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 Topic modeling is an unsupervised machine learning technique successfully 

used to classify and retrieve textual data. However, the performance of topic 

models is sensitive to selecting optimal hyperparameters, the number of 
topics 'K' and Dirichlet priors 'α' and 'β.' This data-driven analysis aims to 

determine the optimum number of topics, 'K,' within the latent Dirichlet 

allocation (LDA) model. This work utilizes three datasets, namely  

20-Newsgroups news articles, Wikipedia articles, and Web of Science 
containing science articles, to assess and compare various 'K' values through 

the grid search approach. The grid search approach finds the best 

combination of hyperparameter values by trying all possible combinations to 

see which performs best. This research seeks to identify the 'K' that 
optimizes topic relevance, coherence, and model performance by leveraging 

statistical metrics, such as coherence scores, perplexity, and topic 

distribution quality. Through empirical analysis and rigorous evaluation, this 

work provides valuable insights for determining the ideal 'K' for LDA models. 
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1. INTRODUCTION 

The digitization trend is ongoing, and more data is being collected digitally every day. The 

transformation of this enormous amount of unstructured data into a structured form to extract relevant 

information is a significant issue in text mining. Text-mining techniques, such as topic modeling, are applied 

to determine the themes or topics of unstructured data. It is an unsupervised machine learning method that 

aids in categorizing documents according to predetermined subjects [1]. Several versions of topic modeling 

algorithms called topic models have evolved. Latent semantic analysis (LSA) [2], latent Dirichlet allocation 

(LDA) [3], probabilistic latent semantic analysis (PLSA) [4], and non-negative matrix factorization (NMF) [5] 

are some of the most commonly used topic models. Of all topic models, LDA is the most popular topic 

modeling algorithm. 

LDA is a generative algorithm in which a document is viewed as a distribution over topics, whereas 

a topic is considered as a distribution over words. These distributions reveal the underlying themes of the 

document collection [6]. LDA iteratively optimizes the Dirichlet priors' α and 'β' over the topics' multinomial 

distributions and the document's words to identify the topic. The model discovers the topic by determining 

the correlation between words but cannot capture the correlation between topics. In the real world, topic 

correlations are expected, which limits LDA's ability to analyze large-scale real-world data. LDA has been 

further enhanced to achieve better topic discovery, and different types of correlation models such as the 

correlated topic model (CTM) [7], pachinko allocation model (PAM) [8], hierarchical LDA (HLDA) [9], 
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dynamic topic model (DTM) [10], and author topic model (ATM) [11] have been developed. These models 

can all describe the topic correlations, but none can decide on the optimal number of topics, 'K.' When 

employing any of the topic models, it is crucial to determine the optimal number of topics extracted by the 

model because this significantly affects the efficacy of the results. There is no easy method to choose the 

optimal number of topics, and no standard procedures have been established [12]. 

One approach [13] for selecting the number of topics is iterative. The approach involves starting 

with a small number of topics and then increasing the number of topics until the model's performance no 

longer improves. However, this approach is time-consuming and computationally expensive. Another 

popular approach [14] across the literature to choose the number of topics is to use a variety of statistical 

metrics, also known as objective functions, to evaluate the model's performance. These metrics can include 

the perplexity of the model, the coherence of the topics, and the interpretability of the topics analyzed in 

terms of stability or divergence. However, there is no consensus on which metrics are most effective for 

choosing the number of topics. The choice of the number of topics in a topic model is subjective. There is no 

single "correct" number of topics, and the best number of topics varies depending on the specific application. 

Therefore, the main contributions of this research to the LDA topic model are: 

− Investigate the significance of various evaluation metrics in discerning the optimal value of 'K.' 

− Utilization of a composite of evaluation metrics instead of a singular metric for the optimal 'K.' 

− Validation of the effectiveness of derived 'K' across datasets where the number of topics is known. 

− Determination of the optimal value of 'K' for a dataset in which the number of topics is unknown. 

 

 

2. METHOD 

The performance of LDA depends not only on the quality and representative nature of the selected 

dataset but also on the values of specific parameters chosen during initialization to control the learning 

process. Such manually calibrated parameters are termed as hyperparameters [15], and their optimal values 

influence the learning capability of any model, which directly impacts the performance. For the LDA 

algorithm, the number of topics (K), the Dirichlet priors for the document-topic distribution (α), and the 

word-topic distribution (β) are important hyperparameters. The LDA algorithm is sensitive to the choice of K 

[16]. A small value of K may produce overly generic topics that are highly overlapping in terms of concepts. 

For instance, in a large dataset of articles related to networking, information security, and operating systems, 

using small values of K may yield over-general topics about themes. 

