
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 33, No. 3, March 2024, pp. 1416~1423

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i3.pp1416-1423  1416

Journal homepage: http://ijeecs.iaescore.com

Enhanced ARIA-based counter mode deterministic random bit

generator random number generator implemented in verilog

Eugene Rhee1, Jihoon Lee2
1Department of Electronic Engineering, College of Engineering, Sangmyng University, Cheonan, Republic of Korea

2Department of Smart Information and Telecommunication Engineering, College of Engineering, Sangmyng University,

Cheonan, Republic of Korea

Article Info ABSTRACT

Article history:

Received Nov 21, 2023

Revised Jan 4, 2024

Accepted Jan 11, 2024

 This paper presents a study aimed at effectively implementing a deterministic

random bit generator (DRBG) IP in verilog language, based on the standard

encryption algorithm. By controlling the existing round generation and key

generation blocks, the internal modules of the counter mode deterministic

random bit generator (CTR-DRBG) were successfully implemented and

operated, ensuring the secure and efficient generation of random bit

sequences. The research focused on parallel operation of modules and

optimized module placement to achieve improved clock frequencies. By

concurrently operating two modules in the derivation and internal update

modules of CTR-DRBG, the processing speed was enhanced compared to the

conventional algorithm. Additionally, integrating the reseeding and

initialization modules of CTR-DRBG into a single module successfully

reduced size. Furthermore, this IP supports the special function register (SFR)

interface. The safety of the CTR-DRBG was validated through known answer

test (KAT) verification utilizing test vectors from certification. Future

research should explore additional studies on CTR-DRBG operating on real

FPGA or ASIC, not only using normal algorithm but also employing other

block cipher algorithms.

Keywords:

Algorithm

Cipher

CTR

DRBG

Random number

This is an open access article under the CC BY-SA license.

Corresponding Author:

Jihoon Lee

Department of Smart Information and Telecommunication Engineering, College of Engineering

Sangmyung University

Cheonan, Republic of Korea

Email: vincent@smu.ac.kr

1. INTRODUCTION

The creation of secret keys and encryption protocols in cryptographic algorithms necessitates

unpredictable and secure random numbers. These random values are instrumental in various information

security systems and cryptographic products, bolstering the safety and reliability of domestic communication

networks. The generation of secure random numbers plays a pivotal role as a fundamental element in

cryptographic applications [1]–[3], crucially contributing to the generation of cryptographic keys, initialization

vectors, nonces, signature keys, certificates, and more. counter mode deterministic random bit generator (CTR-

DRBG) is designed to meet these requirements [4]–[6]. It operates as a random number generator based on the

counter mode encryption technique, generating secure random numbers. 'Counter Mode' is a block encryption

method that encrypts consecutive counter values to create a block sequence similar to randomness [7]–[9].

Leveraging this characteristic, CTR-DRBG combines a secure initial vector and counter to produce distinct,

unpredictable random numbers on each occasion.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Enhanced ARIA-based counter mode deterministic random bit generator random … (Eugene Rhee)

1417

The use of CTR-DRBG provides reliability in generating unpredictable random numbers, enabling

secure generation of encryption keys and safeguarding communication data. Furthermore, CTR-DRBG

contributes to enhancing communication confidentiality and integrity by providing reliable random numbers

for various security protocols. CTR-DRBG is designed in accordance with the standards recommended by

National Institute of Standards and Technology (NIST), ensuring its safety through these standard

recommendations, which guarantee the safety of information protection systems on an international level.

Moreover, CTR-DRBG finds application across various environments. In scenarios requiring secure random

numbers, such as secure communication [10]–[12], authentication processes [13]–[15], digital signature

generation [16]–[18], virtual private network (VPN) connections [19]–[21], and security protocols [22]–[24],

CTR-DRBG ensures high reliability and safety. Consequently, communication networks can attain higher

levels of safety and trustworthiness. In this manner, CTR-DRBG plays a crucial role in enhancing the safety

and reliability of domestic communication networks through secure random number generation.

