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 The classification of Sentinel-2 image is presented in this work using a tile-

based methodology. The Mysore district of India's Karnataka state serves as 

the subject region of this research. By tiling Sentinel-2 images, we were able 

to construct a distinct dataset and get approximately 3,000 training samples 

for the five classes. These images are manually labelled and geo-referenced. 

Three different optimizers were employed in a thorough analysis with deep 

learning models such as ResNet50, MobileNetV2, ShuffleNet, and VGG16 

to achieve better performance metrics. With a classification accuracy of 

98.1% on RESNet50 using ADAM surpassed the others. This facilitates 

investigating various geographical data analytics applications of the study 

region. 
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1. INTRODUCTION 

The procurement of data (i.e., physical characteristics) over the surface of the Earth by determining 

the radiation it emits/reflects when examined from the satellites/aircraft (based-sensor-technology) is referred 

to as remote sensing (RS) [1]. The classification of RS images into multi-spectral, super-spectral, and hyper-

spectral categories is based on the number and range of spectral bands captured by the imaging sensors [2]. 

Massive RS data provides a challenge in terms of successfully extracting information due to vast features 

present in the images in addition to other complex traits like dimensionality, scalability and non-stationary 

(i.e., due to different resolution, scale and acquired at different times) [3]. With image classification 

techniques, it is possible to effectively extract information from RS data. May sectors employ RS which also 

includes environmental monitoring (e.g., forest fires, flood zones, erupting volcanoes, dust storms) managing 

natural resources, urban planning, and disaster response [4], [5]. It is usually more affordable than time-

consuming and expensive ground-based surveys. As a result, we are able to recognize and examine various 

types of land cover (LC), including forests, water bodies, and urban areas. We can track surface changes to 

the Earth, like deforestation, urbanization and land use (LU) changes, by examining satellite imagery over 

time. Analyzing satellite data requires a deep understanding of both the geospatial and image vision  

fields [6]–[10]. 

The European space agency (ESA) developed the Sentinel-2 (S2) satellite system to observe the 

earth. It is made up of two identical satellites that orbit the earth and are constantly collecting data about its 

https://creativecommons.org/licenses/by-sa/4.0/
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surface. High-resolution optical imagery data of land and coastal areas is made available by S2 satellites. S2 

images are especially helpful for classifying LU and LC because they capture comprehensive data on the 

reflectance of various types of LC [11], [12]. In order to distinguish between vegetation, water sources, 

urban, forest, mountains, desert and bare-land and so on the system's multispectral sensors collect 

information in thirteen spectral bands. To create more detailed land use and land cover (LULC) maps, S2 

images can also be combined with other datasets, such as elevation data or climate data. Numerous 

applications, including urban planning, resource management, and disaster response, can make use of these 

maps [13]-[15]. 

This research is motivated by the critical need to refine the understanding of geographic landscapes 

in an era where sophisticated RS predominates. Utilizing S2 image, the research focuses on the specific study 

region of Mysore. The task involves downloading high resolution images (HIS), preprocessing them 

converting them into smaller patches, and then applying diverse deep learning models and optimizers. By 

doing so, the research will not only contribute to improving the accuracy of LC classification in the 

designated region but aims to create a broader impact by laying the groundwork for advanced analyses in 

diverse areas that can benefit from a more refined understanding of LC. 

This research makes a substantial contribution to the field of satellite image (SI) analysis by 

examining S2 imagery for the targeted region of Mysore in great detail. The work aims to improve kappa and 

accuracy as well as other performance metrices by systematically dividing large S2 images into patches and 

applying several deep learning models paired with different optimizers. The results have the potential to offer 

insightful information into best model-optimizer combinations, enhancing the reliability of RS applications. 

By bridging the gap between geographical analysis and cutting-edge technology, this research provides a 

substantial contribution to accuracy and effectiveness of classifying SI, with potential implications across 

various applications such as environmental monitoring, urban planning, agriculture and more. 

The research comprises eight sections. The first section highlights the significance of LULC and 

introduces S2 imagery, and outlines the research's motivation and contribution. The second section is a 

literature review, while the third presents the methodology of the research. The fourth section describes the 

study area and the creation of the image dataset. The fifth details four deep learning model architectures, the 

sixth covers training parameters and the three optimizers used. The seventh section presents results from the 

models, including confusion matrices obtained from MATLAB tool for the distinct five classes/category. The 

final section concludes the research. 