On the other hand, a large value of K can produce sparse non-interpretable topics. For instance, 

using extremely large values of K in the dataset referred to before may yield topics where the word 

distribution is sparsely populated, and the density assigned per word becomes extremely small to distribute 

the density across many topics. Therefore, identifying the optimal 'K' is crucial. This research work proposes 

a grid-search approach [17], [18], over the topic 'K'. A set of values for the number of topics 'K' are taken 

equidistant from one another within a proposed range. The process for determining the optimal 'K' amongst 

the proposed values is executed as shown in Algorithm 1. 

 

Algorithm 1. Algorithm for proposed methodology 
Defining Variables: 

 K = number of topics 

 𝐧𝐊= number of varying values of K chosen for training the models 
 metricDict = {Perplexity: Minimize, Average Cosine Distance: Minimize,  

Symmetric KL-Divergence: Minimize, 𝐂𝐔𝐌𝐚𝐬𝐬 : Maximize, 𝐂𝐔𝐂𝐈 : Maximize, 
𝐂𝐍𝐏𝐌𝐈 : Maximize, 𝐂𝐕: Maximize, 𝐂𝐂𝐯: Maximize, Topic Superiority: 

Maximize} 

1. For each metric metricDict.  

a. for K in the range from 1 to 𝐧𝐊 
i. Compute the metric value for K. 

2. Plot a graph between different K values and their metric values for each metric in 
metricDict. 

3. For each metric in metricDict  
a. Using a grid-search strategy, select a single value of K for which most 

metrics agree based on whether the metric should be maximized or minimized 

based on corresponding values to the metric in metricDict. 

4. The K obtained from the above method gives the optimal K.  

 

 

2.1.  Generate LDA models 

Using online variational inference over the selected corpus, generate LDA models with varying 'K' 

values. The different LDA models are trained over the same dataset. This step produces nk LDA models, 

where nk is the number of varying K values chosen for training the models. For better results, K values may 
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be selected from a range proportional to the number of documents in the corpus, with initially a larger 

difference between K values for two models out of the set of trained models. Gradually, this difference can 

be reduced to derive a finer value for the hyperparameter. The LDA is an unsupervised topic model based on 

generative probabilistic modeling [19], [20]. It uses the term frequency to determine the probability of 

document-topic association [21]. LDA is based on the intuition that a document is composed of multiple 

topics, and each topic is effectively a distribution of words from a fixed vocabulary. The structural diagram 

of LDA is shown in Figure 1, known as the plate model of LDA. 

 

 

 
 

Figure 1. Plate model of LDA [6] 

 

 

The variable names in the Figure 1 can be defined as: 

𝐷: Number of documents  

𝑁: Number of words in the document (document x has 𝑁𝑥 words) 

𝐾: Number of latent topics 

𝛼: Dirichlet prior for the per-document topic distribution 

𝛽: Dirichlet prior for the per topic word distribution 

𝜃𝑥: Vector of topic distribution over document x 

𝜙𝑘: Word distribution for topic k 

𝑧𝑥𝑦: Topic for the y word in document x  

𝑤𝑥𝑦: The specific word 

As the topics are not known a priori, LDA utilizes a latent variable model to deduce the distribution 

parameters of these latent variables by employing a posterior probability inference based on the observed 

terms and documents [22]. LDA evaluates the joint probability distribution between words and topics in the 

given corpus [23]. The probability of a word belonging to one of the K topics can be computed using (1). 

 

𝑃(𝑊,𝑍, 𝜃, 𝜑, 𝛼, 𝛽) =  ∏ 𝑃(𝜃𝑗; 𝛼)∏ 𝑃(𝜑𝑖; 𝛽)∏ 𝑃(𝑍𝑗,𝑡|𝜃𝑗)𝑃 (𝑊𝑗,𝑡|𝜑𝑧𝑗,𝑡)
𝑁
𝑡=1

𝐾
𝑖=1

𝑀
𝑗=1  (1) 

 

The inference of probabilities follows a generative process. For each word 𝑁𝑥 in document 𝑥: 

 

− Choose a topic 𝑧𝑥𝑦  ∼  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑥) 

 

− Choose a word 𝑤𝑥𝑦  ∼  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜑𝑧𝑥𝑦) 

 

where the multinomial parameters for topics in a document 𝜃𝑥 and words in a topic 𝜙𝑘 have Dirichlet priors 

α and β. Posterior probabilities for these distributions are learned by the expectation-maximization (EM) 

algorithm, which finds maximum posteriori (MAP) estimates of parameters along with variational inference 

(VI) methods that allow for online LDA learning [24]. 