In today's information security landscape, hardware-based random number generators play a crucial

role [25]–[27]. These generators are recognized as essential elements for producing secure random numbers in

cryptographic applications like integrity verification, digital signatures, data encryption, and various security

systems. Therefore, secure and efficient random number generation is considered a central requirement in

security technology. This research aims to efficiently design a CTR-DRBG internet protocol (IP) based on the

algorithm using verilog language to generate secure and integrity-assured random numbers in hardware

environments. Additionally, it seeks to increase clock frequencies through parallel processing of cryptographic

modules and appropriate arrangement, while reducing memory usage by designing reusable modules for each

function of the existing CTR-DRBG. This approach focuses on enhancing the performance of hardware-based

random number generators while simultaneously optimizing resource utilization to minimize costs and memory

footprint. Through this research, it is anticipated to enhance the safety and reliability of communication

networks while contributing to improving the performance of security systems and cryptographic products.

2. CTR-DRBG

2.1. Background

There are two main methods of generating random numbers. The first relies on physically

unpredictable procedures to generate all the bits composing the random number, while the second method

generates random numbers from a given input using deterministic algorithms. The first method is known as

"non-deterministic random bit generator (NRBG) [28]," and the second is referred to as "deterministic random

bit generator (DRBG)". Typically, the first method is utilized in creating actual random numbers, known as

"true random number generators (TRNG) [29]–[31]." The second method is known as "pseudo-random number

generator (PRNG) [32]–[34]". Figure 1 illustrates a block diagram of the deterministic random number

generator. As depicted in Figure 1, a deterministic random number generator produces the same random

number output for the same input due to a predetermined algorithm. This mechanism governed by the specified

algorithm is termed the deterministic random number generation mechanism (DRBG mechanism), operating

based on a deterministic algorithm that generates bit strings from an initial value called a seed. This seed is

determined by values obtained from an entropy source. While the bit string generated by the DRBG mechanism

can be predicted and reproduced if the input information, including the algorithm used and seed, is known,

properly managed inputs and well-designed algorithms render the output bit string of the DRBG mechanism

indistinguishable from actual random numbers. The CTR-DRBG, the primary focus of this study, operates as

one type of such deterministic random number generators, functioning as a function based on block ciphers.

CTR-DRBG is used in various information security systems and cryptographic products by combining with an

entropy source to ensure secure random number generation [35]–[37].

Figure 1. Deterministic random number generator block diagram

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1416-1423

1418

2.2. Problems

The CTR-DRBG algorithm, widely used for secure random number generation, faces several inherent

issues [38]–[40]. Firstly, in the derivation function, generating secure random numbers using the counter value

leads to increased computational time as the counter starts at 0 and increments, causing a significant rise in

computation time with larger counter values [41]. Particularly, the necessity to reset upon each counter value

change consumes time during operations. Secondly, although the reseeding and initialization functions in CTR-

DRBG share nearly identical structures, separate implementations are required due to different input values.

This redundancy induces unnecessary duplicate structures, potentially increasing chip size in hardware

implementations [42]. Thirdly, while CTR-DRBG generates a key stream to provide randomness, the use of

the counter value increases predictability in the key stream [43]. If specific Counter values become predictable,

it's possible to predict the corresponding key stream values, ultimately compromising the security of the

generated random numbers.

2.3. Algorithm

Figure 2 depicts the flow chart of the CTR-DRBG algorithm. CTR-DRBG operates as a deterministic

random number generator aiming to safeguard and ensure the integrity of the inputs to the output-generation

function, which embeds a deterministic algorithm to protect the entropy characteristics from external attacks.

In this context, the input to the output-generation function is referred to as the 'seed,' composed of values known

as key and value. These elements-seed, key, and value-are all considered the internal state of the random

number generator. As shown in Figure 2, the random number generator initiates by determining the initial

internal state, subsequently updating it, and then utilizing the updated internal state to generate output (random

numbers). The function responsible for determining the initial value of the internal state is termed the 'instance

creation (initialization) function,' while the function updating the internal state is denoted as the 'internal state

update function.' The function creating the output is known as the 'output generation function.

