4.  Principal component analysis 

PCA is capable of reducing clusters of features with low variance, thereby generating higher 

variance that could significantly increase the performance of classification models [27]. The eigenvalue 

represents the amount of variance captured by each principal component, indicating the significance of the 

corresponding eigenvector in describing the variability of the data. The Kaiser-Guttman rule suggests 

retaining principal components with eigenvalues greater than 1, indicating that they explain more variance 

than principal components with eigenvalues below the line; they are considered significant for analysis [28]. 

The resulting components of the PCA were visualized using a scree plot to show how the data variance 

changed when PCA was applied. Kaiser’s line helps ensure the retention of representative principal 

component of the broader population, which can be relied upon for further analysis and interpretation due to 

their high variance data. This line is crucial for reliable data analysis because it ensures both  the variance and 

reliability of the feature reduction process. 

 

2.5.  Machine learning classification 

The classification of subjects falls under the category of supervised learning in the machine learning 

area [29]. There are various supervised learning algorithms, such as KNN, MLP, and SVM. KNN is the 

fundamental concept of finding k-nearest data points from the data to be classified and determining the class 

label that most frequently appears among the k-neighbors [30]. KNN is particularly advantageous when 

dealing with complex and nonlinear patterns in data, making it suitable for tasks where the underlying 

distribution is not well understood or is highly irregular. The MLP is a type of neural network with an input 

layer, hidden layers, and output layer. It utilizes weights and biases to transform input data through multiple 

layers and learns complex patterns during training. MLPs are commonly employed for tasks such as 

classification and regression in machine-learning applications, capable of learning complex feature 

representations and achieve a high predictive accuracy, particularly in large-scale datasets with diverse 

features [31]. SVM are among the most favored machine learning algorithms for classification and 

regression. SVM aims to find the best hyperplane that can separate the two classes in the given data. This 

hyperplane is chosen by maximizing the margin, which is the distance between the hyperplane and the 

nearest points from each class [32]. SVM is especially effective when managing data with numerous 

dimensions and can handle non-linear relationships between features using kernel functions. Its ability to find 

an optimal hyperplane and maximize the margin makes it robust to overfitting and ensures a good 

generalization performance.  

 

2.6.  Model evaluation 

Model evaluation is the last step of this research method, and the performance of the machine 

learning models was evaluated based on the accuracy of the testing and training of feature datasets.  

The performances of the three classifiers were evaluated using confusion matrices. Additionally, the 

accuracies of the classifiers before and after the implementation of PCA were compared [33]. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Principal component analysis 

The features obtained from the Mohammadi et al. [23] and Pereda et al. [24] datasets were reduced 

from 152 and 64 features, respectively, and were reduced using PCA to improve model performance. The 

reduced features were visualized using a scree plot, as illustrated in Figure 2, to show how the data variance 

changed when PCA was applied. The relationship between the principal components and eigenvalues showed 

that the number of eigenvalues tended to decrease when the principal component increased, representing a 

decrease in the amount of variance. Therefore, Kaiser’s line at an eigenvalue of one was utilized to determine 

the principal components with high-variance. Figure 2(a) illustrates the PCA scree plot of the Mohammadi  

et al. [23] dataset, which shows that there are 22 high-variance components above the Kaiser’s line.  

Figure 2(b) shows that there are 12 high variance components derived from the Pereda et al. [24] dataset.  

These components were used as features for classifiers to improve the performance modeling. Although 
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processing additional components with lower variance may lengthen the training process, it does not 

substantially alter the model results and can therefore be disregarded. 

 

 

  
(a) (b) 

 

Figure 2. Scree plot of (a) 22 components and (b) 12 components 

 

 

3.2.  Machine learning classification 

The reduced data were then randomly partitioned into testing and training sets at ratios of 20% and 

80%, respectively. Subsequently, the SVM, KNN, and MLP classifiers were utilized to classify ADHD. 

Figure 3 shows the confusion matrices containing the four values of the model prediction outcome from the 

three classifiers. True-positive refers to the number of patients correctly diagnosed with ADHD and  

true-negative refers to the number of patients correctly diagnosed as neurotypical. False-positive describes 

the number of patients incorrectly diagnosed with ADHD and false-negative describes the number of patients 

incorrectly diagnosed as neurotypical. A positive value is represented by “1” and a negative value is 

represented by “0”. Figure 3(a) illustrates the confusion matrix of the SVM, Figure 3(b) the KNN, and  

Figure 3(c) the MLP. The performance of a classifier is considered good when the confusion matrix exhibits 

a larger output in the true-positive and true-negative cells. 