 

 

2. RELATED WORK 

The majority of the recent research using deep learning (DL) to classify RS scenes is presented in 

this section. Prior to training a network to classify Landsat SI, Xu et al. [16] used principal-component-

analysis (PCA) to reduce data redundancy. This method performed better than the maximum-likelihood (ML) 

by 18.5%. For the first time a hybrid framework that combines DL, logistic regression, and PCA was 

introduced by Chen et al. [17] on hyperspectral data. Using this DL framework, features were extracted using 

stacked autoencoders. Scott et al. [18] used UC-Merced dataset for LC classification employing 

convolutional neural network (CNN) models such as CaffeNet, GoogLeNet, and ResNet50.  

The training samples in the network was increased by the use of data augmentation, and the features of the 

images were adjusted for better performance (up to 99.3% accuracy). Gardner and Nichols [19] used DL 

models including VGG16, InceptionV3, and ResNet50 to achieve multi-label classification using 17 class 

labels. The best of these three was ResNet50. For remote sensing image classification (RSIC), Basu et al. [20] 

and Zou et al. [21] used deep belief network (DBN), and they experimentally proved the model's effects. 

Piramanayagam et al. [22] demonstrated CNN's potential for LULC by selecting training samples at every 

DL iteration for improved performance. Recurrent Neural Network and Random Forest are two improved 

classification techniques that Xu et al. [23] developed for LULC. Deep CNNs (DCNNs) such as VGG16, 

GoogLeNet, ResNet50, and others are used in most high precision classification, and handcrafted features are 

added to the features extracted by DCNNs. To reduce calculation time, DCNNs has numerous parameters 

that call for powerful computers. ShuffleNet was put forth by Ma et al. [24]. The complexity of the 

convolution technique was reduced by using pointwise group convolution rather than 1×1 Convolutional 

(Conv). It also introduced a channel shuffle operation to enhance the flow of feature information between 

channels in order to counteract the negative impacts of group Conv. With MobileNetv2, Li et al. [25] 

introduced feature fusion in the bilinear model and created BiMobileNet, an efficient and lightweight CNN 

for RSIC. The use of Depthwise (Dwise) separable convolution significantly reduces CNN parameters and 

calculations. Helber et al. [26] applied various band combinations with the GoogleNet and ResNet50 

architectures. When compared to GoogleNet with RGB bands, they discovered that ResNet50 with RGB 

bands had the highest accuracy. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Mysore sentinel-2: deep learning for image classification with optimizer … (Natya Sathyanarayana) 

649 

3. METHOD 

The research approach, which outlines the key steps and processes carried out in the present study, 

is depicted in Figure 1. We begin by procuring a S2 satellite image of Mysore, followed by a pre-processing 

aimed at creating false color image (FCI) to enrich the features in the image. We then extract smaller image 

patches from FCI for classification task. Then manually label these smaller patches with the help of domain 

experts from Karnataka State Remote Sensing Applications Centre (KSRSAC) to create five classes (i.e., 

Bare-Land, Forest, Urban, Vegetation and Water) which acts as ground truth for our supervised learning. The 

next step involves choosing four deep learning models for classification tasks (ResNet50, MobileNetV2, 

ShuffleNet, and VGG16) and three optimizers (ADAM, SGDM, and RMSProp) for training. The DL models 

are trained using the optimizer, and assessed using a variety of metrics on the validation dataset. We finally 

conclude the best model-optimizer combo by assessing how well the models performed with various 

optimizers for each predefined class labels. 