Figure 2. CTR-DRBG algorithm flow chart

3. IMPLEMENTATION

3.1. Internal state update module

Figure 3 illustrates the block diagram of the internal update module. The internal update function

(IUF) receives input data along with key and value and is responsible for updating the key and value. The IUF

module, serving as the internal state update function, consists of the CTR operating system and a CTR result

that processes input data through XOR operations with the key and value [44], [45]. The encrypted block,

cipher_i, is generated by encrypting the value obtained by adding counter to key and value. As the counter

increments, these cipher blocks concatenate sequentially to produce the CTR result block. This CTR result

block undergoes updating by XOR operations with the input_data. Consequently, the left block represents the

key, while the right block signifies the value after the update.

As shown in Table 1, the internal update module operates through the following input/output ports: it

receives the values to update, value and key, via i_value and i_key, respectively, each in blocks of 128 bits.

Subsequently, the updated output data is delivered through o_iuf_data in segments of 256 bits. In this context,

the updated output data, o_iuf_data, presents the concatenated form of the updated key and value. The finite

state machine (FSM) of the internal update module is as shown in Figure 4. It consists of a total of four states,

each of which is described in detail in Table 2.

When i_iuf_en is activated, the transition occurs from the idle state, IUF_IDLE, to the key expansion

stage, represented by IUF_KS. During the key expansion phase, the KEY_SCHED module becomes active,

generating 12 round keys as part of the key expansion process. Once the key expansion process concludes and

w_key_expand is set, the transition proceeds to the next state, IUF_ENC.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Enhanced ARIA-based counter mode deterministic random bit generator random … (Eugene Rhee)

1419

Figure 3. IUF block diagram

Table 1. IUF input/output port
Port Width (bit) Descripiton

i_clk Input clock signal function

i_rstn Input reset signal (active low)

i_value 128 Value to update
i_key 128 Key to update

i_iuf_en 1 Signal to activate internal update

o_iuf_data 256 Updated output data
o_iuf_done Signal for completion of internal update function

Figure 4. IUF FSM

Table 2. States of IUF FSM
State Descripiton Conditions for transitioning to the next state

IUF_IDLE Idle state i_iuf_en == 1

IUF_KS Key expansion phase Upon completion of key expansion
IUF_ENC Encryption process Upon completion of encryption

IUF_END
Termination phase

and Updated data output phase
Automatic transition

In Figure 3, there is a block diagram corresponding to phase 1 within the IUF module. During the

encryption phase, i_value+1 and i_value+2 were each fed into different encryption modules, C0_ENC_CORE

and C1_ENC_CORE. These inputs underwent encryption in parallel using previously expanded keys.

Additionally, the resulting encryption from both modules is stored in separate buffers, r_enc_buffer0 and

r_enc_buffer0, at the next clock cycle. Once encryption concludes in both encryption modules and the

termination signal, w_arai_c0_done, is set, the transition to the next state, IUF_END, occurs.

There is the block diagram for phase 2 within the IUF module also. In IUF_END, phase 2 is executed,

where the two encryption results obtained in phase 1 are stored in r_enc_buffer0 and r_enc_buffer1. The values

from these two buffers are sequentially retrieved, then undergo XOR operations with the input data, i_data, of

the IUF. As a result, the updated internal state, o_iuf_data, is produced. Simultaneously, upon output

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1416-1423

1420

generation, o_iuf_done is set to conclude the internal update. Consequently, the state automatically transitions

to the idle state, IUF_IDLE.

3.2. Initialization and re-initialization module

This paper proposes a method to integrate the initialization and re-initialization functions in the CTR-

DRBG algorithm, identifying their structural similarities. These similarities stem from the considerable

resemblance in functionality and operations performed by both functions. Firstly, the initialization and re-

initialization functions exhibit a similar structure in how they generate random bits and update the internal state

[46]–[48]. Both employ counter mode, repeating block ciphers multiple times, and combine them to generate

random bits while updating the internal state through XOR operations [49], [50]. Secondly, they share

similarities in their input and output formats. Both functions receive initialization data as input and return

generated random bits or key streams as output. Such analogous input-output formats make them ideal

candidates for integration into a single module. Leveraging this structural similarity allows for the integration

of initialization and re-initialization functions while maintaining code simplicity and consistency without

compromising security. Moreover, the integrated module enables smooth transitions between initialization and

re-initialization stages, facilitating more efficient system operations.

