
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 1, April 2024, pp. 322~332

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i1.pp322-332 322

Journal homepage: http://ijeecs.iaescore.com

Implementation of an Arabic spell checker

Rafik Kassmi, Samir Mbarki, Abdelaziz Mouloudi
Department of Computer Science, Faculty of Science, Ibn Tofail University, Kénitra, Morocco

Article Info ABSTRACT

Article history:

Received Nov 19, 2023

Revised Jan 15, 2024

Accepted Jan 17, 2024

 This paper outlines the implementation of a spell checker for the Arabic

language, leveraging the capabilities of NooJ and its functionality,

specifically noojapply. In this paper, we shall proceed to provide clear

definitions and comprehensive descriptions of several categories of spelling

errors. Next, we will provide a comprehensive introduction to the NooJ

platform and its command-line utility, noojapply. In the subsequent section,

we shall outline the four main phases of our spell checker prototype. We

intend to develop a local grammar in NooJ for the purpose of error detection.

Afterwards, a morphological grammar and a local grammar will be created

in NooJ with the aim of providing an exhaustive list of possible corrections.

Following that, a revised algorithm will be employed to arrange these

candidates in descending order of ranking. Subsequently, a web user

interface will be developed to visually represent our research efforts. Finally,

we will proceed to showcase a series of tests and evaluations conducted on

our prototype, Al Mudaqiq.

Keywords:

Arabic language

El-DicAr dictionary

Local grammar

Morphological grammar

NooJ platform

Spell checker

Spelling error
This is an open access article under the CC BY-SA license.

Corresponding Author:

Rafik Kassmi

Department of Computer Science, Faculty of Science, Ibn Tofail University

Kénitra, Morocco

Email: rafik.kassmi@gmail.com

1. INTRODUCTION

Arabic is a Semitic language with a complex morphology. “The general rule for Arabic is that

everything is at least five times more complicated than any European language” [1]. The Arabic alphabet

consists of 28 letters, one of which is the long vowel ا /ā/. Two letters of them, ي /y/ and و /w/, represent the

long vowels ي /ī/ and و /ū/, respectively. Depending on their placement in the sentence, glides can be

considered consonants such as َوَعَد /wa‘ada/, which means “he promises,” or long vowels such as درُُوس

/durūsun/, which means “lessons.” The Arabic language also has diacritics, which are brief vowels that are

marked above or below the consonants they follow: (ََ) /a/, (َ) /i/, (َُ) /u/, (َ) /∅/, and (َ) /šadda/. The short

vowels are seldom used in written Arabic. The linguistic phenomenon known as tanwīn relates to the

representation of indefinite words without an article or complement. This is achieved by duplicating the short

vowels ((َ) /an/, (َ) /in/, and (َ) /un/) and positioning them towards the end of the word.

The Arabic language is written in a right-to-left direction. The script has a semi-cursive nature,

whereby the individual letters possess the ability to link with one another and undergo transformations in

shape based upon their position inside a given word, whether at the beginning, middle, or end. Nevertheless,

it is worth noting that there are six letters in the Arabic language that do not undergo any kind of linking to

the subsequent letter. The letters in question are ا /ā/, و /w/, ر /r/, ز /z/, د /d/, and ذ /ḏ/. A series of graphemes

separated by two blanks make up words. Each grapheme represents a form or unit that is likely to show up

under a lexical entry or lemma [2]. Arabic is a generative language in which most words, also referred to as

lemmas, are derived from a root, also known as a radical, while adhering to a scheme. This pertains to the

grammatical categories of verbs, nouns, and a few particles. A root is composed of two, three, or four letters,

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Implementation of an Arabic spell checker (Rafik Kassmi)

323

but approximately 64% of Arabic roots are composed of three letters [3]. In specific cases, particularly for

nouns, the root can be made up of more than four letters. These letters are the foundation of the word [4]. A

collection of words can be generated from a single root via various schemes [5]. Table 1 shows an example

of generated words from the root كتب /ktb/.

Table 1. Example of generated words from the root /ktb/
Scheme كتب /ktb/ Translation

 kataba/ He wrote/ كَتبََ /fa’ala/ فعََلَ
 kaātaba/ He wrote someone/ كَاتبََ /faā’ala/ فاَعَلَ

ل kaātibun/ Writer/ كَات ب /faā’ilun/ فاَع

تبَ /maf’alun/ مَف عَل maktabun/ Desk/ مَك
تاَب /fi’aālun/ ف عاَل kitaābun/ Book/ ك

 maktūbun/ A writing/ مَك توُب /maf’ūlun/ مَف عُول

تبَةَ /maf’alatun/ مَف عَلةَ maktabatun/ Library/ مَك
تاَبةَ /fi’aālatun/ ف عاَلةَ kitaābatun/ Writing/ ك

The term “agglutination” refers to complex words made up of numerous morphemes attached

together to provide a variety of morpho-syntaxis information. Arabic is very agglutinative, which means that

a lot of different affixes-proclitic, prefix, suffix, and enclitic-can be added to each word, making the

vocabulary bigger [6]. For instance, the word أوََستأكلونه /ʾawasataʾkulūnahu/, which means “will you eat it?”

is decomposed like (see Table 2).

