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 The prediction of phenotype from the genotype of oryza sativa (rice) is very 

crucial for optimizing the crop management. utilizing molecular 

convolutional neural networks (MolCNNs) and machine learning for crop 
management in oryza sativa provides a data-driven method for phenotype 

prediction based on DNA data, improving farming techniques. Data 

gathering, preparation, and integration of phenotypic and DNA data are all 

part of this process. Meaningful DNA features are extracted by MolCNN, 
and phenotypic qualities are predicted by a machine learning algorithm. 

Making educated decisions is ensured by assessing the model’s 

effectiveness, applying it to crop management, and updating it frequently. 

Choosing crop varieties, planting schedules, and management techniques are 
guided by molecular insights, which support sustainable agriculture and 

increase yields and quality. In the proposed research we are calculating 

pearson correlation coefficients between anticipated and actual trait values 

and the model’s performance on a test set. Additionally, it determines the 

(PCC) for every characteristic in the model and we have received a binary 

accuracy of 0.9998 in 139 seconds. 
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1. INTRODUCTION 

With the help of DNA data analysis, machine learning models and molecular convolutional neural 

networks (MolCNN) can predict rice plant phenotypic features with high reliability and accuracy. Compared 

to more conventional approaches, this can more accurately identify desired features like growth patterns, 

disease resistance, and yield potential. throughput screening of rice plants is made possible by machine 

learning models in conjunction with DNA-based phenotyping. This results in time and resource savings since 

numerous plants can be examined at once. Even before visual signs develop, machine learning algorithms 

can identify disease markers in rice plants. Early diagnosis minimizes crop loss and the requirement for 

chemical treatments by enabling prompt management. It is possible to optimize resource allocation by 

precisely anticipating plant features. For instance, waste and the impact on the environment can be decreased 

by using the exact amount of water, fertilizer, and pesticides. Machine learning algorithms can be used to 

identify certain genes and DNA markers linked to desired attributes. Crop breeding programs can use this 

knowledge to create new rice varieties with enhanced traits. Machine learning models can choose rice 

varieties that are more suited to shifting environmental factors like temperature, humidity, and soil quality 

based on the examination of DNA data. This is required in light of climate change in order to sustain crop 

yield. Agronomists and farmers that want to make data-driven decisions can benefit from using machine 
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learning-based solutions. The optimal periods to plant, rotate crops, and apply other management techniques 

may be ascertained by examining both historical and current data. Naturally disease- and pest-resistant plants 

can be identified using machine learning methods. Planting these types can help the environment and human 

health by lowering the demand for chemical pesticides. Using real-time data, machine learning algorithms 

can optimize planting density, irrigation schedules, and fertilizer levels, so increasing agricultural yield.  

By employing data-driven insights, farmers can optimize crop management by cutting expenses associated 

with labour, resources, and inputs. Crop management based on machine learning encourages environmentally 

friendly farming practices. This entails conserving natural resources, cutting waste, and making the most use 

of available territory. Since rice is a staple crop for millions of people, machine learning -based crop 

management can increase productivity and efficiency, improving global food security. In conclusion, by 

applying machine learning and molecular clustering to optimize DNA-based phenotyping of oryza sativa 

(rice), crop management can be significantly altered. Enhancing phenotypic forecasts, boosting resource 

efficiency, and promoting global food security can all help achieve this. This technology has the power to 

change the rice growth process and open the door for data-driven, sustainable agriculture. 

 

 

2. RELATED STUDIES 

While there is a chance of overfitting with the new data, Liu et al. [1] implemented advanced 

computer algorithms to identify genetic links, predict soybean traits, and create automated pattern 

recognition. Combining DNA regulatory circuits with molecular convolutional neural networks suggests an 

innovative approach Xiong et al. [2] for molecular biology and computational modelling. Wang et al. [3] 

produced deep learning enables sophisticated analysis of complex plant genetic data. The deep learning 

approaches are more predictive than conventional methods Piecyk et al. [4] they may be able to increase the 

accuracy of 3D chromatin interaction predictions. Deep learning algorithms are highly effective at capturing 

intricate non-linear correlations within data. Qu et al. [5] implemented deep learning for the prediction of 