LDA excels in simultaneous inference and handling documents of arbitrary sizes [25], making it a 

leading choice in diverse fields [26], including topic classification, clustering, short-text analysis, 

summarization, literature review, and sentiment analysis. A few of its applications include event extraction 

from Twitter [27], summarising Twitter posts based on selected topics [28], query intent recognition [29], 
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searching and classifying topics in a text corpus [30], improving document classification using domain-

specific vocabulary [31], and customer opinion mining using Twitter topic modeling and logistic regression [32]. 

While applicable to a large corpus of documents, LDA makes some rigid assumptions regarding a corpus, 

suggesting areas for improvisation. Like its predecessors [33], LDA assumes a bag-of-words model for a 

document, which may not be applicable in all situations. Further, no correlation between topics is made, and 

the order of documents is also not considered. Also, the constraint over the number of topics, which must be 

specified a priori, may be unsuitable for different corpora, as the obtained results are sensitive to the choice 

of 𝐾, and non-optimal values hinder model performance. Other considerations include a dynamic inference [34] 

from documents or other accompanying information. These constraints are examined and partially relaxed in 

various variants of LDA developed in the last two decades; however, these improvised models still depend 

on the optimal choices for involved hyperparameters. 

 

2.2.  Evaluate generated LDA models on metric set 

Choosing a value of K that generates the best results for a selected corpus is crucial for the optimal 

performance of any topic model [35]. The quality of topics generated by topic models can be assessed using 

evaluation metrics defined to quantify various topics, such as correlation, similarity, saliency, and relevance. 

Based on extensive research, various metrics and techniques have been devised to evaluate the topics 

produced by topic models and determine the optimal number of topics over the last two decades [36], [37].  

A framework was devised [38] to select the best LDA model based on topic density and to integrate 

this with model parameter estimation. This work is based on finding the model's best 'K' using an iterative 

process over the correlations in the document collection independent of the size of the data set. As described 

in (2), the proposed metric assesses the quality of topic structure using the average dissimilarity between 

topics based on cosine distance as described in (3). The metric's value was expected to decrease as the quality 

of topics/topic structure stability increased. 

 
∑ ∑ 𝑐𝑜𝑟𝑟(𝑇𝑖,𝑇𝑗)

𝐾
𝑗=𝑖+1

𝐾
𝑖=1

𝐾×
𝐾−1

2

 (2) 

 

𝑐𝑜𝑟𝑟(𝑇𝑖, 𝑇𝑗) =
∑ 𝑇𝑖𝑣𝑇𝑗𝑣
𝑉
𝑣=0

√∑ (𝑇𝑖𝑣)
2𝑉

𝑣=0 √∑ (𝑇𝑗𝑣)
2𝑉

𝑣=0

 (3) 

 

Where  𝑇𝑖, 𝑇𝑗: topics. 

A metric for determining the optimal number of topics was proposed [39], demonstrating that by 

interpreting LDA as a matrix factorization method, a lower value of a proposed divergence metric between 

the factorized document-topic and topic-word distributions corresponds to a richer topic structure. As 

described in (4), the metric focuses on assessing topic similarity using the symmetric Kullback–Leibler (KL) 

Scatter among document-topic and topic-word matrices. KL Scatter is smaller when the number of topics is 

close to the optimal value. The metric is based on KL divergence, as defined in (5).  

 

𝐾𝐿(𝐶𝑀1 ||𝐶𝑀2 ) + 𝐾𝐿(𝐶𝑀2||𝐶𝑀1)# (4) 

 

𝐾𝐿(𝑅𝑙1 ||𝑅𝑙2) =  ∑ 𝑅𝑙1(𝑖) ∗ log (
𝑅𝑖1(𝑖)

𝑅𝑖2(𝑖)
)𝑇

𝑖=1  (5) 

 

Where, 

𝐶𝑀1:  distribution of normalized topic-word matrix 𝑀1 over corpus 𝐶 

𝐶𝑀2:  distribution of normalized product of a document-topic matrix and length of documents  

𝐿 ∗ 𝑀2 over corpus 𝐶. 

A general mechanism was developed for building metrics to assess topic coincidence [40] and 

applying the mechanism to define the now de facto standard metrics for topic coherence. The idea was to 

assess the effectiveness of topics for classification by measuring the degree of semantic co-occurrence or 

coherence between high-probability words in the topic. The proposed metrics were defined using a general 

pipeline of four tasks: segmentation, probability estimation, confirmation, and aggregation. Metrics in (6) to 

(11) were proposed by combining the pipeline stages. 

