
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 34, No. 2, May 2024, pp. 1376∼1388
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i2.pp1376-1388 ❒ 1376

Remarks on a stochastic geometric model
for interference-limited cellular communications

Hamed Nassar1, Gehad Mohamed Taher1, El Sayed El Hady2,3

1Department of Computer Science, Suez Canal University, Ismailia, Egypt
2Department of Basic Sciences, Suez Canal University, Ismailia, Egypt

3Department of Mathematics, College of Science, Jouf University, Al-Jawf, Saudi Arabia

Article Info

Article history:

Received Nov 18, 2023
Revised Jan 14, 2024
Accepted Jan 16, 2024

Keywords:

Base station density
Cellular communications
Coverage probability
IoT deployment
Stochastic geometry
Transmit power

ABSTRACT

A plethora of stochastic geometry (SG) models have been developed for cellular
communications, especially in the context of internet of things (IoT) applica-
tions. A typical assumption in such models is that base stations (BS) are de-
ployed in the Euclidean plane as a spatial poisson point process (PPP) of some
density λ, with each communicating equipment transmitting at some power p.
The usual objective of these models is to characterize the cellular coverage prob-
ability in both the downlink (DL) and uplink (UL) directions. In this article we
expose, in the form of four remarks, the peculiar behavior of a baseline stochas-
tic geometric model of an interference-limited cellular system. Specifically, we
reveal that under some assumptions, the coverage probability in both the UL and
DL directions for this system is independent of both λ and p, flagrantly contra-
dicting intuition. The aim of the article is by no means to invalidate the use
of SG in modeling communications systems, but rather to point out that such
modeling may not be adequate all the time.
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1. INTRODUCTION
Stochastic geometry (SG) has been used heavily as a modeling tool in the field of wireless commu-

nications, e.g., ad hoc networks, cellular networks and IoT device deployment. For example, SG has been
used in [1] to model heterogeneous cellular networks, in [2] to model narrow band internet of things (IoT),
in [3] to model D2D communications underlaying cellular systems, and in [4] to model millimeter wave dense
cellular networks. The SG model is based on treating the nodes as a realization (snapshot) of a spatial point
process in the Euclidean plane, then averaging over all node locations to obtain useful performance metrics.
The most common such metric is the signal to interference and noise ratio (SINR), which can then be used to
calculate other useful metrics, such as coverage probability, network throughput and spectral efficiency, in both
the downlink (DL) and uplink (UL) directions. However, it is interesting to note that with the explosive growth
of wireless emissions in recent years, the impact of interference has largely outweighed noise [5] which has
called for characterizing signal-to-interference (SIR) rather than SINR (see, for example, [6]-[8]), effectively
adopting the interference limited assumption which is adopted also in the present article.
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When using SG to model cellular networks, base stations (BS) are usually deployed in the Euclidean
plane as a poisson point process (PPP), with some density λ. In this way, countless models have been developed
for different wireless scenarios. Most of those models stress that coverage probability, in both the DL and UL
directions, is dependent on both BS density λ and transmit power p, which seems intuitive enough. Examples of
such models for DL can be found in [5], [6], [8]-[21]. On the other hand, examples of such models for UL can
be found in [5], [7], [9], [16]-[25]. However, as we willshow in this article, we can construct a cellular network
scenario whereby the coverage probability, when evaluated by a stochastic geometric model, is independent
of both the λ and p parameters, in both the DL and UL directions. In particular, we will analytically identify
for such scenario under such model four remarks, for the four combinations of the parameters and directions
involved, that defy intuition. We first spotted these remarks in simulation experiments [26], but have since
worked to prove them analytically as demonstrated in the sequel. With these remarks identified, it is hoped that
the way stochastic geometry is currently applied to wireless communications will be reconsidered.

It should be noted that some of the remarks presented in this article have been alluded to by others,
if ever so scantily. For example, the authors of [10] in the context of analyzing DL coverage probability of
millimeter-wave cellular networks noted that “coverage does not scale with BS density.” Also, Herath et al.
[22], in the context of analyzing UL fractional power control (FPC), noted that coverage is “invariant to the
density of deployment of BSs when the shadowing is mild and power control is fractional.” Aside from these
notes, no one has presented theoretical investigation of these remarks, which was the motive for the present
article. It should also be noted that a preliminary version of this article was deposited as a preprint on several
renowned repositories, e.g. [27], for maximum exposure and visibility.