DNA binding protein. Without the requirement for human feature engineering, deep learning algorithms are 

able to automatically learn from and extract characteristics from raw DNA sequences. Predictions made as a 

result may become more automated and efficient. Namin et al. [6] implemented deep learning which works 

well with high-dimensional data, which includes the intricate and multi-dimensional datasets that are 

frequently used in phenotyping research. For jobs containing spatial relationships, like genetic data, CNNs 

are a good fit Ma et al. [7] this may be useful in identifying inter-regional relationships throughout the 

genome. Deep CNN training can be computationally demanding, particularly when using huge genomic 

datasets. Kalra [8] predicted plant genotype-phenotype correlations using sophisticated modeling capabilities 

provided by machine learning and deep learning approaches. Automation of feature extraction: by 

eliminating the need for manual feature engineering and perhaps capturing complex patterns, these methods 

can automatically learn and extract pertinent features from genomic data. Singh et al. [9] plant stress 

phenotypes is automatically and effectively analysed by deep learning, which eliminates the need for labour-

intensive manual evaluations. Sperschneider [10] addresses the use of machine learning methods to 

comprehend the relationships between pathogens and plants. The power of machine learning to generate 

predictions at different scales from genomic data to field observations is highlighted in the essay.  

Danilevicz et al. [11] looks at how genetic data may be used to predict plant attributes using machine 

learning, which allows for more accuracy and efficiency in breeding. The work by Guo and Li [12] explores 

the use of machine learning to predict traits based on environmental and genetic information. Although 

biotechnology tactics can be tailored and agriculture optimized, there are still obstacles to overcome, 

including data complexity, model reliance, validation requirements, and ethical considerations with data 

privacy and equitable access. Das-Choudhury et al. [13] explores the use of neural networks for time series 

modeling with the goal of forecasting phenotypic outcomes and connecting them to genotypes. Poland and 

Rife, [14] paper addresses the use of genotyping-by-sequencing (GBS) in genetics and plant breeding. The 

GBS technology provides a high-throughput, low-cost means of producing genetic markers, enabling faster 

genetic research and improvements in plant breeding programs. It is likely that the integration of machine 

learning in plant science and breeding is the subject of van Dijk et al. [15] study. Through the analysis of 

complicated plant data, improved breeding accuracy, and more accurate trait prediction, machine learning 

can provide revolutionary insights. This technology has the potential to maximize resilience and agricultural 

productivity. The study by Crain et al. [16] combines genomic data and high-throughput phenotyping to 

improve selection and prediction accuracy in wheat breeding. Combining these cutting-edge methods allows 

scientists to find desired features more quickly and shorten the breeding process, which could result in 

improved crop types with higher yields and greater resilience. Shah and Wu [17] analyze crop and soil 

management techniques meant to increase crop yield while preserving environmental sustainability. 

Sustainable agriculture goals can be aligned with greater yields, preservation of soil health, and decreased 
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environmental impact through the adoption of appropriate management strategies. The study conducted by 

Raja and Rajendran [18] compares several techniques for identifying and categorizing illnesses in banana 

leaves. The project intends to improve disease management by assessing several strategies, which could 

result in enhanced productivity and health of banana crops. By employing sophisticated detection techniques, 

crop losses could be reduced by enabling early disease detection and focused responses. The prophet 

algorithm is used in Soren and Rajendran [19] research to forecast and examine the growth of oryza sativa. 

Making use of these computational tools helps improve agricultural planning by predicting rice crop growth 

patterns and maximizing rice crop cultivation techniques. Precise growth forecasts have the potential to 

enhance yield approximations and resource administration, promoting more efficient and sustainable rice 

cultivation. Wang et al. [20] work, a deep neural network-based technique called DNNGP which makes use 

of multi-omics data is introduced for plant genome prediction. By enabling more accurate trait selection and 

crop improvement, this novel approach has the potential to revolutionize plant breeding and genetics research 

by improving the accuracy of genomic predictions. DNNGP may reveal intricate genetic linkages and offer 

thorough insights into plant biology by combining several data sources. 