 

𝐶𝑈𝐶𝐼 =

∑ ∑ log(
𝑃(𝑤𝑖,𝑤𝑗)+𝜖

𝑃(𝑤𝑗)𝑃(𝑤𝑖)
)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

𝑁(𝑁−1)

2

 (6) 
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𝐶𝑈𝑀𝑎𝑠𝑠 =

∑ ∑ log(
𝑃(𝑤𝑖,𝑤𝑗)+𝜖

𝑃(𝑤𝑗)
)𝑖−1

𝑗=1
𝑁
𝑖=2

𝑁(𝑁−1)

2

 (7) 

 

𝐶𝑁𝑃𝑀𝐼 =
∑ ∑ 𝑁𝑃𝑀𝐼(𝑤𝑖,𝑤𝑗)

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  

𝑁(𝑁−1)

2

 (8) 

 

𝑣𝑚,𝛾(𝑊′) = {∑ 𝑚(𝑤𝑖, 𝑤𝑗)𝑤𝑖∈𝑊
′

𝛾
}
𝑗=1…|𝑊|

 (9) 

 

𝐶𝑉 =
∑ �⃗⃗�𝑁𝑃𝑀𝐼,1(𝑊

′)
𝑖
 ⋅ �⃗⃗�𝑁𝑃𝑀𝐼,1(𝑊

∗)𝑖
|𝑊|
𝑖=1

‖�⃗⃗�𝑁𝑃𝑀𝐼,1(𝑊
′)‖

2
‖�⃗⃗�𝑁𝑃𝑀𝐼,1(𝑊

∗)‖
2

 (10) 

 

𝑁𝑃𝑀𝐼(𝑤𝑖, 𝑤𝑗) =
log(

𝑃(𝑤𝑖,𝑤𝑗)+𝜖

𝑃(𝑤𝑗)𝑃(𝑤𝑖)
)

− log(𝑃(𝑤𝑖,𝑤𝑗)+𝜖)
 (11) 

 

Where, 

𝐶𝑈𝐶𝐼   UCI Coherence, based on pointwise mutual information (PMI) 
𝐶𝑈𝑀𝑎𝑠𝑠  UMass Coherence 

𝐶𝑉  Newly-proposed coherence measure  

𝑁𝑃𝑀𝐼  Normalized PMI 

𝑊′,𝑊∗  Word subsets generated by segmentation 

𝑁  Number of most probable words per topic 

𝑤𝑖 , 𝑤𝑗  Words (specific to a topic) 

𝑃(𝑤𝑖), 𝑃(𝑤𝑗) Word probabilities 

𝑃(𝑤𝑖 , 𝑤𝑗) Joint probability of observing words 𝑤𝑖, 𝑤𝑗 

𝑣𝑚,𝛾(W′) Context vector for words in 𝑊′, using direct confirmation measure 𝑚 and power 𝛾 

𝜖:  Epsilon for avoiding indeterminate log (0) 

Further enhancements were proposed [41] over the previously used metrics of perplexity and 

coherence. This study focused on an extensive evaluation of the influence of perplexity and coherence over 

the topics produced by the LDA model to improve the F-measure for assessing the quality of topics for topic 

classification. The work determines the optimal K based on values of the normalized absolute perplexity 

(NAP) and normalized absolute coherence (NAC) (UMass), described in (12) and )13), respectively. The P 

stands for Perplexity for a topic model given in (14), and C for coherence of the topic model. 

 

𝑁𝐴𝑃 =
|𝑃|

max(|𝑃|)
 (12) 

 

𝑁𝐴𝐶 =
|𝐶|

max(|𝐶|)
 (13) 

 

𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷𝑡𝑒𝑠𝑡) = exp (
−∑ log(𝑝(𝑤𝑑))

𝑀
𝑑=1

∑ 𝑁𝑑
𝑀
𝑑=1

) (14) 

 

Another comprehensive metric [42], described in (15), focuses on judging the quality based on 

stability, predictive ability, and topic isolation of topic models. This combination metric is dependent on 

perplexity in (14), Jensen-Shannon divergence in (16) for isolation, stability (18), and coincidence based on 

coherence in (21).  

 
𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦×𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

𝜎𝐽𝑆×𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 (15) 

 

Jensen-Shannon divergence-based isolation metric 𝜎𝐽𝑆 is defined as (16). 

 

𝜎𝐽𝑆=√
∑ 𝐽𝑆(𝑆𝑖||𝑆𝑎𝑣𝑔)

2𝐾
𝑖=1

𝑘
 (16) 

 

Where, 
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𝑆𝑖: ith topic's word distribution 

𝑆𝑎𝑣𝑔: average word distribution for topics 

𝐽𝑆: Jensen-Shannon divergence, defined in (17). 