The rest of the article is organized as follows. In the method section, we develop the baseline model
employed throughout the article as a basis, and analyze it in both DL and UL directions, showing that the
coverage probability in both directions is independent of the BS density λ and transmit power p. Numerical
results and their explanation are provided in the the second section, whereas the last section has the conclusions.

2. METHOD
The key strategy of our method is to construct a SG model for a certain communications system

wherein the model fails to deliver adequate results. The inadequacy of the results is presented as four remarks.
This strategy is akin to the mathematical strategy of constructing a counter example to invalidate a universal
proposition. The principal assumption in the present study, as in most studies of SG modeling of cellular
communications systems, is that the BSs are deployed in the Euclidean plane according to a PPP Φ with
density λ. We consider cell orthogonal communications, meaning that in each cell only one user equipment
(UE) can be active on any time/frequency resource. Accordingly, Figure 1 is a snapshot of the UEs that are
active, i.e., communicating with their respective BSs, on the same frequency in all the cells at the same time.
Since every BS-UE pair in the Figure operates on the same resource, there is interference which we are going
to characterize now. Noise is so dominated by interference that its effect on the received signal can be safely
ignored. We incorporate random channel effects by multiplicative RVs, namely G for the signal and Gi for each
interferer i. We assume that G and the Gi are independent and identically distributed (iid) random variables
(RVs) following an exponential distribution with average 1. In addition, we assume that signals attenuate with
distance according to the standard power-law path loss propagation model, with path loss exponent α > 2.
That is, the average power received at distance r from a transmitter of power p is pr−α. Before proceeding
further, some important definitions are in order:

- Definition 1 (BS-UE association): BS-UE association is the assignment of a UE to a BS, for establishing
a communications channel between the two.

- Definition 2 (Serving BS): once a UE is associated with a BS, the latter is said to be the serving BS of
the UE.

- Definition 3 (Typical receiver): the typical receiver is the receiving device (UE or BS) where the SIR is
to be assessed. It is always placed at the origin of the Euclidean plane in the SG model, or the origin of
the simulation window in a simulation.

- Definition 4 (Tagged transmitter): the tagged transmitter is the transmitting device (UE or BS) associated
with the typical receiver.

- Definition 5 (Typical circle): the typical circle is the circle centered at the typical receiver with the tagged
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transmitter on its circumference.
- Definition 6 (Interferer): an interferer is a transmitter causing interference at the typical receiver. Thus,

it is any transmitter in the cellular network other than the tagged transmitter.
- Definition 7 (Signal to interference ratio (SIR)): the quotient of the signal received at the typical receiver

from the tagged transmitter and the sum of all interferences at that receiver.

As per definitions 3 and 4, it is evident that in the DL direction the typical receiver is a UE and the
tagged transmitter is a BS, whereas in the UL direction the typical receiver is a BS and the tagged transmitter
is a UE. Further, a UE wishing to start a communications session associates with the BS that is closer to it than
any other BS in the Euclidean plane (association rule). If we denote the distance between the two elements of
a BS-UE pair by R, then R is Rayleigh distributed (since the UE is closer to its associated BS than to any BS
in the plane). That is (1).

fR(r) = 2λπre−λπr2 , r ≥ 0 (1)

Referring to Figure 1, the typical receiver resides at the origin, and the tagged transmitter resides on
the perimeter of the typical circle of radius R. In the DL model, Figure 1(a), the typical receiver is a UE, and
the tagged transmitter is a BS. All the BSs outside the typical circle are interferers to the typical UE. In the UL
model, Figure 1(b), the typical receiver is a BS, and the tagged transmitter is a UE. All the UEs, except the
tagged UE, are interferers to the typical BS. Along the same line, the notation used throughout the article is
provided in Table 1.