Table 2. Example of segmentation
 أوََسَ تَ أكُلُ ونَ هُ

/hu/ /ūna/ /ʾkulu/ /ta/ /ʾawasa/

It Eat Will you

Enclitic Suffix Lemma Prefix Proclitic

During the first century of the Hijrah, Arab researchers began studying phonetics in conjunction

with other linguistic disciplines, including grammar, lexicography, and rhetoric. The basis of these studies

originated from the Quran, with the aim of safeguarding its text integrity against any distortions. During that

period, its primary manifestation was seen in the field of tajwid, which pertains to the accurate recitation of

the Quran [7]. However, the study of phonetics gained prominence in the fourth century of the Hijrah [8].

Arab linguists have classified Arabic sounds in terms of both point of articulation (رَج maẖraj/) and/ مَخ

manner of articulation (َفة ṣifah/) [9]. There are three groups of sounds in Arabic: the first group is plosives/ ص

or stops َيدة šadīdah/, which is made up of eight consonants as seen in Table 3. The second group is/ شَد

resonant َرَنَّانة /rannāna/, which has four manners of articulation: three nasal sounds, one lateral sound, one

trill sound, and two glide sounds, as in Table 4. The third group is fricative وَة خ riẖwa/ and is made up of 14/ ر

sounds: three are voiceless, and five are voiced, as seen in Table 5.

Table 3. List of plosive sounds
 Voiceless Voiced

bilabial ب /b/
alveolar non emphatic ت /t/ د /d/

alveolar emphatic ط /ṭ/

palatal ج /ǧ/
velar كـ /k/

uvular ق /q/

glottal ء /ʾ/

Table 4. List of resonant sounds
 Bilabial Alveolar non emphatic Alveopalatal

nasals م /m/ ن /n/

lateral ل /l/
trill ر /r/

glides و /w/ ي /y/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 322-332

324

Table 5. List of fricative sounds
 Voiceless Voiced

labiodental ف /f/
interdental non emphatic ث /ṯ/ ذ /ḏ/

interdental emphatic ظ /ẓ/

alveolar non emphatic س /s/ ز /z/
alveolar emphatic ص /ṣ/ ض /ḍ/

alveopalatal ش /š/

uvular خ /ẖ/ غ /ġ/
pharyngeal ح /ḥ/ ع /ʿ/

glottal هـ /h/

In Arabic, phonological change refers to the transformation of a word's primary form into a derived

form to facilitate pronunciation [10]. We can differentiate among the three primary categories [11]. The first

category is assimilation إ د غَام /ʾidġām/, which is the germination of one letter with another. It’s the emphasis

of two similar sounds, and it can be written as a single letter with the short vowel (َ) /šadda/ on top of it

[12]. Consider, for instance, the past-tense singular first-person singular form of the pattern ُفَعلَ ت /faʿaltu/ of

the verb ََأبَت /abata/, which means “heat up.” The phonological rule states that for verbs ending with ت /t/, if

the first ت /t∅/ is unvowelled and followed by a vowelled ُت /tu/, only one /t/ carrying /šadda/ is retained (+ ت

 ʾibdāl/, which is removing a letter and replacing it with/ إ بداَل The second category is substitution .(تُ → ت

another. This phenomenon is seen in verbs representing the pattern َإ ف تعََل /ʾiftaʿala/ [13]. Consider, for

instance, the underlying structure إ د تعََئ /ʾidtaʿā/ of the root دعئ /dʿā/. According to the rule, the د /d/ of

/ʾiftaʿala/ replaces the ت /t/ of the root if the first radical is د /d/. Then, the surface structure is إ دَّعَئ /ʾiddaʿā/,

which means “claimed.” The third category is weakening إ علََل /ʾiʿlāl/, which is a transformation that occurs

on long vowels ا /ā/, ي /ī/ or و /ū/, glides و /w/ or ي /y/, or a /hamza/ letter (glottal stop) ء /ʾ/. It is composed of

three types. The first kind is called glide metathesis ب القلَ ب لََل ʾiʿlāl bil-qalb/, and it involves replacing a/ إ ع

long or short vowel, a glide, or a /hamza/ letter with one of the other two. Take the word داَو ʾaʿdāwun/, for/ أعَ

instance, which comes from the plural َف عاَل أ /ʾafʿālun/ of the root عدو /ʿdw/, which stands for “to feel hatred.”