 

𝐽𝑆(𝑃||𝑄) =
1

2
𝐾𝐿(𝑃||

𝑃+𝑄

2
) +

1

2
𝐾𝐿(𝑄|| 

𝑃+𝑄

2
) (17) 

 

To evaluate the stability, a set of topics (𝑇𝑥 , 𝑇𝑦) were computed over the same dataset using as (19). 

 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑇𝑥 , 𝑇𝑦) =
1

𝐾
∑ 𝐴𝐽(𝑅𝑥𝑖, 𝜋(𝑅𝑥𝑖)),
𝐾
𝑖=1  (18) 

 

𝑇𝑥 = {𝑅𝑥1, 𝑅𝑥2, … , 𝑅𝑥𝐾} (19) 

 

Where, 

𝑅𝑥𝑖: Topic, as a set of vocabulary words 

𝜋(𝑅𝑥𝑖): aligned topic from 𝑇𝑦 with the highest AJ score (similarity) for 𝑅𝑥𝑖 

𝐴𝐽: Average Jaccard index, expressing a word similarity across topic pairs as given in (20). 

 

𝐴𝐽(𝑅𝑖, 𝑅𝑗) =
1

𝑡
∑

𝑅𝑖𝑑∩𝑅𝑗𝑑

𝑅𝑖𝑑∪𝑅𝑗𝑑

𝑡
𝑑=1  (20) 

 

Where, 
𝑅𝑖 , 𝑅𝑗: Topics, as a set of vocabulary words. 

𝑅𝑖𝑑 , 𝑅𝑗𝑑: Sets of d most probable words of the topics. 

𝑡: Maximum number of probable words to compare. 

Coincidence based on coherence is evaluated as (21): 

 

𝐶𝑜𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 =
1

𝑐
∑ 𝑐𝑜𝑢𝑛𝑡(𝜋(𝑅𝑥𝑖))
𝐾
𝑖=1  (21) 

 

where, 𝑐: Number of coincident topics between 𝑇𝑥 and 𝑇𝑦 

Apart from determining the optimal value of K using proposed metrics that assess topic structure, 

alternative techniques focusing on the automatic inference of the optimal value using assumed priors have 

also been proposed [43], [44]. Research work [45] analyzed and developed objective functions for evaluating 

topic models to determine optimal hyperparameters. The objective functions used in the approach improvise 

over the topic coherence metrics and are combined with external topic evaluation functions for analyzing 

topic similarity across pairs of generated topics. The combination allows for a holistic assessment with an 

extended focus on interpretability. Based on the observation that increasing the value of K leads to the 

factorization of coherent topics into constituents that still resemble the parent topic, a mapping �⃗⃗⃗� of every 

topic to its most similar topic, the result is generated using as (22) and (23). 

 

�⃗⃗⃗� =  𝑚𝑜𝑣𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

(

 
 
max {

|𝑡1⋂𝑡|

2𝑁
| ∀𝑡 ∈ 𝑇 ∖ {𝑡1}}

⋮

max {
|𝑡𝐾⋂𝑡|

2𝑁
| ∀𝑡 ∈ 𝑇 ∖ {𝑡𝐾}}

)

 
 

 (22) 

 

�⃗⃗⃗� =  𝑚𝑐𝑜𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (

max {cos𝑡1,𝑡(𝜃) | ∀𝑡 ∈ 𝑇 ∖ {𝑡1}}

⋮

max {cos𝑡𝐾,𝑡(𝜃) | ∀𝑡 ∈ 𝑇 ∖ {𝑡𝐾}}

) (23) 

 

Where, 

𝑡, 𝑡𝑖: topic as word distribution, ith topic word distribution 

𝑇: a set of word distributions for all topics 

𝑁: number of most probable words per topic taken into consideration 

The mapping is combined with the topic coherence of individual topics to obtain a measure 𝜙𝐶𝐶𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

This measure assesses topics over both coherence and the presence of unique features. The measure is then 
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averaged to obtain the combined coherence value 𝐶𝐶𝑣 described in (24) and (25). The topic model with the 

maximum 𝐶𝐶𝑣 value corresponds to the best value of K. 

 

𝜙𝐶𝐶𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐶𝑣⃗⃗⃗⃗⃗⨀(1⃗⃗ − �⃗⃗⃗�) (24) 

 

𝐶𝐶𝑣 = 𝑎𝑣𝑔 (𝜙𝐶𝐶𝑣
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (25) 

 

For this study, a set of evaluation metrics is chosen, as the observation of trends across multiple 

metrics allows for higher confidence and robustness in selecting the optimal value of 'K.' The LDA models 

generated in sub section 2.1 are evaluated on these metrics. Optimization direction varies across different 

evaluation metrics, as discussed in Table 1. 