(a) (b)
Figure 1. SG models for assessing SIR at a typical receiver (a) DL model and (b) UL model

Table 1. Notation used in the model and simulation
Parameter Description

Φ Point process of the BSs (Poisson)
Ψ Point process of the UEs (not Poisson)
λ Density of BS (per m2), i.e. intensity of PPP Φ

α Path-loss exponent (per m)
SIR Signal to interference ratio (dB)
ξ SIR threshold (dB)
G Rayleigh channel gain of tagged transmitter (G ∼ Exp(1))
p Transmit power (Watts)
pd DL coverage probability
pu UL coverage probability

2.1. DL model
The key assumptions of the DL system model are:

- Each BS transmits at a fixed power p to the associated UE on a particular time-frequency resource. That
is, we consider orthogonal communications within the cell. The consequence of this orthogonality is that
each UE sees interference from all the BSs in the plane except its serving BS.
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- Random channel effects are incorporated by RV G for the serving BS. And RV Gz for each interfering
BS located at point z in the Euclidean plane. We consider Rayleigh fading, and assume that G and the
Gz have a common exponential distribution with average 1.

Let Id be a RV denoting the total DL interference at the typical UE. The interference is due to every
BS z in the plane. Except the tagged BS which is denoted by b, as shown in Figure 1(a). Thus it can be
see in (2),

Id =
∑

z∈Φ\{b}

pGzD
−α
z (2)

where Dz is a RV representing the distance between the BS at z and he typical UE. The SIR at the typical UE
is thus given by (3).

SIRUE =
pGR−α

Id
(3)

The goal now is to derive the DL coverage probability pd, which is the probability that the SIR at the
typical UE exceeds a desired threshold (target) ξ, i.e.,

pd = P[SIRUE > ξ] (4)

using (2) and (3) in (4), gives,

pd = P
[
pGR−α

Id
> ξ

]
= P

[
G >

ξ

p
RαId

]
(a)
= EId

[
P
[
G >

ξ

p
RαId

]]
(b)
= EId

[
e−

ξ
pR

αId
]

= LId(
ξ

p
Rα) (5)

where,

LA(s) = E
[
e−sA

]
=

∫ ∞

0

e−stfA(t)dt (6)

is the Laplace transform of (the distribution of) any RV A. In (a) we utilized the fact that we can write
a probability P [A > B)] as EB [P [A > B]] (or EA [P [A > B]]) and in (b) we benefited from the fact that
G ∼ exp(1), i.e. fG(r) = e−r. We will now embark on finding an explicit expression for the DL coverage
probability pd in (5) by deconditioning on all the RVs involved.

We start by deconditioning pd on R, which is Rayleigh distributed, as given by (1), getting:

pd =

∫ ∞

0

LId(
ξ

p
rα)fR(r)dr

= 2
∼
λ

∫ ∞

0

e−
∼
λr2LId(

ξ

p
rα)rdr, (7)

where
∼
λ = πλ. The limits of the integral are so set. Since R can range from an arbitrarily small positive real

number (to exclude the typical UE) to ∞, the farthest point to place the tagged UE. We will find the Laplace
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transform LId in (7), by using (2) and (6) and then deconditioning on the Gz , to get (8),

LId(s) = E
[
e−sId

]
= EΦ,Gz

[
e−sp

∑
z∈Φ\{b} GzD

−α
z

]
= EΦ,Gz

 ∏
z∈Φ\{b}

e−spGzD
−α
z


(a)
= EΦ

 ∏
z∈Φ\{b}

EGz

[
e−spGzD

−α
z

]
(b)
= EΦ

 ∏
z∈Φ\{b}

LGz
(spD−α

z )

 (8)

in (a) we exploited the independence of the Gz . In (b) we used the definition (6) of the Laplace transform.
Next, we decondition on Φ by invoking the PGFL for the point process (since each Dz is distributed

differently for each z ∈ Φ) defined as (9),

EΦ

[∏
z∈Φ

f(z)

]
= exp

(
−λ

∫
R2\D(o,r)

(1− f(χ))

)
(9)

where D(o, r) is a disk of radius r centered at the origin, forming an exclusion zone. Applying (9) in (8), we
get (10),

LId(s) = exp

(
−λ

∫
R2\D(o,r)

(1− LGz (spχ
−α))

)
(10)

Using polar coordinates for the integral, with the interferer located at (x, θ) ∈ R2. Using also the fact
that Gz ∼ exp(1). i.e., fGz

(t) = e−t and LGz
(s) = 1/(1 + s), we get (11),

LId(s) = exp

(
−λ

∫ ∞

r

∫ 2π

0

(
1− 1

1 + spx−α

)
dθxdx

)
= exp

(
−2

∼
λ

∫ ∞

r

spx−α

1 + spx−α
xdx

)
(11)

note that we integrate with respect to x from r to ∞ since the interference emanates from outside the exclusion
zone D(o, r).