According to the phonological rule, a glottal stop ء /ʾ/ will take the place of the glide و /w/ if the

word's extremity is a long vowel ا /ā/ with (ََ) /fatḥa/. As a result, the structure surface became

داَء ب النَّقل ʾaʿdāʾun/, which means “enemies.” The second type, called glide transfer/ أعَ ,/ʾiʿlāl bil-naql/ إ علََل

involves taking a short vowel out of one sound and transferring it to another. Let’s consider the word ُيَق وُل

/yaqwulu/. It’s formed from the pattern ُُيَف عل /yafʿulu/ of the root قول /qwl/, which refers to the verb “to say.”

According to the phonological rule, the short vowel (َُ) /ḍamma/ above the glide و /w/ after a vowel (َ)

/sukūn/ is removed and replaced with the sukūn for hollow verbs. As a result, the surface structure changed to

 ʾiʿlāl bil-ḥaḏf/, which/ إ علََل ب الحَذ ف yaqūlu/, which means “he says.” Finally, glide elision is the third kind/ يَقوُلُ

removes a glide, a /hamza/ letter, a long or short vowel, or both. Take the word ُد ع yawʿidu/, which is/ يَو

formed from the pattern ُل wʿd/, which means “promise.” According to the/ وعد yafʿilu/ of the root/ يَف ع

phonological rule, assimilated verbs should not have the glide و /w/ with the vowel (َ) /sukūn/ above it and a

vowel (َ) /kasra/ following it. As a result, the surface structure changed to ُد ”.yaʿidu/, which means “he promises/ يَع

Texting, e-mailing, composing documents, and browsing for information on the Internet are all

examples of the increasing importance of writing in our daily lives. Even the most talented among us are

susceptible to typing errors for a variety of reasons, including unfamiliarity with the word, fatigue, lack of

concentration, and poor keyboard control. A spell checker is a program that analyzes words to identify and

correct misspellings [14]. It provides alternative spelling suggestions when dubious of the correct spelling. It is

used both independently and as an embedded component in a wide variety of applications, including machine

translation, optical character recognition, search engines, and word processors. The spell checker may be either

interactive or automatic. Once the interactive spell checker has identified misspelled words and suggested

possible corrections for each, the user can select the right choice. The automated spell checker, on the other

hand, replaces misspelled words with their most likely alternative spellings without requiring user input.

Spell checkers are built into almost all software today, but they are not always accurate, at least not for all

languages and especially not for Arabic. Our study's objective is to develop an Arabic spelling checker by

leveraging the NooJ platform and its command-line functionality, namely noojapply [15].

There are three main categories in which spelling mistakes may be classified: typographical errors,

cognitive errors, and phonetic errors [16]. In some instances, however, it is even challenging to designate a

single category for particular errors. Typographical errors include all instances of typing errors resulting from

improper manipulation of the keyboard, including instances of hitting an erroneous key or using a

malfunctioning keyboard. Hence, the author demonstrates an error in their work by using a term while

possessing knowledge of its correct spelling.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Implementation of an Arabic spell checker (Rafik Kassmi)

325

Approximately 80% of spelling errors concerning non-existent words in the language, known non-

words, are classified as single errors [17]. These single errors may be further classified into four distinct

forms, namely insertion, deletion, substitution, and transposition. An insertion error is a linguistic

phenomenon that arises when a writer mistakenly includes an additional letter in a word. An instance of the

extra insertion of the letter ت /t/ may be seen when typing مكتتوب /makttūb/ instead of مكتوب /maktūb/, which

means “written.” A deletion error occurs when the author mistakenly omits one of the letters inside a word.

As an example, in the case of typing مدسة /madsah/ instead of مدرسة /madrasah/, which means “school,” the

letter ر /r/ has been omitted. A substitution error occurs when the writer erroneously substitutes the right

letter of a word with an incorrect letter. More precisely, 58% of substitution errors involve adjacent keys of

the keyboard [18]. For instance, the letter ق /q/ is mistakenly replaced with the letter ف /f/ while entering حديفة

/ḥadifah/ for حديقة /ḥadiqah/, which means “garden.” A transposition or permutation error is a linguistic

phenomenon in which the writer exchanges the positions of letters inside a word. As an example, in the case

of typing برح /barḥ/ instead of بحر /baḥr/, which means “see,” there is an interchange of the positions of the

letters ح /ḥ/ and ر /r/. Cognitive errors include situations when the writer lacks knowledge of the accurate

spelling of a word, has a lapse in memory about it, or holds a mistaken understanding of it. An instance of

introducing an unexpected letter, such as adding ا /ā/, might occur while typing لاكن /lākin/ instead of لكن

/lakin/, which means “but.”

Mispronunciation is well recognized as a prevalent contributing factor to spelling errors.

Consequently, the mispronunciation of a word always results in a phonetic inaccuracy in its spelling. Hence,

this particular category encompasses errors that arise when the author replaces a word with another one that

sounds similar. For instance, when typing عضيم /ʿaḍim/ for عظيم /ʿaẓim/, which means “great,” the letter ض

/ḍ/ is mistakenly replaced with ظ /ẓ/.