The study by Maldonado et al. [21] uses bayesian regularized neural network (BNN) and deep 

learning techniques to predict complex features across the genomes of two outcrossing plant species.  

To effectively utilize the potential of deep learning and BNN in plant genomics, however, a number of 

obstacles must be overcome, including interpretability of results, model optimization, and the integration of 

computational findings into practical breeding programs. Kono et al. [22] propose a structure-based method 

for predicting DNA target sites by regulatory proteins, enhancing accuracy compared to sequence-based 

methods. However, reliance on known protein structures limits its applicability, and computational 

complexity may hinder scalability. These challenges underscore the necessity of thorough validation and 

cooperative research. “G2PDeep” by Zeng et al. [23] provides a web-based deep-learning framework for 

genomic marker identification and phenotype prediction, which may improve the effectiveness of genetic 

research. Hou et al. [24] highlight the advantages of deep learning in genetic analysis and crop development 

as they talk about the technology’s promise in plant genomics and breeding. However, obstacles like model 

integration and data complexity highlight the necessity of ongoing study and modification for agricultural 

applications. The study by Montesinos-López et al. [25] uses densely constructed deep learners to predict 

plant features in many environments using genomics. This method may improve forecast accuracy in a 

variety of settings, supporting breeding and crop selection techniques that are more resilient. Nonetheless, 

obstacles including processing requirements, interpretability of the model, and incorporation into real-world 

agricultural environments could emerge, underscoring the significance of methodological improvement and 

cooperative study to maximize the advantages of deep learning in plant genomics. 

 

 

3. PROPOSED METHOD 

In our research we have implemented using MolCNN in conjunction with machine learning to 

maximize the DNA-based phenotype of oryza sativa. The process of optimizing the phenotype of oryza 

sativa by machine learning, notably MolCNN, and a DNA-based method makes use of genetic information to 

predict and enhance desired traits. Change these layers to efficiently process the molecular graph 

representation of DNA sequences. Specifically, we have developed layers that extract features from 

molecular graphs and encode them in a machine-learning style. We are using feature selection and pre-

processing for DNA sequence data in order to improve the model’s performance and identify which DNA 

sequence features are most crucial for predicting a particular set of phenotypic traits. 

The featured and pre-processed data is then sent to MolCNN for analysis. By integrating the 

strengths of genomics, bioinformatics, and machine learning, this approach maximizes the phenotype of 

oryza sativa based on DNA sequences. With MolCNN, we analyse learnt characteristics and determine which 

parts of the DNA sequence are most important for predicting particular phenotypic traits. The network is able 

to identify patterns linked to particular phenotypic outcomes, which leads to this optimization. The network 

is an effective tool for genotype-phenotype mapping in the fields of molecular biology and genetics because 

of its capacity to process molecular structures and capture complex correlations in genomic data. Our model 

Figure 1 is divided into two modules molecular and computational module. We are having the genome data 

and the phenotype data with the same target. We are integrating the genome and phenotype data.  

After integrating Figure 2 both the datasets we are proceeding with the preprocessing and feature selection. 

Then the featured and pre-processed data is fed to the CNN model with multiple hidden layers then we 

receive the output accordingly. 
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Figure 1. MOI-CNN architecture for phenotype prediction 

 

 

4. METHOD 

4.1.  Data collection 

IRIS datasets are collected from the international rice information system. In this study Figure 2,  

we are examining two distinct gene data sets: imputed and unimputed. Imputed genotype data is derived from 

the original, observable genetic data, but unimputed genotype data is derived from statistical techniques to 

anticipate missing genetic information. 