To find the transform LId(
ξ
pr

α) needed in (7), we update the argument in (11), getting (12).

LId(
ξ

p
rα) = exp

(
−2

∼
λ

∫ ∞

r

(

ξ
pr

αpx−α

1 + ξ
pr

αpx−α
)xdx

)

= exp

(
−2

∼
λ

∫ ∞

r

ξ
(
r
x

)α
1 + ξ

(
r
x

)αxdx
)

= exp

(
−2

∼
λ

∫ ∞

r

ξ(
x
r

)α
+ ξ

xdx

)
(12)

Remark 1: We note from (12) that the BS power p has disappeared. This indicates that the DL
coverage probability, obtained by substituting (12) in (7), is independent of BS power. This is counter intuitive,
as in practice cell phone carriers increase BS power to boost coverage and vice versa.

Now, use in (12) the substitution u = (x/r)
2
ξ−

2
α , which implies (x/r)

2
= uξ

2
α , which means

(x/r) = u
1
2 ξ

1
α , giving (x/r)

α
= uα/2ξ. Then take the derivative of u with respect to x to get du =
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2 (x/r) 1
r ξ

− 2
α dx which gives du = 2xdx/

(
r2ξ

2
α

)
, i.e. xdx = 1

2r
2ξ

2
α du. Finally, at x = r, then u = ξ−

2
α ,

and at x = ∞, then u = ∞. With this in mind, (12) becomes,

LId(
ξ

p
rα) = exp

−2
∼
λ

∫ ∞

ξ−
2
α

ξ(
u

1
2 ξ

1
α

)α
+ ξ

1

2
r2ξ

2
α du


= exp

−
∼
λr2ξ

2
α

∫ ∞

ξ−
2
α

ξ(
u

1
2 ξ

1
α

)α
+ ξ

du


= exp

(
−

∼
λr2ξ

2
α

∫ ∞

ξ−
2
α

ξ

u
α
2 ξ + ξ

du

)
= exp

(
−

∼
λr2 κ

√
ξ

∫ ∞

1
κ√ξ

1

1 + uκ
du

)

where κ = α/2. Substituting this in (7), we get for the DL coverage probability the expression.

pd = 2
∼
λ

∫ ∞

0

e−
∼
λr2e

−
∼
λr2 κ

√
ξ
∫∞

1
κ√ξ

1
1+uκ du

rdr. (13)

Although the BS density λ appears in (13), deceiving some researchers, we will show next, via two
changes of variables, that it is superfluous. First, use the substitution x = r2 in (13) to get,

pd =
∼
λ

∫ ∞

0

e
−

∼
λx

(
1+ κ

√
ξ
∫∞

1
κ√ξ

1
1+uκ du

)
dx

second, use the substitution z =
∼
λx, to get,

pd =

∫ ∞

0

e
−z

(
1+ κ

√
ξ
∫∞

1
κ√ξ

1
1+uκ du

)
dz

=
1

1 + κ
√
ξ
∫∞

1
κ√ξ

1
1+uκ du

(14)

where λ has disappeared.
Remark 2: We can see from (14) that the BS density λ has disappeared. This indicates that the DL

coverage probability is independent of the BS density. This is counter intuitive, as in practice cell phone carriers
increase BS density if they want to boost coverage and vice versa.

2.2. UL model
In the UL direction, the interference at the typical BS is basically the sum of the received transmissions

from all the UEs (including those inside the typical circle), except the tagged UE. Referring to Figure 1(b), we
assume that the BSs constitute a PPP Φ of density λ, and the UEs constitute another point process Ψ of the
same density (as each UE is associated with one and only one BS, and vice versa). Referring to Figure 1(b), for
each UE z ∈ Ψ, we denote the distance to its serving BS by Rz and denote the distance to the typical BS by Uz.
To distinguish it from all other distances, we denote by R the distance between the tagged UE and the typical
BS. As can be seen in Figure 1(b), RV Rz is upper bounded by Uz (otherwise the UE at z would associate with
the typical BS.) Also, both R and Rz are Rayleigh distributed, as per (1), as they express associations based on
shortest distances.