NooJ is a linguistic development platform that is used for the purpose of formalizing natural

languages [19]. The software offers a range of resources for constructing, evaluating, and managing highly

structured representations of natural languages. Additionally, it facilitates the creation of automated

applications for natural language processing (NLP), including but not limited to machine translation, text

analysis, semantic annotation, grammar and syntax verification, and recognition of named entities. NooJ

constructs dictionaries and a structured collection of graphs that depict grammatical structures. These

linguistic resources may be used for the purpose of identifying morphological (inflection and derivation),

lexicological (spelling variants), syntactic, and semantic patterns within texts. The software has the capability

to do a wide range of statistical analyses in the fields of corpus linguistics and digital humanities, in addition

to its utility in teaching students in the areas of linguistics and linguistic computing [20].

One notable advantage of NooJ is its use of a command-line program named “noojapply.exe” to

provide the majority of its functionalities. This program may be invoked from a simple shell script or other

programs using a system command. Hence, the first step involves the user’s creation of dictionaries and

various grammars on the NooJ platform, which are afterwards used for direct application to texts via the

noojapply function.

2. METHOD

The spell checker we propose has four primary steps, as seen in Figure 1. The first step is to use the

El-DicAr dictionary and our morphological grammar, which is built in NooJ, to find all of the non-lexical

words in a given text corpus. Next, the second phase involves the generation of corrections or suggestions for

candidates by using morphological and local grammars within the NooJ framework. Next, arrange the

possibilities in a decreasing order based on the highest probability of the right word being suggested. Lastly,

the system chooses the most appropriate choice as the correction.

Figure 1. The main steps of our spell checker

2.1. Detecting errors

The error detection technique used in our study is based on a dictionary lookup approach

specifically designed to identify isolated non-words. For this purpose, we have opted to utilize the El-DicAr

dictionary [21]. It is a morpho-syntactic analyzer designed to recognize named entities as well as a lemma-

based dictionary of the standard Arabic language. It is available for free on the official NooJ website [22].

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 322-332

326

We combined a morphological grammar that could recognize Arabic agglutination with a local grammar [23]

that exclusively retrieved unknown words i.e., words that are not present in the dictionary.

Consider the following sentence in Figure 2: ن هذا في دراشة متيرةكضف باحث بريطاني ع /kaḍafa bāḥiṯun

brīṭānī ʿan haḏā fī dirāšah mutirah/, which means “A British researcher revealed this in an exciting study.”

When our local grammar is applied to this sentence, we detect three misspelled words: كضف /kaḍafa/, دراشة

/dirāšah/, and متيرة /mutirah/.

Figure 2. The three misspelled words identified by the NooJ concordance tool

2.2. Generating corrections

The previous section showed the detection of misspelled words by using a combination of

morphological and local grammars. Through this phase, we produced all the valid candidates arising from

these misspelled word transformations. In order to achieve this goal, we implemented three sequential steps.

Initially, we have gathered an exhaustive list of neighboring letters for each Arabic letter. Subsequently, we

have developed a morphological grammar that performs the four editing operations by using the previous list.

Finally, we have created a local grammar that, based on the output of the morphological grammar, generates

a list of potential candidates for every misspelled word.

2.2.1. List of neighboring letters

We take into consideration the neighboring letters in order to optimize the editing operations that are

involved in the correction process and to prevent the generation of invalid candidates (non-words). Letters of

adjacent keys on the keyboard, typographical letters that have similar shapes [24], or phonetic letters [25] that

have a similar sound are all examples of neighboring letters. Using this idea as a foundation, we produced a

list of neighbors of all Arabic letters. Table 6 illustrates an excerpt of the list of neighboring letters.

Table 6. An excerpt of the list of neighboring letters
Character Neighbors

 /ʾā/ آ /āi/ إ /āa/ أ /ā/ ا /ʾi/ ئـ /ʾū/ ؤ /ʾ/ ء

 /ʾā/ آ /āi/ إ /āa/ أ /ā/ ا /ʾū/ ؤ /ʾ/ ء /ʾi/ ئـ

 /ʾā/ آ /āa/ أ /ā/ ا /ʾi/ ئـ /lāi/ لإ /āi/ إ
 /ʾā/ آ /āi/ إ /āa/ أ /ā/ ا /lāa/ لأ /āa/ أ

 /á/ ى /ʾā/ آ /āi/ إ /āa/ أ /l/ ل /t/ ت /ā/ ا

 /ʾā/ آ /āi/ إ /āa/ أ /ʾi/ ئـ /r/ ر /ʾ/ ء /ʾū/ ؤ
 /ʾū/ ؤ /āi/ إ /āa/ أ /ā/ ا /lʾā/ لآ /ʾā/ آ

2.2.2. Morphological grammar

On the basis of the neighboring letter list, we have created a morphological grammar (see Figure 3)

that performs the following four editing operations: the addition of missing letters, substitution of incorrect

letters, removal of surplus letters, and exchange of two letters. Additionally, special identifiers have been

added to differentiate between the four categories of editing operations in order to enhance readability and

comprehension of the results. So, we have decided to add SUB for the substitution operation, DEL for

deletion, INS for insertion, and TRS for transposition.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Implementation of an Arabic spell checker (Rafik Kassmi)