The IF module serves as both an initialization module and a re-initialization function. The IF module

encompasses a derivative function (DF) and an IUF internally, with its operational mode dependent on the use

of the DF. When utilizing the DF, the IF module receives inputs such as entropy, nonce, and a personalization

string (PS). Nonce and PS are optional components. The input for the initialization function is composed of

'Entropy || Nonce || PS,' and for the ARIA-128 algorithm, this input's length must exceed the output length of

the DF, i.e., at least 256 bits. Irrespective of the use of nonce and PS, the updated data output from the DF

serves as the input data (i_data) for the IUF function. In cases where the DF is not employed, the input for the

initialization function consists of 'Entropy || PS.' The PS is an optional element, and the length of Entropy

matches that of the output of the IUF function. For the ARIA-128 algorithm, the length is 256 bits. Regardless

of the utilization of PS, its length aligns with the output length of the IUF function, either equivalent or zero

bits. When using PS for ARIA-128, it is 256 bits, and in the absence of PS, it's 0 bits. The PS value after the

XOR operation with Entropy is utilized as the input data for the IUF function". i_init_en (initialization enable

signal) acts as an initial activation trigger for the system to commence a process. When activated, it sends a

signal to initiate the system's initialization procedure. i_df_en (derivative function enable signal) determines

whether the DF should be activated. When activated, it indicates that DF operations are enabled and should be

utilized as part of data processing. i_data (32-bit input data) accommodates a 32-bit input data stream, serving

as raw data input for the system. The data provided through this port is processed as part of the system's

operations. i_data_en (input data validity signal) verifies the integrity of the input data stream. Activation

signifies that the data present at the i_data port is valid and ready for processing. i_Elen (31-bit entropy length)

and i_PSlen (31-bit PS length) specify the lengths of entropy and the personalization string in bits. Entropy

signifies the unpredictability of the data, while the personalization string adds user-defined customization to

the process. These lengths provide essential information for the system to handle data accurately. i_N (32-bit

output data length in bytes) determines the byte-based length of the output data generated by the system. This

specifies the output size of the data created by the system, ensuring consistency for external components or

interfaces. These input ports facilitate the system in processing input data, customizing processing using

entropy and personalization strings, activating specific functionalities like initialization and derivation, and

generating output data of specified lengths, thus facilitating intended system operations and functionalities.

4. RESULT

Figure 5 shows the block diagram of the galois field (GF) module, functioning as the output bit

sequence generator. It incorporates the internal update module, IUF, and the ARIA-CTR module while

receiving additional input alongside key and value parameters. The IUF module ensures protection by updating

the internal state once more before the final output, guaranteeing resilience even if the internal state is

compromised due to an attack. Simultaneously, within the CTR module, leveraging the internal state, it

proceeds with ARIA-CTR mode to generate 256 bits of random output. To expedite processing, this research

employs two CTR modules in parallel, subsequently denoted as the TWIN_CTR configuration.

The FSM consists of four primary states. The initial state, IDLE, signifies the system being in an idle

state. When the i_gf_en input is activated to trigger the output generation function, the system transitions to

the PRE_CTR stage. During PRE_CTR, preparatory tasks for output creation in CTR mode are performed. If

additional input exists and a prior re-initialization has not been executed, the i_pre_ctr_en input is activated,

transitioning from IDLE to PRE_CTR. In the PRE_CTR stage, Key and V undergo an additional update via

the IUF invocation. Upon completion of this update, the system moves to the CTR_RUN stage upon receiving

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Enhanced ARIA-based counter mode deterministic random bit generator random … (Eugene Rhee)

1421

the activated w_iuf_done signal from the IUF module. Within the CTR_RUN stage, utilizing Key, V, and

output length (len_output) as inputs, the system generates an output bit sequence using CTR mode. Throughout

this process, the TWIN_CTR module drives the CTR progress, producing the generated random bit sequence

as output. Furthermore, V gets updated to V+len_output. Upon completion of the TWIN_CTR module, the

system transitions to the IUF_RUN stage upon receiving the activated w_ctr_done signal. Finally, within the

IUF_RUN stage, by receiving additional input data (AD), Key, and the updated V, the system recalls the IUF

to perform another key and V update.