 

 

 
 

Figure 1. Process Flow of Methodology 

 

 

4. DESCRIPTIONS OF THE STUDY AREA AND THE IMAGE DATASET CREATION 

The Mysore district is located in the southernmost part of the Indian state Karnataka at coordinates 

12° N and 76° E. Its elevation is between 660 and 788 meters. Mysore LU classification is crucial due to its 

cultural significance (palaces, festivals), historical sites (Wodeyar dynasty relics), and economic aspects (silk 

industry, tourism, forest-based industries, information technology). Efficient land management sustains 

heritage, supports economic sectors, and harmonizes development, ensuring the city's cultural, historical, and 

economic resilience. The S2 image of Mysore is obtained by Earth Explorer the acquired S2 image 

information is given in the Table 1. Using sentinel application platform (SNAP) this S2 image is converted to 

false color processing where Band8 (NRI), Band4 (RED) and Band3 (GREEN) are combined together as 

illustrated in Figure 2. Each pixel in the S2 image represents a 10×10 m square area of land. Image patches 

were extracted from a larger sentinel image (of the dimension 10,980×10,980 pixel), and each patch size is of 

224×224 pixel. In Figure 3, visual representations of the five class labels are depicted: Figure 3(a) 

corresponds to Bare-Land, Figure 3(b) represents forest, Figure 3(c) illustrates urban, Figure 3(d) showcases 

Vegetation, and Figure 3(e) displays Water each class having around 600 images. A total of 3000 image 

patches were created with 70% of that for training (i.e., 2100 images) and 30% for testing (i.e., 900 images). 
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Table 1. Acquired S2 image information  
Attribute Value 

ID L1C_T43PFP_A035094_20220312T052910 
Acquisition Date 2022-03-12 T05:29:10.446Z 

Agency ESA 

Platform SENTINEL-2A 
Center Latitude 12°09'51.89"N 

Center Longitude 76°25'25.23"E 

 

 

 
 

Figure 2. Mysore province's administrative boundaries in false color image (map developed using QGIS) 

 

 

     
(a) (b) (c) (d) (d) 

 

Figure 3. S2 dataset created for Mysore province and labeled accordingly as: (a) bare-land, 

(b) forest, (c) urban, (d) vegetation, and (e) water 

 

 

5. DL MODELS 

The selection of DL models such as ResNet50, MobileNetV2, ShuffleNet, and VGG16 for RSIC is 

their balanced trade-off between complexity and performance, suitability for diverse dataset characteristics, 

efficiency in computational resources, and availability of pre-trained weights for transfer learning. 

Consideration of training time and task-specific requirements, such as fine-grained classification, further 

guided the choice. When selecting a DL model for image classification, it's essential to evaluate these factors, 

ensuring the model aligns with the research specific needs and constraints in terms of computational 

resources and training efficiency. 

 

5.1.  VGG16 

The visual geometry group (VGG) at the University of Oxford initially developed the VGG16 in 

2014 [27] as shown in Figure 4. VGG16 is a 16-layer algorithm with 3-fully connected layers, 13 Conv 

layers, and 16 total layers. A string of Conv layers, followed by max-pooling (MaxPool) layers, define the 

VGG16 architecture. Filters with a 3x3 size are used in the Conv layers, which enables the network to learn 

more intricate aspects from the input image. The output of the Conv layers can be down-sampled using the 

MaxPool layer, which also helps to minimize the dimensionality of the feature maps. The fully connected 

(FC) layers then carry out the final categorization of the image using the output from the last Conv layer. 
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5.2.  ResNet50 

Microsoft Research unveiled residual Network-50 (ResNet50) in 2015 [28] as shown in Figure 5. 

The name ResNet50 refers to a network that uses residual connections to enhance network training and 

comprises 50 levels total, including both Conv and FC layers. Residual blocks in the ResNet50 design enable 

the network to learn residual functions rather than the underlying mapping directly. The residual block is 

made up of two Conv layers with 64 filters (3x3 size), along with a shortcut connection that adds the input 

through the second Conv layer's output. This aids in resolving the issue of vanishing gradients (VG) that 

arises during network training. 

 

5.3.  ShuffleNet 

Zhang et al. [29] as shown in Figure 6. Using a channel shuffle operation to enable feature maps 

from several channels to communicate with one another is the main concept behind ShuffleNet. This 

increases accuracy while simultaneously reducing the number of parameters needed in the network. Group 

convolutions, which group the channels of the feature maps and conduct convolutions inside each group, are 

used to achieve the channel shuffle process. ShuffleNet also features a number of optimizations, such as 

group Conv, Dwise separable Conv, and Bottleneck design, to lower the computational overhead of the 

network. 