327

Figure 3. Morphological grammar

2.2.3. Local grammar

We next used the propositions that our morphological grammar produced to construct a local

grammar illustrated in Figure 4. Truly, by using the appropriate tags, this local grammar is able to evaluate

and validate each proposition. Following that, a final list of appropriate candidates that align with the valid

suggestions will be produced. Each possible candidate on this list will additionally have a label indicating the

editing operation that was performed. As a result, the suggested candidate will be presented as follows:

#candidate#/#misspelled word#-label-#.

Figure 4. The local grammar and results in the NooJ concordance tool

2.3. Ranking candidates

The classification phase of the candidate list follows the creation of all possible corrections for a

misspelled word. The goal is to arrange this list of possibilities in decreasing order of the most likely

corrected word. The Levenshtein distance [26], often known as the edit distance, is one of the most well-

known metrical procedures in the world of spell-checking [27]. We have chosen to use this method to rank

candidates. The Levenshtein distance algorithm calculates the minimum number of basic editing operations

required to transform a misspelled word into a correctly spelled word. It especially focuses on three specific

sorts of spelling errors, namely insertion, deletion, and substitution, out of the four types that were previously

identified. Subsequently, additional versions of edit distance have been developed, customized to certain

authorized operations and application areas. The longest common subsequence (LCS) distance, which has

applications in computational linguistics, bioinformatics, and revision control systems, allows insertion and

deletion but not substitution [28]. The Hamming distance only applies to strings of the same length and only

allows substitution [29]. It is used in coding theory. The Jaro distance allows only transposition and has uses in

statistics and computer science [30]. The Damerau-Levenshtein distance allows the four editing operations:

insertion, deletion, substitution, and transposition. Finally, we decided to use that latter distance.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 322-332

328

Consider the following two strings: 𝑋 = 𝑥1𝑥2. . . 𝑥𝑚, of length m, and 𝑌 = 𝑦1𝑦2. . . 𝑦𝑛, of length n.

Recursively computing the distance between various 𝑋 and 𝑌 substrings is the method for determining the

edit distance between two strings. When the length of the candidates and the misspelled word are equal, the

conventional approach yields identical edit distances, indicating an insufficient and unhelpful ranking. This

necessitates the conversion of the initial version into a weighted version [31] by assigning a distinct weight to

each editing operation, as in (1). When the enhanced algorithm is applied to the example, “ كضف باحث بريطاني

متيرة دراشة في هذا A British researcher revealed this in an exciting study,” the candidates are ranked in/عن

descending order, assigning a high score to the correct suggestion, as shown in Table 7.

𝐷(𝑖, 𝑗) = 𝐷(𝑋1
𝑖 , 𝑌1

𝑗
)

𝐷(𝑖, 𝑗) = 𝑚𝑖𝑛

{

𝐷𝑖𝑛𝑠(𝑖 − 1, 𝑗) + 1 − 𝑤𝑖𝑛𝑠
𝐷𝑑𝑒𝑙(𝑖, 𝑗 − 1) + 1 − 𝑤𝑑𝑒𝑙
𝐷𝑠𝑢𝑏(𝑖 − 1, 𝑗 − 1) + 𝑐𝑜𝑠𝑡

𝐷𝑡𝑟𝑠(𝑖 − 2, 𝑗 − 2) + 1 − 𝑤𝑡𝑟𝑠

 (1)

𝐷𝑖𝑛𝑠(𝑖 − 1, 𝑗) + 1 − 𝑤𝑖𝑛𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

𝐷𝑑𝑒𝑙(𝑖, 𝑗 − 1) + 1 − 𝑤𝑑𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝐷𝑠𝑢𝑏(𝑖 − 1, 𝑗 − 1) + 𝑐𝑜𝑠𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛

𝐷𝑡𝑟𝑠(𝑖 − 2, 𝑗 − 2) + 1 − 𝑤𝑡𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑎 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑛

𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑠𝑡 = 𝑚𝑖𝑛 {
0 𝑖𝑓 𝑥𝑖−1 = 𝑦𝑗−1
1 − 𝑤𝑠𝑢𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷(𝑖, ∅) = 𝑖 𝑎𝑛𝑑 𝐷(∅, 𝑗) = 𝑗 𝑤ℎ𝑒𝑟𝑒 ∅ 𝑒𝑚𝑝𝑡𝑦 𝑠𝑡𝑟𝑖𝑛𝑔