Figure 5. Output generation function GF module block diagram

5. CONCLUSION

An IP that implements CTR-DRBG in verilog, providing a secure and efficient random number

generation capability, is successfully developed. The validation results, conducted using test vectors, were all

confirmed as expected. The overall clock cycle observed in the experiment was measured at 3.85 ms. In this

study, implementing CTR-DRBG in verilog has allowed the creation of a secure and integrity-assured random

number generation system. This system provides secure randomness for cryptographic applications and

information security systems.

ACKNOWLEDGEMENTS

This research was funded by a 2023 research Grant from Sangmyung University (2023-A000-0082).

REFERENCES
[1] Y. Oohama, “Performance analysis of the interval algorithm for random number generation based on number systems,” IEEE

Transactions on Information Theory, vol. 57, no. 3, pp. 1177–1185, Mar. 2011, doi: 10.1109/TIT.2010.2103730.

[2] P.-H. Tseng, M.-H. Lee, Y.-H. Lin, H.-L. Lung, K.-C. Wang, and C.-Y. Lu, “ReRAM-based pseudo-true random number generator
with high throughput and unpredictability characteristics,” IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1593–1597,

Apr. 2021, doi: 10.1109/TED.2021.3057028.

[3] E. Bach, “Efficient prediction of Marsaglia-Zaman random number generators,” IEEE Transactions on Information Theory,
vol. 44, no. 3, pp. 1253–1257, May 1998, doi: 10.1109/18.669305.

[4] N. Hayati, K. Ramli, S. Windarta, and M. Suryanegara, “A novel secure root key updating scheme for LoRaWANs based on

CTR_AES DRBG 128,” IEEE Access, vol. 10, pp. 18807–18819, 2022, doi: 10.1109/ACCESS.2022.3150281.
[5] S. Cohney et al., “Pseudorandom black swans: Cache attacks on CTR_DRBG,” in 2020 IEEE Symposium on Security and Privacy

(SP), May 2020, pp. 1241–1258, doi: 10.1109/SP40000.2020.00046.

[6] L. Guan, J. Lin, Z. Ma, B. Luo, L. Xia, and J. Jing, “Copker: A cryptographic engine against cold-boot attacks,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 5, pp. 742–754, Sep. 2018, doi: 10.1109/TDSC.2016.2631548.

[7] A. Perez-Resa, M. Garcia-Bosque, C. Sanchez-Azqueta, and S. Celma, “A new method for format preserving encryption in high-

data rate communications,” IEEE Access, vol. 8, pp. 21003–21016, 2020, doi: 10.1109/ACCESS.2020.2968816.
[8] H. M. Heys and L. Zhang, “Pipelined statistical cipher feedback: A new mode for high-speed self-synchronizing stream encryption,”

IEEE Transactions on Computers, vol. 60, no. 11, pp. 1581–1595, Nov. 2011, doi: 10.1109/TC.2010.167.

[9] D. Chakraborty and P. Sarkar, “HCH: A new tweakable enciphering scheme using the hash-counter-hash approach,” IEEE
Transactions on Information Theory, vol. 54, no. 4, pp. 1683–1699, Apr. 2008, doi: 10.1109/TIT.2008.917623.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1416-1423

1422

[10] L. Du, C. Huang, W. Guo, J. Ma, X. Ma, and Y. Tang, “Reconfigurable intelligent surfaces assisted secure multicast communications,”

IEEE Wireless Communications Letters, vol. 9, no. 10, pp. 1673–1676, Oct. 2020, doi: 10.1109/LWC.2020.3001119.
[11] S. Wei et al., “Physical layer secure key distribution based on artificial amplitude noise in QAM/QNSC optical communication

systems,” IEEE Communications Letters, vol. 27, no. 9, pp. 2288–2292, Sep. 2023, doi: 10.1109/LCOMM.2023.3295809.