 

5.4.  MobileNetV2 

Sandler et al. [30] as shown in Figure 7. The "inverted residual block" Conv layer and the "linear 

bottleneck" method, which minimizes the number of parameters in the network, are the two main 

advancements of MobileNetV2. The layers of an inverted residual block are as follows: 

 Pointwise Conv layer: The input is subjected to a 1x1 pointwise Conv in the pointwise Conv layer. 

 Dwise Conv layer: This layer transforms the pointwise Conv layer's output into a Dwise Conv. 

 Linear bottleneck layer: Using a 1x1 pointwise Conv, this layer lowers the number of channels in the 

output of the Dwise Conv layer. 

 

 

  
  

Figure 4. The VGG16 architecture Figure 5. The ResNet50 architecture 
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Figure 6. The ShuffleNet architecture Figure 7. The MobileNetV2 architecture 

 

 

6. TRAINING ALGORITHMS 

During the training process of the DL model, it is imperative to adapt the weights of each epoch and 

minimize the loss function [31]. To achieve this, adjustments can be made to crucial neural network 

attributes, including learning rates (LR) and weights, utilizing a specialized function called an optimizer [32]. 

The optimizer plays a pivotal role in the modification of these properties, leading to an overall reduction in 

the total loss and an improvement in accuracy. The training of DL models involves the application of specific 

TA, as detailed in Table 2, with the utilization of three distinct optimizers: ADAM, SGDM, and RMSprop. 
 

 

Table 2. Options for TA 
Architecture ResNet50, VGG16, ShuffleNet, MobileNetV2 

Optimizer SGDM, RMSprop, ADAM 

Momentum 0.9 

Initial Learn Rate 0.001 
Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 10 

Maximum Epochs 25 
Mini Batch Size 128 

Validation Frequency 50 

 
 

6.1.  Stochastic gradient descent with momentum (SGDM) 

The conventional stochastic gradient descent (SGD) is improved with SGDM to enhance stability 

and convergence speed. This is achieved by introducing a momentum factor in the parameter update 

equation, smoothing the optimization process and preventing parameter space oscillations. SGDM's 

modification of the original SGD technique results in an optimized approach that strikes a balance between 

stability and convergence speed. The SGDM is stated in (1) and (2). Here, β is momentum coefficient, this 

regulates the preceding velocity's contribution to recent update. u(t) is the momentum vector at time t, which 

is initialized as zero. ∇Q (θ(t), xi, yi) is Gradient of the Loss Function (GLF) w.r.t the model parameters θ for 
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a single training example (xi, yi). α is the LR, which controls the step size of the parameter update. θ(t) is the 

current model parameters (CMP) at time “t”. 
 

𝑢(𝑡) = 𝛽 ∗ 𝑢(𝑡 − 1) + (1 − 𝛽) ∗ 𝛻 𝑄 (𝜃(𝑡), 𝑥𝑖, 𝑦𝑖) (1) 
 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝛼 ∗ 𝑢(𝑡) (2) 

 

6.2.  Root mean square propagation (RMSProp) 

The primary objective of RMSProp is to adjust the scale of the gradient by considering the historical 

average of squared gradients. This approach proves beneficial in reducing the step size for parameters 

characterized by substantial gradients, while simultaneously increasing the step size for parameters with more 

modest gradients. In essence, RMSProp tailors the gradient rescaling to the historical behavior of squared 

gradients, resulting in an adaptive optimization strategy that can effectively navigate diverse gradient 

magnitudes. The RMSprop is stated in (3). Here, θ(t) is the CMP. α is the LR. Q(t) is the GLF w.r.t the 

parameters at time t. E[Q2(t)] is the exponentially weighted moving average of the squared gradient. ∈ is 

epsilon a small constant to avoid division by zero. 
 

𝜃(𝑡 + 1) = 𝜃(𝑡) −
𝛼∗ 𝑄(𝑡)

√𝐸[𝑄2(𝑡)] +∈
 (3) 

 

6.3.  Adaptive moment estimation (ADAM) 

By applying estimations of the 1st and 2nd moments of the gradients, ADAM calculates adaptive 

LR for each parameter. The average gradient is the 1st moment, while the average squared gradient is the 2nd 

moment. Hyperparameters are used to modify the decay rates of exponentially decaying moving averages, 

which are used to calculate these estimations. For the purpose of correcting the initial bias in the moving 

averages, the algorithm also employs bias reduction. The ADAM is stated in equation (4). Here, θ(t) is the 

CMP. α is the LR, m^(t) and n^(t) are bias-corrected estimates of the 1st and 2nd moment vectors of the 

gradients. ∈ is epsilon a small constant to avoid division by zero. 
 