𝑤𝑖𝑛𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑑𝑒𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑡𝑟𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑤𝑠𝑢𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Table 7. Candidates ranking
Misspelled words Candidates Weight

 kašafa/ 95.33%/ كشف /kaḍafa/ كضف
 maḍafa/ 95.33%/ مضف

 kaffa/ 77.50%/ كف

 dirāsah/ 97.20%/ دراسة /dirāšah/ دراشة
 dirāh/ 88.75%/ دراة

 muṯirah/ 97.20%/ مثيرة /mutirah/ متيرة

 munirah/ 97.20%/ منيرة
 muttasirah/ 97.20%/ متسرة

 mutaṣirah/ 96.88%/ متصيرة

 mutaṭayyirah/ 96.88%/ متطيرة
 mutayassirah/ 96.88%/ متيسرة

 mutasayyirah/ 96.88%/ متسيرة

 mutaġayyirah/ 96.88%/ متغيرة
 mutaẖayyirah/ 96.88%/ متخيرة

 mutaḥayyirah/ 96.88%/ متحيرة

 mīrah/ 88.75%/ ميرة

2.4. Correcting

The candidate with the highest score will be chosen to conclude the spell-checking process. Unlike

an interactive spell checker that enables the user to select the correct word, an automated spell checker will

automatically replace a misspelled word with the best candidate. In our case, we have made the decision to

use an interactive spell checker. Taking the example cited in our study, the correction of the three misspelled

words gives كشف /kašafa/ instead of كضف /kaḍafa/, دراسة /dirāsah/ rather than دراشة /dirāšah/, and مثيرة

/muṯirah/ in place of متيرة /mutirah/.

3. RESULTS AND DISCUSSION

Once the grammars were created and assessed using the NooJ platform, we proceeded to implement

them in a Web application that had been designed based on the flowchart shown in Figure 5. The Noojapply

tool was used at this step, as previously noted, to leverage the extensive capability offered by NooJ.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Implementation of an Arabic spell checker (Rafik Kassmi)

329

Figure 5. Flowchart for spell-checking and correcting

Consider again the previous example: “متيرة دراشة في هذا عن بريطاني باحث A British researcher/كضف

revealed this in an exciting study.” Our spellchecker has highlighted in red the three misspelled words in this

sentence: كضف /kaḍafa/, دراشة /dirāšah/, illustrated in Figure 6, and متيرة /mutirah/, illustrated in Figure 7.

The user is able to choose the correct word by clicking on a misspelled word to display a selection of

candidates, and so on until all errors have been corrected.

Figure 6. List of candidates for the misspelled word دراشة /dirāšah/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 322-332

330

Figure 7. List of candidates for the misspelled word متيرة /mutirah/

During the concluding stage of our project, we will conduct an evaluation of our prototype by calculating

its level of accuracy. This evaluation will enable us to gauge the effectiveness and precision of our prototype. The

following section will outline the results of evaluations carried out on a selection of Arabic press articles, which

were chosen based on four distinct topics: media, economy, sport, and society in Tables 8 and 9. In order to

validate our prototype, it is necessary to assess its performance using the proven metrics: precision, defined as

stated in (2); recall, defined as specified in (3); and F-measure, defined as described in (4). The overall evaluation

reveals that our Arabic spell checker, Al Mudaqiq, outperforms “Word 2019” in terms of accuracy. In

comparison to Word 2019, we acquired an average F-measure of 89.23% for our prototype.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑒𝑟𝑟𝑜𝑟𝑠
 (3)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (4)

Table 8. Experience with our prototype (Al Mudaqiq)
Variables Text n1 Text n2 Text n3 Text n4

Number of words 165 310 262 238
Number of errors correctly detected 10 18 15 14

Number of detections 13 24 17 16

Number of introduced errors 10 18 16 14
Precision 76.92% 75% 88.24% 87.50%

Recall 100% 100% 93.75% 100%

F-measure 86.96% 85.71% 90.91% 93.33%

Table 9. Experience with word 2019
Variables Text n1 Text n2 Text n3 Text n4

Number of words 165 310 262 238

Number of errors correctly detected 10 16 15 12
Number of detections 14 26 18 15

Number of introduced errors 10 18 16 14

Precision 71.43% 61.54% 83.33% 80%
Recall 100% 88.89% 93.75% 85.71%

F-measure 83.33% 72.73% 88.24% 82.76%

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Implementation of an Arabic spell checker (Rafik Kassmi)

331

4. CONCLUSION

In this paper, we have demonstrated how we used NooJ (and noojapply) to develop an Arabic spell

checker. After giving an overview of NooJ and its command-line utility, noojapply, we started by defining

and describing various types of spelling errors. We have contributed by presenting the four major steps of our

spell checker, which include the development of a NooJ local grammar for error detection. In order to

generate all possible candidates for corrections, we then constructed a morphological and local grammar in

NooJ. Then, in order to classify these candidates, we created an improved algorithm. Then, to illustrate our

work, we developed a web interface. Finally, we have created a comparison table of tests done on different

topics in Arabic press articles between our prototype and word 2019.