[12] M. Cheng, J.-B. Wang, and J. Cheng, “A new lower bound based secure beamforming in MISO communication networks,” IEEE
Communications Letters, vol. 23, no. 9, pp. 1474–1478, Sep. 2019, doi: 10.1109/LCOMM.2019.2923212.

[13] J. Cui, L. Wei, J. Zhang, Y. Xu, and H. Zhong, “An efficient message-authentication scheme based on Edge computing for vehicular

Ad Hoc networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp. 1621–1632, May 2019,
doi: 10.1109/TITS.2018.2827460.

[14] H. Fang, X. Wang, and L. Hanzo, “Learning-aided physical layer authentication as an intelligent process,” IEEE Transactions on

Communications, vol. 67, no. 3, pp. 2260–2273, Mar. 2019, doi: 10.1109/TCOMM.2018.2881117.
[15] K. Xue, X. Luo, Y. Ma, J. Li, J. Liu, and D. S. L. Wei, “A distributed authentication scheme based on smart contract for roaming

service in mobile vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5284–5297, May 2022,

doi: 10.1109/TVT.2022.3148303.
[16] F. Shahid, I. Ahmad, M. Imran, and M. Shoaib, “Novel one time signatures (NOTS): A compact post-quantum digital signature

scheme,” IEEE Access, vol. 8, pp. 15895–15906, 2020, doi: 10.1109/ACCESS.2020.2966259.

[17] A. Sengupta, E. R. Kumar, and N. P. Chandra, “Embedding digital signature using encrypted-hashing for protection of DSP cores
in CE,” IEEE Transactions on Consumer Electronics, vol. 65, no. 3, pp. 398–407, Aug. 2019, doi: 10.1109/TCE.2019.2924049.

[18] I. Z. Berta, L. Buttyan, and I. Vajda, “A framework for the revocation of unintended digital signatures initiated by Malicious

Terminals,” IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 3, pp. 268–272, Mar. 2005,
doi: 10.1109/TDSC.2005.28.

[19] P. D. Ojha and R. C. Hansdah, “A heuristic approach to detect MPLS L3 VPN misconfiguration in multi-homed multi-VRF site-

redundant CE environments,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 2294–2307, Jun. 2021,
doi: 10.1109/TNSM.2020.3009301.

[20] S. Budiyanto and D. Gunawan, “Comparative analysis of VPN protocols at layer 2 focusing on voice over internet protocol,” IEEE
Access, vol. 11, pp. 60853–60865, 2023, doi: 10.1109/ACCESS.2023.3286032.

[21] H. Qian, S. Dispensa, and D. Medhi, “Balancing request denial probability and latency in an agent-based VPN architecture,” IEEE

Transactions on Network and Service Management, vol. 7, no. 4, pp. 282–295, Dec. 2010, doi: 10.1109/TNSM.2010.1012.100103.
[22] X. He, J. Liu, C.-T. Huang, D. Wang, and B. Meng, “A security analysis method of security protocol implementation based on

unpurified security protocol trace and security protocol implementation ontology,” IEEE Access, vol. 7, pp. 131050–131067, 2019,

doi: 10.1109/ACCESS.2019.2940512.
[23] M. A. Saleem, S. Shamshad, S. Ahmed, Z. Ghaffar, and K. Mahmood, “Security analysis on ‘a secure three-factor user

authentication protocol with forward secrecy for wireless medical sensor network systems,’” IEEE Systems Journal, vol. 15, no. 4,

pp. 5557–5559, Dec. 2021, doi: 10.1109/JSYST.2021.3073537.
[24] J. Guo, Y. Du, X. Wu, and M. Li, “An anti-quantum authentication protocol for space information networks based on ring learning

with errors,” Journal of Communications and Information Networks, vol. 6, no. 3, pp. 301–311, Sep. 2021,

doi: 10.23919/JCIN.2021.9549124.
[25] C.-Y. Huang, W. C. Shen, Y.-H. Tseng, Y.-C. King, and C.-J. Lin, “A contact-resistive random-access-memory-based true random

number generator,” IEEE Electron Device Letters, vol. 33, no. 8, pp. 1108–1110, Aug. 2012, doi: 10.1109/LED.2012.2199734.