 

 

Table 1. Evaluation metrics used to estimate the optimal value of 'K' 
Paper Evaluation metric Optimization direction 

Chen et. al. 2008 [46] Perplexity: likelihood of held-out data Minimize 

Cao et. al. 2009 [38] Average cosine distance between topics Minimize 

Arun et. al, 2010 [39] 
Symmetric KL-divergence between normalized topic-word 

and document-topic distributions 
Minimize 

Röder et. al, 2015 [40] Coherence measures over topics: 𝐶𝑈𝑀𝑎𝑠𝑠 , 𝐶𝑈𝐶𝐼, 𝐶𝑁𝑃𝑀𝐼 & 𝐶𝑉 Maximize 

Peikert et al, 2021 [45] Combined coherence value: 𝐶𝐶𝑣 Maximize 

Gan and Qi, 2021 [42] Topic superiority Maximize 

 

 

2.3.  Determine optimal 'K' using grid search approach 

Select the value of K for which all or the majority of the metrics agree. The rationale for the same is 

that various evaluation metrics evaluate the topic structure over different aspects, such as perplexity, isolation 

(Kullback-Leibler or Jensen-Shannon divergence), stability (average Jaccard index or cosine similarity), and 

coincidence (coherence measures). A common agreement of these varying metrics will likely ensure a higher 

quality topic structure, which an optimal value of hyperparameters will likely produce. The method is 

effectively a grid search [47] procedure due to the nature of exploration of the hyperparameter space to 

determine the best value based on an evaluation metric.  

 

2.4.  Datasets and experimental details 

The proposed methodology is evaluated over three datasets: The 20-Newsgroups dataset [48] with 

over 15,000 news articles distributed across 20 categories; the web of science dataset [49] containing 

scientific documents from the web of science journal divided across multiple categories; and a recently 

curated dataset of Wikipedia articles [50], plain text Wikipedia 2020-21, comprising of over 1 million plain 

text Wikipedia articles across 605 bundles. Due to resource limitations, a randomly sampled subset of 2463 

articles from the Wikipedia dataset and only the training partition of the 20-Newsgroups dataset with about 

11,000 articles were used for evaluation. Also, the WOS11967 partition of the Web of Science dataset, 

comprising 11,967 documents across 35 categories, is utilized. In the experimental suite, LDA models were 

trained over the training subset for the different datasets, as mentioned in Table 2. Symmetric Dirichlet priors 

were used for both distributions, with the value set to 1/K. The models' training and the computation of 

evaluation metrics were performed in Python using the tmtoolkit library [51]. The models were evaluated for 

the chosen metric set with the training configuration of 10 passes over the corpus, 300 iterations per pass.  

 

 

Table 2. Experimental details 
Dataset used for the 

experiment 

Experiment details 

20-Newsgroups  For this experiment, LDA models were trained on the 20-Newgroups dataset, and the values of K were 

varied within a range of 5 to 40, with an initial step of 5 and a finer step of 2 for the range of 16 to 24. 

Web of Science  LDA models were trained on the Web of Science dataset in this experiment. For the experiment, the values 

of K were varied within a range of 5 to 40, with an initial step of 5 and a finer step of 2 for the range of 31 to 

39.  

Plain text Wikipedia  In the third experiment, LDA models were trained on a corpus consisting of a subset of 2,463 article 

documents from a recently-curated Wikipedia dataset. For the experiment, the values of K were varied 

within a range of 5 to 40, with an initial step of 5 and a finer step of 2 for the range of 10 to 20. 
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3. RESULTS AND DISCUSSION 

The LDA models are evaluated on the proposed metric set to determine the optimal number of topic 

'K'. The evaluation results are presented using the graphs. The graph is compared with the individual metrics 

to show the insufficiency of a single metric in determining the optimal 'K'. 

 

3.1.  20-Newsgroups 

The graphical results of various evaluation metrics for varying values of K in the range of 5 to 40 

with a step of 5 is shown in Figure 2 in appendix. From the graph, high agreement across metrics is observed 

in the range of 16 to 24, based on the respective optimization directions of the metrics. In this range, the 

value of perplexity is low, metrics with minimization as the optimization objective, such as cao_juan_2009, 

are low, and other metrics, such as coherence, combined coherence values (ccv), and topic score, demonstrate 

the highest values, with the peak value at 20, which is also the actual number of topics for the dataset. The 

metric arun_2010 is also favorable in this range as the values are moderately low compared to the values 

across larger values of K, which indicates an increase in divergence and is unfavorable for the optimization 

direction of the metric (minimize). Following the results from the chosen range, Figure 3 in appendix 