Regarding perspectives, our goal is to improve grammar error detection to take real words into

account as well as context-dependent and context-sensitive errors, which refer to errors involving textual and

linguistic context as well as missed spaces between words. We also aim to improve our ranking algorithm to

be more precise, to avoid having candidates with the same weight, and finally, to improve and enrich the

presentation layer of the results.

REFERENCES
[1] K. Beesley, “Arabic finite-state morphological analysis and generation,” Jan. 2003, doi: 10.3115/992628.992647.
[2] L. Tuerlinckx, “Lemmatization of non-classical Arabic (in French: La lemmatisation de l’arabe non classique),” in Le poids des

mots. Actes des 7èmes JADT, vol. 2, Louvain-la-Neuve: Presses Universitaires Louvain, 2004, pp. 1069–1078. [Online].

Available: https://api.semanticscholar.org/CorpusID:159942632.
[3] S. Khoja, R. Garside, and G. Knowles, “An Arabic tagset for the morphosyntactic tagging of Arabic,” Lancaster University, 2001.

[Online]. Available: https://api.semanticscholar.org/CorpusID:62244178.

[4] A. A. Abdelwahed, “Verb structure reading in Arabic conjugation (in Arabic: Binyat alfiʿl qiraʾa fi altasrif alʾarabi),” Sfax
University, 1996.

[5] F. S. Douzidia, “Automatic Arabic text summarization (in French: Résumé automatique de texte arabe),” 2005. [Online].

Available: https://api.semanticscholar.org/CorpusID:61729731.
[6] M. Boudchiche, A. Mazroui, M. Bebah, A. Lakhouaja, and A. Boudlal, “AlKhalil Morpho Sys 2: A robust Arabic morpho-

syntactic analyzer,” Journal of King Saud University-Computer and Information Sciences, vol. 29, pp. 141–146, Apr. 2017, doi:

10.1016/j.jksuci.2016.05.002.
[7] I. Youssef, “Place assimilation in Arabic: contrasts, features, and constraints,” 2013.

[8] Ibn Jinnī, “Secret of Syntax creation” (in Arabic: “Sirr ṣināʿat al-ʾiʿrāb”), 2nd ed., vol. 2. Beirut: Dār al-Kutub al-ʿIlmiyya, 2007.

[9] A. I. Alfozan, “Assimilation in classical Arabic: a phonological study,” 1989. [Online]. Available:
https://api.semanticscholar.org/CorpusID:142485870.

[10] A. R. Altakhaineh and A. Zibin, “Phonologically conditioned morphological process in modern standard Arabic: an analysis of

Al-ibdal ‘substitution’ in Ftaʕal pattern using prosodic morphology,” International Journal of English Language and Linguistics
Research, vol. 2, pp. 1–16, Mar. 2014.

[11] M. Al-Galaayiini, “A set of Arabic lessons part one (in Arabic: ǧāmiʿ addurūs alʿarabiyah alǧuzʾ alʾawwal),” vol. 1. 1991.

[12] A. Ar-rajihi, “Morphological application (in Arabic: Attaṭbīq assarfī),” Beirut: Dar Annahda Alʿarabiyah, 1984.
[13] N. Al-Alwani, “Morphological replacement in (Ifta’ale) formula in Majma`a Al-Bayan,” Journal of Arabic language and its Arts,

University of Kufa, pp. 93–120, 2010, [Online]. Available: https://api.semanticscholar.org/CorpusID:180915404.

[14] G. Olani and D. Midekso, “Design and implementation of morphology based spell checker,” International Journal of Scientific &
Technology Research, vol. 3, pp. 1–8, Dec. 2014.

[15] M. Silberztein, “NooJ manual,” 2003. Accessed: Oct. 19, 2023. [Online]. Available: http://www.NooJ4nlp.org/NooJ/Manual.pdf

[16] B. Haddad and M. Yaseen, “Detection and correction of non-words in Arabic: a hybrid approach,” International Journal of
Computer Processing of Languages, vol. 20, no. 04, pp. 237–257, Dec. 2007, doi: 10.1142/S0219427907001706.

[17] F. J. Damerau, “A technique for computer detection and correction of spelling errors,” Commun. ACM, vol. 7, pp. 171–176, 1964,

[Online]. Available: https://api.semanticscholar.org/CorpusID:7713345.
[18] K. Kukich, “Techniques for automatically correcting words in text,” ACM Comput. Surv., vol. 24, pp. 377–439, 1992, [Online].

Available: https://api.semanticscholar.org/CorpusID:5431215.

[19] M. Silberztein, “Formalizing natural languages: the NooJ approach,” 2016. doi: 10.1002/9781119264125.
[20] M. Silberztein and A. Tutin, “NooJ, a NLP tool for language teaching. Application for the study of lexical morphology in FLE (in

French: NooJ, un outil TAL pour l’enseignement des langues. Application pour l’étude de la morphologie lexicale en FLE),”

ALSIC, vol. 8, Feb. 2005, doi: 10.4000/alsic.336.
[21] S. Mesfar, “Analyse morpho-syntaxique automatique et reconnaissance des entités nommées en arabe standard,” 2008. [Online].