[26] P.-H. Tseng, M.-H. Lee, Y.-H. Lin, H.-L. Lung, K.-C. Wang, and C.-Y. Lu, “ReRAM-based pseudo-true random number generator
with high throughput and unpredictability characteristics,” IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1593–1597,

Apr. 2021, doi: 10.1109/TED.2021.3057028.

[27] C.-B. Chen, T. Chen, Y.-H. Huang, and Y.-H. Huang, “35.56-Gbits/sec chaos random number generator supporting 1.2-
Gsamples/sec noise generation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3802–3806,

Oct. 2023, doi: 10.1109/TCSII.2023.3293786.

[28] R. J. Parker, “Entropy justification for metastability based nondeterministic random bit generator,” in 2017 IEEE 2nd International
Verification and Security Workshop (IVSW), Jul. 2017, pp. 25–30, doi: 10.1109/IVSW.2017.8031540.

[29] R. Della Sala and G. Scotti, “Exploiting the DD-cell as an ultra-compact entropy source for an FPGA-based re-configurable PUF-

TRNG architecture,” IEEE Access, vol. 11, pp. 86178–86195, 2023, doi: 10.1109/ACCESS.2023.3304901.
[30] S. Fu et al., “RHS-TRNG: A resilient high-speed true random number generator based on STT-MTJ device,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 10, pp. 1578–1591, Oct. 2023, doi: 10.1109/TVLSI.2023.3298327.

[31] X. Li et al., “A 144-fJ/Bit reliable and compact TRNG based on the diffusive resistance of 3-D resistive random access memory,”
IEEE Transactions on Electron Devices, vol. 70, no. 8, pp. 4139–4144, Aug. 2023, doi: 10.1109/TED.2023.3288839.

[32] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, L.-Y. Deng, and K. To, “Period extension and randomness enhancement using high-throughput

reseeding-mixing PRNG,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2, pp. 385–389, Feb.
2012, doi: 10.1109/TVLSI.2010.2103332.

[33] J. M. Mcginthy and A. J. Michaels, “Further analysis of PRNG-based key derivation functions,” IEEE Access, vol. 7,

pp. 95978–95986, 2019, doi: 10.1109/ACCESS.2019.2928768.
[34] S. S. da Silva, M. Cardoso, L. Nardo, E. Nepomuceno, M. Hubner, and J. Arias-Garcia, “A new chaos-based PRNG hardware

architecture using the HUB fixed-point format,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–8, 2023,

doi: 10.1109/TIM.2023.3235457.
[35] S. Chen and B. Li, “A dynamic reseeding DRBG based on SRAM PUFs,” in 2016 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), Oct. 2016, pp. 50–53, doi: 10.1109/CyberC.2016.18.

[36] M. Amin and M. Afzal, “On the vulnerability of EC DRBG,” in 2015 12th International Bhurban Conference on Applied Sciences
and Technology (IBCAST), Jan. 2015, pp. 318–322, doi: 10.1109/IBCAST.2015.7058523.

[37] G. Revadigar, C. Javali, Y. Li, and S. Viswanathan, “On the effectiveness of electric network frequency (ENF) as a source of

randomness,” in 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th
IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Aug. 2019, pp. 849–854,

doi: 10.1109/TrustCom/BigDataSE.2019.00123.

[38] F. Wen, M. Qin, P. V. Gratz, and A. L. N. Reddy, “Hardware memory management for future mobile hybrid memory systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3627–3637, Nov. 2020,

doi: 10.1109/TCAD.2020.3012213.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

 Enhanced ARIA-based counter mode deterministic random bit generator random … (Eugene Rhee)

1423

[39] B. K. Mohanty, P. K. Meher, S. Al-Maadeed, and A. Amira, “Memory footprint reduction for power-efficient realization of 2-d
finite impulse response filters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, pp. 120–133, Jan.

2014, doi: 10.1109/TCSI.2013.2265953.