 

 

 
 

Figure 2. Dataset representation 

 

 

4.2.  Genotype variant representation 

The whole collection of genes and genetic material found in a single plant is referred to as the 

genotype. Capturing and communicating information about the precise genetic components that dictate an 

organism’s characteristics is known as genotype representation. The DNA sequence of the plant is the most 

basic source of genotype representation. The adenine, thymine, cytosine, and guanine nucleotide sequences 

that make up each gene are repeated across the genome. It is now possible to decipher the complete genomic 

sequence of different plant species because to advancements in DNA sequencing technologies 
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4.3.  Phenotype (traits) representation 

The visible features or attributes of an organism that arise from the interplay of its genetic 

composition (genotype) and external stimuli are referred to as phenotypes. These observable characteristics 

must be described and categorized in order to represent phenotypes. For oryza sativa, characteristics are 

quantifiable. A numerical measurement of height, weight, length, or any other phenotypic trait, for instance, 

can be used to quantitatively describe it. 

 

4.4.  Integrating the genotype and phenotype of oryza sativa 

Sparsely recorded phenotypic characteristics, such plant height and germination rate, are frequently 

subjected to genotype to phenotype models. These traits are frequently gathered by hand, which may 

introduce bias and increase the expense of the experiment. It is essential to determine the connection between 

particular genetic variants (genotype) and related observable traits (phenotype). Finding genetic markers, 

mutations, or other genomic characteristics linked to specific phenotypic outcomes is part of this process. 

 

4.5.  Machine learning 

Based on the genetic data of rice plants, machine learning is used to study and forecast their 

phenotypic features. The following machine learning related tasks are carried out in the research which are 

data loading and preprocessing, trait feature extraction, feedforward neural network, model compilation, 

training and evaluation, correlation and visualization and overall performance evaluation. Machine learning 

approaches evaluate model performance, forecast quantitative qualities of rice plants based on their genetic 

data, and provide light on the connections between phenotypic and genetic variables in rice. By allowing the 

prediction of rice plant traits, the machine learning models are utilized to optimize crop management and can 

help with agricultural decision-making. 

 

4.6.  Molecular convolutional neural network 

MolCNN has been developed to work with molecular data, like DNA sequences or chemical 

compounds. It offers a practical means of transforming the sequence or chemical structure into a machine-

learning-friendly format. MolCNN is useful in representing the DNA sequences linked to different strains of 

oryza sativa. MolCNN uses convolutional layers to extract salient characteristics from the molecular data 

stream. It is able to extract structural information and hierarchical patterns from DNA sequences. 

Understanding the genetic differences and characteristics between various rice strains may depend on these 

characteristics. MolCNN is included into a machine learning process to produce prediction models once the 

features have been acquired. Numerous rice phenotypic characteristics or attributes can be predicted by the 

DNA sequences. MolCNN, for instance, can assist in the prediction of characteristics such as growth 

features, yield, resistance to disease, and reactions to environmental stimuli. MolCNN’s ability to extract 

pertinent characteristics from DNA sequences and create prediction models is essential for optimizing DNA-

based phenotypes in oryza sativa. It helps to better understand rice characteristics and makes genetic data 

analysis easier, both of which are essential for crop management and breeding programs. 

 

 

5. RESULT 

The MolCNN are proposed to optimize the DNA-based phenotype of oryza sativa. In phenotype 

traits we are considering 12 main attributes of oryza sativa which are culm diameter, culm length, culm 

number, grain length, grain width, grain weight, heading date, ligule length, leaf length, leaf width, panicle 

length, and seedling height. Missing genotypes can be computationally handled as a genotype category and 

coded using the one-hot binary coding approach with deep learning. We used a one-hot vector with four 

channels to code the genotype matrices, both raw and imputed, and then we applied the same deep learning 

architecture to them. In the Figure 3 we are predicting the phenotype with the imputed and unimputed 

genotype using MoI-CNN. Pearson score (1): 

 

𝑟 = ∑𝑖 = 1𝑛(𝑋𝑖 − 𝑋ˉ)2∑𝑖 = 1𝑛(𝑌𝑖 − 𝑌ˉ)2∑𝑖 = 1𝑛(𝑋𝑖 − 𝑋ˉ)(𝑌𝑖 − 𝑌ˉ) (1) 

 

where, number of data points is n, and the individual data points for variables X and Y are Xi and Yi, 

respectively. The means of variables X and Y are, respectively, X and Y. 