Available: https://api.semanticscholar.org/CorpusID:160716402.

[22] M. Silberztein, “The official NooJ website. 2003. Accessed: Oct. 21, 2023. [Online]. Available: http://www.NooJ4nlp.org/
[23] R. Kassmi, M. Mourchid, A. Mouloudi, and S. Mbarki, “Processing agglutination with a morpho-syntactic graph in NooJ,” vol.

811. 2018. doi: 10.1007/978-3-319-73420-0_4.

[24] A. Yousfi and H. Gueddah, “The impact of Arabic inter-character proximity and similarity on spell-checking,” 2013. doi:
10.1109/SPIRE.2000.878178.

[25] R. Kassmi, M. Mourchid, A. Mouloudi, and S. Mbarki, “Recognition of Arabic phonological changes by local grammars in

NooJ,” vol. 117, no. 1, pp. 3-14, CCIS. 2020. doi: 10.1007/978-3-030-38833-1_1.
[26] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet physics. Doklady, vol. 10, pp.

707–710, 1965, [Online]. Available: https://api.semanticscholar.org/CorpusID:60827152.

[27] K. Bacha and M. Zrigui, “Contribution to the achievement of a spellchecker for Arabic,” Research in Computing Science (RCS),
vol. 117, no. 1, pp. 161–172, Dec. 2016, doi: 10.13053/rcs-117-1-14.

[28] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common subsequence algorithms,” in Proceedings Seventh International

Symposium on String Processing and Information Retrieval. SPIRE, vol 84, no. 406, pp. 39-48, 1989, doi: 10.1109/SPIRE.2000.878178.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 322-332

332

[29] A. Bookstein, V. Kulyukin, and T. Raita, “Generalized hamming distance,” Information Retrieval Journal Boston, vol. 5, Oct.

2002, doi: 10.1023/A:1020499411651.
[30] M. Jaro, “Advances in record-linkage methodology as applied to matching the 1985 Census of Tampa, Florida,” Journal of The

American Statistical Association, vol. 84, pp. 414–420, Jun. 1989, doi: 10.1080/01621459.1989.10478785.

[31] H. Gueddah, A. Yousfi, and M. Belkasmi, “Introduction of the weight edition errors in the Levenshtein distance,” International
Journal of Advanced Research in Artificial Intelligence, vol. 1, Aug. 2012, doi: 10.14569/IJARAI.2012.010506.

BIOGRAPHIES OF AUTHORS

Rafik Kassmi received his B.S. degree in applied mathematics from Hassan II

University of Casablanca, Morocco, in 1998, and his degree in computer engineering from

Polytech Tours, France, in 2002. He is now nearing the completion of his Ph.D. in the area of

computational linguistics, specifically focusing on Arabic Natural Language Processing. His

research interests include phonetics, phonological changes in Arabic, and artificial

intelligence. He can be contacted at email: rafik.kassmi@gmail.com.

Samir Mbarki received his B.S. degree in applied mathematics from Mohammed

V University, Rabat, Morocco, in 1992, and his doctorate of high graduate studies in computer

sciences from Mohammed V University, Rabat, Morocco, in 1997. In 1995, he joined the

faculty of science at Ibn Tofail University, Morocco, where he is currently a professor in the

Department of Computer Science. He obtained an HDR in computer science from Ibn Tofail

University in 2010. He does research in model driven engineering, software engineering,

artificial intelligence, and NLP. Their current project is resource allocation in wireless

networks. His research interest score is 557.1, the number of citations is 630, and his h-index

is 12. His research interests include programming languages, software engineering, artificial

intelligence, MDA, and NLP. He can be contacted at email: mbarkisamir@hotmail.com.

Abdelaziz Mouloudi received his doctorate of high graduate studies in computer

sciences from Mohammed V University, Morocco, in 1988, and he obtained an HDR in

computer science from Mohammed V University, Morocco, in 2008. In 1988, he joined the

faculty of sciences at Ibn Tofail University, Morocco, where he is currently a professor in the

department of computer science. He does research in artificial neural networks, artificial

intelligence, computer security, and reliability. His research interest score is 329.2, the number

of citations is 502, and his h-index is 13. His research interests include evolutionary

algorithms encryption cryptography, information security, and data security. He can be

contacted at email: mouloudi_aziz@hotmail.com.

https://orcid.org/0000-0001-5836-8383
https://scholar.google.com.pk/citations?user=AU9cc00AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200209421
https://www.webofscience.com/wos/author/record/JOJ-8858-2023
https://orcid.org/0000-0001-6052-5915
https://scholar.google.fr/citations?user=lBVH6dYAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=36028370100
https://www.webofscience.com/wos/author/record/V-1216-2018
https://orcid.org/0009-0000-8984-6536
https://scholar.google.co.uk/citations?user=0yopSl4AAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=14039384100