[40] P. Jokic, S. Emery, and L. Benini, “Improving memory utilization in convolutional neural network accelerators,” IEEE Embedded
Systems Letters, vol. 13, no. 3, pp. 77–80, Sep. 2021, doi: 10.1109/LES.2020.3009924.

[41] H. M. Salih and R. S. Al Mahdawi, “The security of RC4 algorithm using keys generation depending on user’s retina,”

Indonesian Journal of Electrical Engineering and Computer Science , vol. 24, no. 1, pp. 452–463, Oct. 2021,
doi: 10.11591/ijeecs.v24.i1.pp452-463.

[42] D. H. Elkamchouchi, A. D. Algarni, R. M. Ghoniem, and H. G. Mohamed, “A deep learning signed medical image based on

cryptographic techniques,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 1, pp. 481–495, Jan.
2022, doi: 10.11591/ijeecs.v29.i1.pp481-495.

[43] N. A. Kako, H. T. Sadeeq, and A. R. Abrahim, “New symmetric key cipher capable of digraph to single letter conversion utilizing

binary system,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 2, pp. 1028–1034, May 2020,
doi: 10.11591/ijeecs.v18.i2.pp1028-1034.

[44] O. Kara and M. F. Esgin, “On analysis of lightweight stream ciphers with keyed update,” IEEE Transactions on Computers,

vol. 68, no. 1, pp. 99–110, Jan. 2019, doi: 10.1109/TC.2018.2851239.
[45] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics

by using time-based policy update,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1118–1129,

Jul. 2012, doi: 10.1109/TNNLS.2012.2196708.
[46] M. A. Selver and C. Guzelis, “Semiautomatic transfer function initialization for abdominal visualization using self-generating

hierarchical radial basis function networks,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 3,

pp. 395–409, May 2009, doi: 10.1109/TVCG.2008.198.
[47] S. Masood, M. N. Doja, and P. Chandra, “Analysis of weight initialization techniques for gradient descent algorithm,” in 2015

Annual IEEE India Conference (INDICON), Dec. 2015, pp. 1–5, doi: 10.1109/INDICON.2015.7443734.

[48] G. Thimm and E. Fiesler, “High-order and multilayer perceptron initialization,” IEEE Transactions on Neural Networks, vol. 8,
no. 2, pp. 349–359, Mar. 1997, doi: 10.1109/72.557673.

[49] Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE

Photonics Journal, vol. 9, no. 2, pp. 1–8, Apr. 2017, doi: 10.1109/JPHOT.2017.2690314.
[50] X. Fu, S. Yang, and Z. Xiao, “Decoding and repair schemes for shift-XOR regenerating codes,” IEEE Transactions on Information

Theory, vol. 66, no. 12, pp. 7371–7386, Dec. 2020, doi: 10.1109/TIT.2020.3019168.

BIOGRAPHIES OF AUTHORS

Eugene Rhee received the Ph.D. degree in electronics from Hanyang University,

Korea, in 2010. He was a visiting professor at Chuo University, Japan from 2010 to 2011.

Since 2012, he has been with Sangmyung University, Korea, where he is currently an

associate professor in the Department of Electronic Engineering. His research area includes

microwave, electromagnetic compatibility, electromagnetic interference, and reverberation

chamber. He can be contacted at email: eugenerhee@smu.ac.kr.

Jihoon Lee received B.S., M.S, and Ph.D. degrees in electronics engineering

from Korea University in 1996, 1998, and 2001, respectively. From 2002 to 2011, he worked

at Samsung Electronics as a senior research member. He is currently an associate professor

in the Department of Smart Information and Telecommunication Engineering, Sangmyung

University, Korea. His research interests include edge computing, secure M2M, and network

security. He can be contacted at email: vincent@smu.ac.kr.

https://orcid.org/0000-0002-3877-578X
https://scholar.google.com/citations?view_op=list_works&hl=en&user=MlkH-jEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=15064527700
https://www.webofscience.com/wos/author/record/2749455
https://orcid.org/0000-0003-3126-9005
https://scholar.google.com/citations?user=ITqh7dYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57201264473
https://www.webofscience.com/wos/author/record/1158236