On Un-imputed genotypes compared to imputed genotypes, deep learning-based approaches have 

greater pearson score see in Figure 3. About 15% of the genotypes in the quality-assured raw datasets for the 

oryza sativa dataset are missing. The imputation method fills in the majority of missing genotypes with 

reference alleles, which deflates the effects of different genotypes, which may be one reason why deep 

learning models perform better on raw datasets. The ability of some quantitative traits to be predicted may be 

compromised by imputation approaches, which incorporate missing genotype effects based on non-missing 
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genotypes. By computing the covariance of the deviations of the two variables, X and Y, from their 

respective averages, normalized by the product of their standard deviations, this formula determines the 

linear relationship between the two variables. The resultant value, r, is a number between -1 and 1, where 0 

denotes no linear correlation, -1 represents a perfect negative correlation, and 1 represents a perfect positive 

correlation. In Figure 4 the average pearson score of grain length, grain width, grain weight, heading date, 

leaf length, and leaf width features are predicted. 

 

 

 
 

Figure 3. Principle attributes average PS 

 

 

  

  

  
 

Figure 4. Average pearson score prediction 
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In Figure 5 while training accuracy evaluates the percentage of correct predictions made during the 

training phase, training loss gauges prediction accuracy. To guarantee efficient learning, the objective is to 

reduce loss and improve accuracy. In the Figure 6 during model training, validation loss quantifies the 

difference between expected and actual values on a different dataset with the goal of reducing discrepancies 

and improving the model’s generalization. On the testing set, trained with varying training set sizes, is 

displayed in Figure 5 and Figure 6. The x axis represents the predicted index and the y axis represents the 

actual index. 

The percentage of accurate predictions on this validation dataset, or validation accuracy, measures 

the model’s overall efficacy on fresh, untested data and offers insights into how well it performs outside of 

the training set. It is essential to keep an eye on both measures to make sure the model is reliable and to avoid 

overfitting to the training set. The MolCNN outperforms with lowest training loss on validation set.  

After setting the epoch to 10, we were able to attain 0.9998 binary accuracy in the 7th epoch with a 0.0052 

loss in 139 seconds. 

 

 

 
 

Figure 5. Training accuracy and loss 

 

 

 
 

Figure 6. Validation accuracy and loss 

 

 

6. CONCLUSION 

In this paper we have proposed MolCNNs for identifying intricate connections in molecular data 

and predict the phenotype of oryza sativa. These networks are able to detect complex patterns and 

interactions between genes that lead to particular phenotypic features in the context of oryza sativa 
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genotypes. MolCNNs are able to acquire hierarchical molecular structure representations. Because of this 

flexibility, the model can identify both large-scale genomic characteristics and minute changes that influence 

how many phenotypes in oryza sativa are expressed. MolCNNs are powerful tools for automatically 

identifying pertinent features in unprocessed genomic data. In order to get important insights into the genetic 

basis of observed differences, feature extraction is essential for finding important genetic markers or 

sequences linked to particular phenotypic features. The genetic landscape of oryza sativa is varied. Because 

MolCNNs can handle a wide range of genomic data, they are a good tool for examining genetic variation 

across populations and kinds of rice. The model’s capacity to generalize across a range of genotypes is 

improved by this flexibility. In future work we would like to make a user-friendly architecture where we can 

use the image as an input and predict the phonotype for better crop management. 

 

 

REFERENCES 
[1] Y. Liu, D. Wang, F. He, J. Wang, T. Joshi, and D. Xu, “Phenotype prediction and genome-wide association study using deep 

convolutional neural network of soybean,” Frontiers in Genetics, vol. 10, Nov. 2019, doi: 10.3389/fgene.2019.01091. 

[2] X. Xiong et al., “Molecular convolutional neural networks with DNA regulatory circuits,” Nature Machine Intelligence, vol. 4, 

no. 7, pp. 625–635, Jul. 2022, doi: 10.1038/s42256-022-00502-7. 