𝜃(𝑡 + 1) = 𝜃(𝑡) −
𝛼∗ 𝑚^(𝑡) 

√𝑛^ (𝑡) +∈

 (4) 

 

 

7. RESULTS AND DISCUSSION 

In previous research, the impacts of various spectral bands and image processing techniques on LC 

classification have been explored, yet there's a notable gap in understanding the effectiveness of combining 

false-colour processing with advanced DL models like ResNet50, InceptionNet, MobileNet, and ShuffleNet, 

particularly in the unique context of the Mysore district. Furthermore, while DL optimizers such as Adam, 

RMSprop, and SGDM are commonly employed, their performance comparison in LC classification within 

this region remains relatively unexplored. Therefore, our study aims to bridge this gap by investigating the 

integration of false-colour processing with diverse DL models and optimizers for precise LC classification in 

the Mysore district. Through meticulous analysis of various model-optimizer combinations, we seek to 

uncover the most effective approach for accurately mapping LC in this distinct geographical area. Our 

investigation revealed significant variations in accuracy among different DL models and optimizer 

combinations for LC classification in the Mysore district. 

The details of the research setup, including system specifications, are documented in Table 3. The 

generation of results is carried out using MATLAB as the primary tool. This section offers a thorough 

elucidation of how the accuracy evaluation of 4 distinct DL models, spanning 5 class/categories, is conducted 

through the utilization of 3 diverse optimizers. The confusion matrix (CM) obtained from MATLAB serves 

as a pivotal metric in this assessment, providing insights into the performance of the models under different 

optimization strategies. 
 

 

Table 3. System specification 
System name Dell Inspiron 7501 

Processor  10th Generation Intel Core i7-10750H  

Graphics NVIDIA GeForce GTX 1650 Ti 

Wireless card Intel® Wireless-AC 9560 160 MHz 
RAM 16 GB 

Tool  MATLAB-R2022b 

OS Windows10 
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The Figure 8 presents the CM for ResNet50, the accuracy of the ADAM optimizer is shown in 

Figure 8(a) which is 98.1% and that it performed better across all 5 class/categories. The ResNet50-SGDM 

scored 96.3% as seen in Figure 8(b) and RMSprop 97.2% as seen in Figure 8(c). For ResNet50, ADAM 

scored best for the forest databases but poorly for both water and vegetation databases. The CM for VGG16 

is provided in Figure 9, the SGDM optimizer achieved better across 5 given class/categories and raised 

accuracy by about 92.2% as shown in Figure 9(b). Whereas ADAM scored second best with 91.4% as shown 

Figure 9(a) and the least is RMSprop with 89.9% as shown in Figure 9(c). For VGG16, SGDM worked best 

for the databases on forest while it fared horribly for the databases on water. ShuffleNet's CM is presented in 

Figure 10, the ADAM optimizer as seen in Figure 10(a) boosted accuracy by about 95.3% and performed 

better across all 5 class/categories. ShuffleNet's-SGDM has accuracy of 93.7% as seen in Figure 10(b) and 

RMSprop has second highest accuracy of 94.1% as seen in Figure 10(c). ShuffleNet's forest and urban 

databases fared well, but the water database had poor ADAM performance. The Figure 11 presents the CM 

for MobileNetV2, the RMSprop optimizer as seen in Figure 11(c) improved accuracy by approximately 

93.4% while performing better across all 5 categories. MobileNetV2-ADAM has 93% accuracy seen in 

Figure 11(a) and SGDM with 92.8% accuracy as seen in Figure 11(b). When it came to MobileNetV2's bare 

land and forest database, RMSprop performed well, but the water database had low performance. 