On the other hand, we will assume FPC, where each UE adjusts its power level based on its current
distance to the serving BS [7]. If the distance between a UE and its serving BS is Rz and the FPC factor is
ϵ ∈ [0, 1], then the transmit power p of the UE is amplified by Rϵα

z to offset the path loss, R−α
z . If ϵ = 0,

there is no offset, meaning the transmit power is invariant to distance, and if it is 1 there is complete channel
inversion.
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That said, the interference at the typical BS in the UL model is (15),

Iu =
∑

z∈Ψ\{u}

pGzR
αϵ
z U−α

z , (15)

where u denotes the tagged UE. Combining FPC and power loss, the net power reaching the BS from the UE
is pGR

−α(1−ϵ)
z . Also the SIR at the typical BS is (16).

SIRBS =
pGR−α(1−ϵ)

Iu
(16)

The goal now is to derive the UL coverage probability pu, which is the probability that the SIR at the
typical BS exceeds a desired threshold ξ, i.e.,

pu = P[SIRBS > ξ] (17)

using (15), (16) and (17), the UL coverage probability is (18),

pu = E
[
P
[
pGR−α(1−ϵ)

Iu
> ξ

]]
= E

[
P
[
G > ξp−1Rα(1−ϵ)Iu

]]
(a)
= E

[
e−ξp−1IuR

α(1−ϵ)
]

= LIu(ξp
−1Rα(1−ϵ)) (18)

where LIu is the Laplace transform of the distribution of Iu. In (a), we used the fact that G ∼ exp(1), i.e.
fG(x) = e−x, which implies that P[G > x] = e−x.

Now, we decondition pu in (18) on R, getting (19).

pu =

∫ ∞

0

LIu(ξp
−1rα(1−ϵ))fR(r)dr

=

∫ ∞

0

2
∼
λre−

∼
λr2LIu(ξp

−1rα(1−ϵ))dr. (19)

Note that we integrate from just outside the origin, to skip the typical BS, to ∞ where the closest UE can
possibly exist.

Next, we will embark on finding for (19) the transform LIu(s) = E[e−sIu ]. Using (15), we get (20),

LIu(s) = E
[
e−s

∑
z∈Ψ −pGzR

αϵ
z U−α

z

]
= E

∏
z∈Ψ

e−spGzR
αϵ
z U−α

z


= EΨ,Rz,Gz

∏
z∈Ψ

e−spGzR
αϵ
z U−α

z

 , (20)

where we have written Ψ instead of Ψ\{u} just for simplicity. In (20), for each point z ∈ Ψ there correspond
three RVs: Gz, Rz, Uz. The Gz are independent of both Rz and Uz, whereas Uz and Rz are dependent, as
Rz < Uz must hold, since if Uz < Rz the interfering UE at z would associate with the typical BS at the origin.
That is, P[Rz < x|Uz = x] = 1.

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 2, May 2024: 1376–1388



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 1383

Now, we decondition LIu(s) on Gz, getting:

LIu(s)
(a)
= EΨ,Rz

∏
z∈Ψ

EGz

[
e−spGzR

αϵ
z U−α

z

]
(b)
= EΨ,Rz

∏
z∈Ψ

∫ ∞

0

e−(1+spRαϵ
z U−α

z )xdx


= EΨ,Rz

∏
z∈Ψ

1

1 + spRαϵ
z U−α

z

 (21)

in (a) we used the fact that the Gz are iid and in (b) we used the fact that fGz
(x) = e−x.

Next, we consider the expectation with respect to Ψ, in order to decondition on Uz, the distance
between every point z ∈ Ψ and the origin. We will use for this expectation a PGFL, since Uz is distributed
differently for each z. However, Ψ is not poisson, as its points are not randomly and independently distributed
in the Euclidean plane, as was the case with Φ, but are rather satellites to the points of Φ. Consequently, we
cannot in principle apply a PGFL, as it assumes a PPP, for this deconditioning. To get around this difficulty, we
will employ an approximation.

From the assumptions, each UE is situated randomly around its serving BS. That is, each point of Ψ
is positioned randomly around a point of Φ. Thus, we can approximate the locations of the points of Ψ by the
locations of the points of Φ, when characterizing the UL interference caused by the UEs as follows. When
characterizing the interference caused by a UE, we will employ for its distance to the typical BS the RV Dz ,
rather than the RV Uz. That is, we will consider each UE to be at a point z ∈ Φ, emitting power pRαϵ

z , to cause
interference at the typical BS, at distance Dz . Accordingly,

EΨ

∏
z∈Ψ

f(z)

 ≈ EΦ

[∏
z∈Φ

f(z)

]
where the RHS is as given by (9). Using this approximation in (21) yields.