[3] H. Wang, E. Cimen, N. Singh, and E. Buckler, “Deep learning for plant genomics and crop improvement,” Current Opinion in 

Plant Biology, vol. 54, pp. 34–41, Apr. 2020, doi: 10.1016/j.pbi.2019.12.010. 

[4] R. S. Piecyk, L. Schlegel, and F. Johannes, “Predicting 3D chromatin interactions from DNA sequence using deep learning,” 

Computational and Structural Biotechnology Journal, vol. 20, pp. 3439–3448, 2022, doi: 10.1016/j.csbj.2022.06.047. 

[5] Y.-H. Qu, H. Yu, X.-J. Gong, J.-H. Xu, and H.-S. Lee, “On the prediction of DNA-binding proteins only from primary sequences: 

A deep learning approach,” PLOS ONE, vol. 12, no. 12, p. e0188129, Dec. 2017, doi: 10.1371/journal.pone.0188129. 

[6] S. T. Namin, M. Esmaeilzadeh, M. Najafi, T. B. Brown, and J. O. Borevitz, “Deep phenotyping: deep learning for temporal 

phenotype/genotype classification,” Plant Methods, vol. 14, no. 1, p. 66, Dec. 2018, doi: 10.1186/s13007-018-0333-4. 

[7] W. Ma et al., “A deep convolutional neural network approach for predicting phenotypes from genotypes,” Planta, vol. 248, no. 5, 

pp. 1307–1318, Nov. 2018, doi: 10.1007/s00425-018-2976-9. 

[8] K. Kalra, “Predicting the genotype to phenotype relationship in plants using machine learning and deep learning,” Doctoral 

dissertation, University of Saskatchewan, 2023. 

[9] A. K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, “Deep learning for plant stress phenotyping: trends and future 

perspectives,” Trends in Plant Science, vol. 23, no. 10, pp. 883–898, Oct. 2018, doi: 10.1016/j.tplants.2018.07.004. 

[10] J. Sperschneider, “Machine learning in plant–pathogen interactions: empowering biological predictions from field scale to 

genome scale,” New Phytologist, vol. 228, no. 1, pp. 35–41, Oct. 2020, doi: 10.1111/nph.15771. 

[11] M. F. Danilevicz et al., “Plant genotype to phenotype prediction using machine learning,” Frontiers in Genetics, vol. 13,  

May 2022, doi: 10.3389/fgene.2022.822173. 

[12] T. Guo and X. Li, “Machine learning for predicting phenotype from genotype and environment,” Current Opinion in 

Biotechnology, vol. 79, p. 102853, Feb. 2023, doi: 10.1016/j.copbio.2022.102853. 

[13] S. Das-Choudhury, “Time series modeling for phenotypic prediction and phenotype-genotype mapping using neural networks,” 

2020, pp. 228–243. doi: 10.1007/978-3-030-65414-6_17. 

[14] J. A. Poland and T. W. Rife, “Genotyping‐by‐sequencing for plant breeding and genetics,” The Plant Genome, vol. 5, no. 3,  

Nov. 2012, doi: 10.3835/plantgenome2012.05.0005. 

[15] A. D. J. van Dijk, G. Kootstra, W. Kruijer, and D. de Ridder, “Machine learning in plant science and plant breeding,” iScience, 

vol. 24, no. 1, p. 101890, Jan. 2021, doi: 10.1016/j.isci.2020.101890. 

[16] J. Crain, S. Mondal, J. Rutkoski, R. P. Singh, and J. Poland, “Combining high‐throughput phenotyping and genomic information 

to increase prediction and selection accuracy in wheat breeding,” The Plant Genome, vol. 11, no. 1, Mar. 2018,  

doi: 10.3835/plantgenome2017.05.0043. 

[17] F. Shah and W. Wu, “Soil and crop management strategies to ensure higher crop productivity within sustainable environments,” 

Sustainability, vol. 11, no. 5, p. 1485, Mar. 2019, doi: 10.3390/su11051485. 