 

 

   
(a) (b) (c) 

 

Figure 8. ResNet50 - MATLAB output: (a) CM of ADAM, (b) CM of SGDM, and (c) CM of RMSprop 

 

 

   
(a) (b) (c) 

 

Figure 9. VGG16 - MATLAB output: (a) CM of ADAM, (b) CM of SGDM, and (c) CM of RMSprop 

 

 

ResNet50 with “ADAM” as the optimizer, as shown in Table 4, achieves 98.1% accuracy with a 

kappa of 0.9764 and 98 minutes and 11 seconds of processing time. The accuracy for the same dataset with 

VGG16 using the “SGDM” optimizer is 92.2%, with a kappa of 0.9028, and it takes 110 minutes and 58 

seconds. For the exact same dataset, ShuffleNet's “ADAM” optimizer exhibits accuracy of 95.3% with a 

kappa of 0.9417 and processing time of 63 minutes and 21 seconds. The accuracy for the same dataset with 

MobileNet-V2 with “RMSprop” optimizer is 93.4%, with a kappa of 0.9181, and it takes 68 minutes and 55 

seconds. It is significant to consider that network depth affects computing time during both training and 
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inference. The DL model employed in this study has the following network depth; ResNet50 has 50 layers, 

VGG16 has 16 layers, ShuffleNet has 50 layers, and MobileNet-V2 has 53 layers. ShuffleNet's with ADAM 

required less computation time but had the second-highest accuracy out of the four DL models, while 

VGG16 with SGDM consumed the most computation time with the least accuracy. If accuracy alone is taken 

into account, ResNet50 outperformed all three optimizers and has the highest accuracy in comparison to the 

others. Therefore, based on the results of this study, we can say that the simulation's precision and execution 

time are influenced by the database's size and the degree of complexity of the DL model as well as the 

optimizer's chosen. 
 

 

   
(a) (b) (c) 

 

Figure 10. ShuffleNet-MATLAB output: (a) CM of ADAM, (b) CM of SGDM, and (c) CM of RMSprop 

 

 

   
(a) (b) (c) 

 

Figure 11. MobileNetV2-MATLAB output: (a) CM of ADAM, (b) CM of SGDM, and (c) CM of RMSprop 

 

 

Table 4. Performance metrics of the DL Models with the optimizers 
DL models Optimizer Kappa Overall precision Overall recall F1 score Training time 

ResNet50 

 

ADAM 0.9764 0.9811 0.9812 0.9812 98 min & 11 sec 

SGDM 0.9542 0.9633 0.9649 0.9641 106 min & 24 sec 
RMSprop 0.9653 0.9722 0.9729 0.9726 83 min & 19 sec 

VGG16 

 

ADAM 0.8931 0.9144 0.9156 0.9150 87 min & 07 sec 

SGDM 0.9028 0.9222 0.9237 0.9229 110 min & 58 sec 
RMSprop 0.8736 0.8989 0.9057 0.9023 47 min & 15 sec 

ShuffleNet 

 

ADAM 0.9417 0.9533 0.9538 0.9536 63 min & 21sec 

SGDM 0.9208 0.9367 0.9376 0.9371 76 min & 03 sec 
RMSprop 0.9264 0.9411 0.9415 0.9413 62 min & 06 sec 

MobileNet-V2 ADAM 0.9125 0.9300 0.9303 0.9301 75 min & 15 sec 

SGDM 0.9097 0.9278 0.9295 0.9286 54 min & 31 sec 
RMSprop 0.9181 0.9344 0.9364 0.9354 68 min & 55 sec 
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8. CONCLUSION 

We demonstrate a tile-based solution for classifying S2 images for Mysore. An effort is made to 

implement and assess various DL approaches along with three different optimizers which have produced 

promising outcomes for LULC classification. High accuracy of 98.10% has been achieved in classification 

task while using ResNet50 and the ADAM optimizer. Also, the comparison of three distinct optimizers as 

discussed in result section it reveals considerable gain in accuracy and convergence rate, especially for the 

given S2 datasets. However, the choice of optimizer depends on the model architecture employing RS images 

(dataset), which are employed by decision-makers in a wide range of domains of application. Classification 

accuracy may be improved further by fine-tuning model parameters, such as architecture and hyper-

parameter optimization. However, there are some constraints that must be addressed. Robust validation 

techniques must be implemented to ensure the reliability and generalizability of the models. Additionally, 

accepting potential challenges in extending discoveries to diverse geographical areas highlights the obligation 

for flexibility and cautious consideration of regional variations in LU characteristics. 
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