LIu(s) = ERz

[
EΦ

[∏
z∈Φ

1

1 + spRαϵ
z D−α

z

]]
Recall that Dz , instead of the real distance Uz, is now considered (by our approximation) the distance

between the UE at z and the origin. Applying the PGFL EΦ, using polar coordinates. Also substituting for the
angle integral by 2π, yield,

LIu(s) = e
−2

∼
λ
∫∞
0

(
ERz

[
1

1+(sp)−1R
−αϵ
z xα

])
xdx

we will decondition next on the Rz, which are independent and identically Rayleigh distributed as per (1) Note,
however, that the two RVs D−α

z and Rz are dependent since Rz < Dz must hold. This means that the upper
limit of the deconditioning integral below should be the x in the above integral. Thus,

LIu(s) = e
−2

∼
λ
∫∞
0

(∫ x
0

1

1+(sp)−1y−αϵxα fRz (y)dy
)
xdx

= e
−2

∼
λ
∫∞
0

(∫ x
0

2λπye−λπy2

1+(sp)−1y−αϵxα dy

)
xdx

= e
−2

∼
λ

2 ∫∞
0

x
∫ x2

0
e−

∼
λu

1+(sp)−1u−αϵ/2xα
dudx

(22)

from (22), we can write,

LIu(ξp
−1rα(1−ϵ)) = e

−2
∼
λ

2 ∫∞
0

x
∫ x2

0
e−

∼
λu

1+(ξp−1rα(1−ϵ)p)
−1

u−αϵ/2xα
dudx

= e
−2

∼
λ

2 ∫∞
0

x
∫ x2

0
ξrα(1−ϵ)e−

∼
λu

ξrα(1−ϵ)+u−αϵ/2xα
dudx

(23)
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Remark 3: We note from (23) that the UE power p has disappeared. This indicates that the UL cover-
age probability, obtained by substituting (23) in (19), is independent of UE power. This is counter intuitive, as
in practice cell phone manufacturers increase UE power if they want to boost coverage and vice versa.

Using (23) in (19), we get (24).

pu = 2
∼
λ

∫ ∞

0

re−
∼
λr2e

−2
∼
λ

2

ξr2κ(1−ϵ)
∫∞
0

x
∫ x2

0
e−

∼
λu

ξr2κ(1−ϵ)+u−ϵκx2κ
dudx

dr (24)

Although the BS density λ appears in (25), we will show below, via a sequence of variable changes, that it is
superfluous.

Start by using the substitution v = r2 in (24), to get.

pu =
∼
λ

∫ ∞

0

e−
∼
λve

−2
∼
λ

2

ξvκ(1−ϵ)
∫∞
0

x
∫ x2

0
e−

∼
λu

ξvκ(1−ϵ)+u−ϵκx2κ
dudx

dv

Use y = x2 to get,

pu =
∼
λ

∫ ∞

0

e−
∼
λve

−
∼
λ

2

ξvκ(1−ϵ)
∫∞
0

∫ y
0

e−
∼
λu

ξvκ(1−ϵ)+u−ϵκyκ
dudy

dv

Use x =
∼
λu to get,

pu =
∼
λ

∫ ∞

0

e−
∼
λve

−
∼
λξvκ(1−ϵ)

∫∞
0

∫∼
λy
0

e−x

ξvκ(1−ϵ)+

(
x
∼
λ

)−ϵκ

yκ

dxdy

dv

Use z =
∼
λv to get,

pu =

∫ ∞

0

e−ze
−

∼
λξzκ(1−ϵ)

∫∞
0

∫∼
λy
0

e−x

ξzκ(1−ϵ)+x−ϵκ
(∼
λy

)κ dxdy

dz

Finally, use u =
∼
λy to get,

pu =

∫ ∞

0

e
−z

(
1+ξzκ(1−ϵ)−1

∫∞
0

∫ u
0

e−x

ξzκ(1−ϵ)+x−ϵκuκ
dxdu

)
dz (25)

where λ has disappeared, proving the theorem.
Remark 4: We note from (25) that the UL coverage probability is independent of BS density. Similar

to Remarks 1, 2, and 3, this behavior is counter intuitive. This is because in practice cell phone carriers increase
BS density to boost coverage and vice versa.