demonstrates the results of evaluation metrics across a refined range of 16 to 24 with a step of 2. Similar to 

the trends observed before, the metrics are in high agreement in this range, with the highest agreement at the 

value of K=20, indicating the effectiveness of the method in determining the optimal value of K. Metrics 

such as coherence, combined coherence scores and topic scores demonstrate peak values at the actual value 

of K for the dataset, while other metrics such as perplexity, cao_juan_2009, and arun_2010 are also suitably 

low in favor of the optimization objective. It is to note that while for this dataset, metrics like coherence or 

topic score alone may have been sufficient to determine the optimal K, using the agreement point across 

multiple metrics increases the confidence in choosing the value of K. Further, the benefit of use of multiple 

metrics and the agreement across them is observed for datasets where the actual value of K is unknown. All 

metrics do not fully agree at the same value of K. For this dataset, the method accurately deduces the optimal 

value of K as 20.  

 

3.2.  Web of Science 

The outcomes of diverse evaluation metrics for different values of K ranging from 5 to 40, with 

increments of 5, are shown in Figure 4 in appendix. The graph indicates a substantial concurrence among the 

metrics in the interval of 30 to 40, aligning with their respective optimization objectives. Within this range, 

the perplexity value is minimal, and metrics oriented towards minimization, such as cao_juan_2009, achieve 

their lowest values. On the other hand, metrics like coherence, combined coherence values (ccv), and topic 

score exhibit the highest values, reaching a peak at K=35, which coincides with the actual number of topics 

in the dataset. The metric arun_2010 also performs favorably in this range, displaying moderately low values 

compared to larger K values, indicating an undesirable increase in divergence for the metric's optimization 

objective (minimize). Based on the findings from the selected range, Figure 5 in appendix illustrates the 

evaluation metrics' results within a more refined range, from 31 to 39, with increments of 2. Similar to the 

previous observations, the metrics demonstrate strong agreement within this range, with the highest 

concurrence occurring at K=35, indicating the method's effectiveness in determining the optimal K value. 

Metrics such as coherence, combined coherence scores, and topic scores achieve their peak values at the 

actual K value of the dataset. Furthermore, other metrics like perplexity, cao_juan_2009, and arun_2010 

remain suitably low, aligning with their respective optimization objectives. Although all metrics do not 

ideally agree on the same K value, the method accurately deduces this dataset's optimal K value as 35. 

 

3.3.  Plain text Wikipedia 

The values of the various evaluation metrics for values of K in the range of 5 to 40 with a step of 5 

are shown in the graphs in Figure 6 in appendix. The graphs show that the values of the metrics are in 

agreement (based on the desired optimization direction) in the range of 10 to 20. For this range, the 

perplexity value is low, and the value does not decrease significantly as the number of topics increases, 

indicating a saturation region. The other metrics to be minimized, cao_juan_2009 and arun_2010, are also 

relatively small. While the values of these metrics continue to decrease steadily as the number of topics 

increases, the change in perplexity is minimal, which supports the choice of the specified range. The decision 

for the range is further supported by the coherence measures, which have the highest recorded values from 10 

to 20. As the number of topics increases, the values of these measures decrease rapidly, representing a 

declining topic structure. The combined coherence values and topic score are also relatively high in this 

range, with the increase diminishing for higher K values, indicating more stable and coherent topics from the 

selected range. The metrics values are computed for topics in the range of 10 to 20 with a step of 3 for finer 

tuning, as shown in Figure 7 in appendix. The graphs show that the metrics are in high agreement in the 

range of 14 to 16, where the values of KL-divergence and cosine dissimilarity are considerably low, and the 
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coherence values of produced topics are high, as indicated by all the coherence metrics. Topic scores and 

combined coherence values are also the highest in this local range. Further, the perplexity also agrees with 

the other metrics and is relatively minimal in the constrained range. The benefit of the proposed method is 

visible here, as metrics are not in complete agreement at any point. However, considering the highest 

agreement point, the most optimal value for K for the dataset can be deduced. For the selected corpus, the 

value of K=15 is the most suitable. 

 

3.4.  Comparison with existing work  

The proposed work uses a combination of metrics rather than a single metric. This approach 

provides a comprehensive evaluation as different metrics capture different aspects of the model's 

performance. Perplexity focuses on the model's predictive power, coherence measures the interpretability of 

topics, and topic superiority evaluates the extent to which a topic is distinguishable. The exclusive reliance on 

Cao_Juan _2009 and Arun _2010 methodologies preclude the determination of optimal values for K in our 

topic modeling endeavors. This limitation becomes evident when scrutinizing an expansive array of metrics, 

vividly illustrated in Figures 2 and 3 for experiment 1. A similar trend has been observed in experiment 2, as 

depicted in Figures 4 and 5, thereby underscoring the necessity for combining these metrics to provide a 

more holistic view of the model's effectiveness. Factors such as dataset characteristics, modeling 

assumptions, and algorithmic choices can influence the model's evaluation. Using a diverse set of metrics 

helps to ensure the robustness of the evaluation, as inconsistencies in one metric may be compensated by 

others. Based on this, Table 3 discusses a detailed comparison of the individual metrics with the proposed 

work.  