 

 

   
(a) (b) (c) 

 

Figure 3. Confusion matrix of classifiers: (a) SVM, (b) KNN, and (c) MLP 

 

 

4. MODEL EVALUATION 

The classifiers used in the model were the MLP, SVM, and KNN. Three classifiers were employed 

to compare the models for classifying qEEG data and acquire the most accurate and robust model for 

classification. The Mohammadi et al. [23] and Pereda et al. [24] datasets were combined to improve model 

generalization and increase the amount of training data. The combined dataset was then processed through 

classifiers both with PCA and without PCA to evaluate the effect of PCA. The impact of PCA feature 

reduction on the performance of classifiers was analyzed from the provided data in Tables 2 and 3. Across 

the three classifiers, applying PCA resulted in a decrease in accuracy for both training and testing datasets 

compared to scenarios without PCA as shown in Table 2. This suggests that the PCA feature reduction might 
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not have effectively captured the underlying patterns in the data for this study. When PCA was not applied, 

the highest training accuracy of 95.68% was achieved by the MLP classifier, but its testing accuracy dropped 

significantly to 59.21%, indicating potential overfitting. Similarly, a high training accuracy of 87.31% was 

achieved by the SVM, but it exhibited a lower testing accuracy of 53.95%, suggesting some degree of 

overfitting. In contrast, KNN displayed moderate training accuracy of 74.07% and the highest testing 

accuracy of 61.84% among the three classifiers without PCA. However, after PCA was implemented, the 

accuracy of all classifiers decreased except the KNN. The MLP classifier still achieved the highest training 

accuracy of 86.27% but experienced a significant drop in testing accuracy with 53.95%. The accuracy of 

SVM also declined, reaching 80.17% in training and 51.31% in testing with PCA applied. Interestingly, the 

KNN testing accuracy improved to 69.21% with PCA, indicating a potential improvement in generalization. 

While MLP consistently outperformed SVM and KNN in term of training accuracy but suffered from 

overfitting issues. SVM, on the other hand, demonstrated greater robustness to overfitting but showed lower 

overall accuracy overall, particularly when PCA was used. Ultimately, the choice between applying PCA or 

not depends on the specific requirements of the classification task and the trade-offs between feature 

reduction and accuracy. 

 

 

Table 2. Performance comparison of classifiers without PCA 

Classifier Parameters 
Accuracy 

Training (%) Testing (%) 

MLP hidden layer (34, 34, 34) 95.68 59.21 

SVM 34 35 support vectors 87.31 53.95 

KNN 4 neighbors 74.07 61.84 

 

 

Table 3. Performance comparison of classifiers with PCA 

Classifier Parameters 
Accuracy 

Training (%) Testing (%) 

MLP hidden layer (34, 34, 34) 86.27 53.95 

SVM 34 35 support vectors 80.17 51.31 
KNN 4 neighbors 77.34 69.21 

 

 

The comparison of classifiers for ADHD diagnosis from other research, as shown in Table 4, 

revealed varying performance levels across different stimulation tasks. For instance, in a study by Alchalabi 

et al. [34], the SVM classifier achieved an exceptional accuracy of 98.6% during a focused gaming task. 

Similarly, Mohammadi et al. [23] reported an accuracy of 93.7% using an MLP classifier during a visual 

cognitive task, whereas Yang et al. [35] obtained an accuracy of 89.3% with a KNN classifier during a motor 

task with interference. Consistent with these findings, this research focused on utilizing EEG signals for 

ADHD diagnosis through quantitative analysis and machine learning algorithms, while also exploring the 

efficacy of signal attributes such as power, entropy, average, and standard deviation using signal processing 

techniques like CWT. These results provide valuable insights into the potential of EEG-based classification 

methods for ADHD diagnosis and highlight the importance of further research in this area. 

 

 

Table 4. Classifier comparisons on classifying ADHD 
Stimulation Classifier Accuracy Reference 

Focused gaming SVM classifier 98.6% Alchalabi et al. [34] 

Visual cognitive task MLP classifier 93.7% Mohammadi et al. [23] 

Motoric task with interference KNN classifier 89.3% Yang et al. [35] 

 

 

5. CONCLUSION 

This study demonstrated the feasibility of using qEEG signals for ADHD classification through 

quantitative analysis and machine learning algorithms, extracting features such as power, entropy, average, 

and standard deviation via the CWT. PCA aided in the extraction of high variance features, reducing 

overfitting and enhancing classification accuracy. However, the impact of PCA varied depending on the 

dataset and classifier utilized. Notably, the SVM classifier outperformed the others, achieving a 53.95% 

testing accuracy despite its lower training accuracy of 87.31%, showcasing robust generalization. 

Conversely, the MLP classifier's high training accuracy of 95.68% dropped significantly to 59.21% in 

testing, indicating potential overfitting issues. The KNN classifier performed competitively, with a 61.84% 

testing accuracy,which notably improved to 69.21% with PCA, suggesting enhanced generalization.  
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This study offers valuable insights for optimizing ADHD diagnosis using qEEG signals, emphasizing 

classifier robustness and generalization. The findings could assist  healthcare professionals in improving 

diagnosis accuracy and quantifying ADHD within a clinical spectrum. Future research in refining machine 

learning hyperparameters could further enhance classifier performance, contributing to more effective ADHD 

classification methods tailored to the specific clinical range of the disorder. 
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