3. RESULTS AND DISCUSSION
In this section, we will investigate the coverage probability for an example interference-limited cellular

system with the assumptions stated at the beginning of the article. The aim is to validate the findings of the
article, namely, the four remarks above. Specifically, we will evaluate the coverage probability, in both the DL
and UL directions, for two values of the path loss exponent α (4 and 6) and, in the case of UL, three values
of the power control factor ϵ (0, 0.5 and 1) using both the analytical results, derived above, and Monte Carlo
simulation, used for validation.

For the simulation, we developed our own simulator using the MATLAB language, and employed it
for both the DL and UL communications. For each simulation run, we would randomly spread a random num-
ber of BSs over the simulation area, a square of side 3,000 m. The number of BSs is Poisson distributed with
some average, λ. Then we would allow the devices to communicate at some power p. Finally, we evaluate the
coverage probability at the receiver, which is the UE in the case of DL and BS in the case of UL, by estimating
the number of devices whose reception exceeds the intended threshold ξ. From our experimentation, we found
that 10,000 simulation runs are enough to reach convergence; more runs would be wasteful.
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In the four graphs below, we sketch the coverage probability against the SIR threshold, ξ. The line
represents the analytical results, namely (14) and (25), while the bullets represent the simulation results. We
can see that both types of results match almost identically, confirming our analytical derivations. The first two
graphs are for DL and the second two are for UL. We can first see, that regardless of direction, DL or UL,
the coverage probability decreases (non-linearly) as the threshold increases which is logical. As the threshold
is the reference for evaluating the coverage, the higher the threshold the lower the probability of exceeding
it. In Figure 2, we have a sketch of the DL coverage probability, pd, against SIR threshold ξ, when the path
loss exponent α=4 (κ=2). As mentioned earlier, the coverage probability decreases, non-linearly, with the
SIR threshold, ξ. For α=6, Figure 3, we still have the same general pattern as for α = 4, but the coverage
probability is obviously higher. Specifically, raising α results in raising the coverage probability, for the same
ξ. The increase of the coverage probability with α is more noticeable for positive ξ.

Figure 2. DL coverage probability, pd, against SIR threshold ξ when the path loss exponent α = 4 (κ = 2)

Figure 3. DL coverage probability, pd, against SIR threshold ξ when the path loss exponent α = 6 (κ = 3)
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In Figure 4, we sketch the UL coverage probability, pu, against SIR threshold, ξ, when the path loss
exponent α = 4 (κ = 2), for three values of the power control factor, ϵ ∈ 0, 0.5, 1. We can see that the effect
of the power control factor varies according to the value of ξ. Specifically, a higher ϵ provides better coverage
at low ξ, but worse coverage at high ξ. The same comments apply when α = 6, in Figure 5. As can be seen,
the coverage probability increases as the path loss exponent increases, especially for positive ξ, with all other
variables kept the same.

Figure 4. UL coverage probability, pu, against SIR threshold ϵ when the path loss exponent α = 4 (κ = 2), for
three power control values ϵ ∈ 0, 0.5, 1

Figure 5. UL coverage probability, pu, against SIR threshold ϵ when the path loss exponent α = 6 (κ = 3), for
three power control values ϵ ∈ 0, 0.5, 1
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4. CONCLUSION
In this article we have presented four counter intuitive remarks concerning a SG model of a particular

cellular setup, thus pointing to a glitch in the way SG is currently applied to model communications systems.
Namely, we have proved that under some assumptions, the coverage probability of a particular cellular system,
in either DL and UL, is invariant to both BS density λ and transmit power p something that obviously defies
intuition. We do not intend by this revelation to invalidate SG as a modeling tool of communications systems.
Needles to say, SG has shown undeniable success in this regard, as has been demonstrated by countless studies
over the past two decades. Rather, we intend to call for efforts to find out the cause of the revealed anomaly
and propose modeling measures that can avoid it. Also, we intend to alert SG researchers to scrutinize their
results deeply enough for such anomalies, as it is typically the case that these results are so cumbersome that
superfluous parameters within them can go deceitfully undetected.
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