 

 

Table 3. Comparison of proposed work with the baseline metrics 

 

For K in the 

range 

Perplexity 

(minimize) 

Cao_Juan_ 

2009 

(minimize) 

Arun_2010 

(minimize) 

Coherence 

measures 

(maximize) 

Combined 

coherence 

(maximize) 

Topic 

superiority 

(maximize) 

Result from 

proposed 

framework 

Experiment 1: 

20-Newsgroups 

(K=20) 

10 to 30 

(Figure 2) 

As seen in all 

the graphs, this 

metric shows a 

decreasing 

trend with 

increasing 

topics. Hence, 

this metric 

alone cannot 

depict the 

optimal 'K.' 

25 25 20 20 18 20 

16 to 24 

(Figure 3) 

22 20 20 20 20 

Experiment 2: 

Web of Science 

(K= 35) 

25 to 40 

(Figure 4) 

40 30 33 34 34 35 

31 to 39 

(Figure 5) 

39 33 35 35 35 

Experiment 3: 

plain text 

Wikipedia 

(unknown K) 

5 to 20 

(Figure 6) 

20 20 16 16 18 15 

10 to 20 

(Figure 7) 

18 15 14 16 15 

 

 

4. CONCLUSION AND FUTURE WORK 

This research aims to determine the optimal value of 'K' in training an LDA model while 

maintaining symmetric α and β priors using a grid search approach over the metric set. The methodology 

effectively identifies the optimal metric values by leveraging the consensus among established evaluation 

metrics. Experimental results from three real-world text corpora, two with a known optimal value of 'K' and 

the third with an unknown optimal value, demonstrate the method's ability to accurately match the known 

value and predict a suitable value for the unknown dataset. As a result, the models generated using this 

method exhibit high-quality topic structure. The proposed approach enhances the robustness and reliability of 

LDA models by providing a systematic and objective approach to determine the optimal value of 'K,' 

ensuring improved accuracy and interpretability across many applications for the LDA models. This work 

contributes to advancing the state-of-the-art in LDA model training, providing a valuable resource for 

researchers seeking a principled approach to enhance the performance of their models in diverse real-world 

scenarios. Further, this work can be extended to determine the optimal values of other hyperparameters 'α' 

and 'β.' These hyperparameters can be optimized by evaluating them one at a time or with different values of 

the other hyperparameters. Another prospect is to study the method's effectiveness over non-textual corpora 

comprising the image or audio-visual data or word embeddings extracted from text to devise topic models. 

The results benefit the recent applications of topic models over image data, where topic models are 

incorporated for discovering image topics to aid in classification and image captioning tasks.  
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APPENDIX 

 

   
   
Figure 2. Plots of evaluation metrics against 

the number of topics 'K' for K in the range 

of 5 to 40 (inclusive) for the 20-Newsgroups 

dataset. The shaded region denotes a 

suitable region from which to select K 

Figure 3. Plots of evaluation metrics 

against the number of topics 'K' for K in 

the range of 16 to 24 (inclusive) for the 

20-Newsgroups dataset. The suitable 

region for selecting K is between K=19 

and K=21, with the most reasonable value 

(K=20) denoted by the red dashed line 

Figure 4. Plots of evaluation metrics 

against the number of topics 'K' for K in 

the range of 5 to 40 (inclusive) for the 

Web of Science dataset. The shaded 

region denotes a suitable region from 

which to select K 
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Figure 5. Plots of evaluation metrics against 

the number of topics 'K' for K in the range 

of 31 to 39 (inclusive) for the Web of 

Science dataset. The red dashed line denotes 

the most reasonable value (K=35) 

Figure 6. Plots of evaluation metrics 

against the number of topics 'K' for K in 

the range of 5 to 40 (inclusive) for the 

Wikipedia dataset. The shaded region 

denotes a suitable region from which to 

select K 

Figure 7. Plots of evaluation metrics 

against the number of topics 'K' for K in 

the range of 10 to 20 (inclusive) for the 

Wikipedia dataset. The suitable region for 

selecting K is between K=14 and K=16, 

with the most reasonable value (K=15) 

denoted by the red dashed line 
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