[18] N. B. Raja and P. S. Rajendran, “Comparative analysis of banana leaf disease detection and classification methods,” in 2022 6th 

International Conference on Computing Methodologies and Communication (ICCMC), IEEE, Mar. 2022, pp. 1215–1222.  

doi: 10.1109/ICCMC53470.2022.9753840. 

[19] N. Soren and P. S. Rajendran, “Growth prediction and analysis of oryza sativa using prophet algorithm,” 2023, pp. 625–636.  

doi: 10.1007/978-981-19-9819-5_45. 

[20] K. Wang, M. A. Abid, A. Rasheed, J. Crossa, S. Hearne, and H. Li, “DNNGP, a deep neural network-based method for genomic 

prediction using multi-omics data in plants,” Molecular Plant, vol. 16, no. 1, pp. 279–293, Jan. 2023,  

doi: 10.1016/j.molp.2022.11.004. 

[21] C. Maldonado et al., “Genome-wide prediction of complex traits in two outcrossing plant species through deep learning and 

bayesian regularized neural network,” Frontiers in Plant Science, vol. 11, Nov. 2020, doi: 10.3389/fpls.2020.593897. 

[22] Kono, Hidetoshi, and A. Sarai, “Structure‐based prediction of DNA target sites by regulatory proteins,” Proteins: Structure, 

Function, and Bioinformatics, vol. 35, no. 1, pp. 114-131, doi: 10.1002/(SICI)1097-0134. 

[23] S. Zeng, Z. Mao, Y. Ren, D. Wang, D. Xu, and T. Joshi, “G2PDeep: a web-based deep-learning framework for quantitative 

phenotype prediction and discovery of genomic markers,” Nucleic Acids Research, vol. 49, no. W1, pp. W228–W236, Jul. 2021, 

doi: 10.1093/nar/gkab407. 

[24] X. Hou, Y. Cui, and J. Liu, “Applications and prospect analysis of deep learning in plant genomics and crop breeding,” Journal of 

Library and Information Science in Agriculture, vol. 34, no. 8, pp. 4–18, 2022, doi: 10.13998/j.cnki.issn1002-1248.22-0101. 

[25] A. Montesinos-López, O. A. Montesinos-López, D. Gianola, J. Crossa, and C. M. Hernández-Suárez, “Multi-environment 

genomic prediction of plant traits using deep learners with dense architecture,” G3 Genes|Genomes|Genetics, vol. 8, no. 12,  

pp. 3813–3828, Dec. 2018, doi: 10.1534/g3.118.200740. 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

DNA based Phenotype Optimization of Oryza Sativa using … (Nikita Soren) 

583 

BIOGRAPHIES OF AUTHORS 

 

 

Nikita Soren     received the B.Sc. Degree in Computer Science in 2018 and 

M.Sc. in Information Technology from SRM Institute of Science and Technology in 2021, 

and doing Ph.D. in Computer science and engineering at Hindustan Institute of Technology 

and Science, Chennai, India. Her research interests include artificial intelligence, image 
processing, deep learning, and machine learning. She can be contacted at email: 

nikitashyren@gmail.com. 

  

 

Dr. Paramasivan Selvi Rajendran     has 22 years of teaching experience and 

she received the B.E. degree and M.E. in Computer science and engineering from Madurai 
Kamaraj University, and Ph.D. in Computer science and engineering from the National 

Institute of Technology (NIT), Trichy, India. Her current research interests include natural 

language processing, deep learning, and machine learning. She is a Life Member of the 

Indian Society for Technical Education (ISTE), and Computer Society of India.  
She authored two books and published research papers in 59 international Journals. She can 

be contacted at email: selvir@hindustanuniv.ac.in.  

 

https://orcid.org/0000-0002-0887-6707
https://scholar.google.com/citations?user=im1aVqUAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58308746600
https://www.webofscience.com/wos/author/record/JTT-9080-2023
https://orcid.org/0000-0002-8739-1379
https://scholar.google.com/citations?user=8nGxNSYAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57212397497
https://www.webofscience.com/wos/author/record/3919892

