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Abstract 
For a target as it with large-dynamic-change which is still challenging for existing methods to 

perform robust tracking; the sampling-based Bayesian filtering often suffer from computational complexity 
associated with large number of particle demanded and weighing multiple hypotheses. Specifically, this 
work proposes a neural auxiliary Bayesian filtering scheme based on Monte Carlo resampling techniques, 
which to addresses the computational intensity that is intrinsic to all particle filter, including those have 
been modified to overcome the degeneracy of particles. Tracking quality for severe-dynamic experiments 
demonstrate that the neural via compensate the Bayesian filtering error, with high accuracy and intensive 
tracking performance only require lower particles compare with sequential importance resampling 
Bayesian filtering, meanwhile, our method also with strong robustness for low number of particles. 
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1. Introduction 

Robust tracking is an active research topic in computer vision, and it has received 
extensive applications including in intelligent surveillance, robot visual servoing, etc. In terms of 
tracking algorithms, large number of approaches have been proposed in the past decades, such 
as the state-estimation-based Kalman filtering (KF) [1], and sampling-based Bayesian filtering, 
namely particle filtering (PF) [2-4].  

For the scenarios with severe-dynamic motion, the KF was widely replaced by 
sampling-based tracking method such as the PF, which is a multiple-hypothesis solution able to 
estimate arbitrary distributions through evaluation of random samples in a state space, 
therefore, sampling is a vital step for PF, while the traditional sequential Monte Carlo 
sampling(SMCS) methods face the degeneracy of particles problem, which sometimes is very 
severe leads to only a few particles are used to represent the corresponding probability 
distribution.  

Therefore, the extensions to PF, recently, mainly focus on the sampling methods to 
overcome the degeneracy of particles problems and to improve the diversity of particle samples, 
including auxiliary variable PF (AVPF) [5], fission bootstrap PF (FBPF)[6]. In order to further 
improve the sampling efficiency, the famous Markov chain Monte Carlo (MCMC) method have 
obtained the considerable development [7, 8], and the adaptive MCMC [9, 10] have shown 
more superiority in increasing the mixing and acceptance rates, in [11] the authors proposed a 
intensively adaptive MCMC (IA-MCMC) sampler to improve the sampling efficiency, which 
combines a density-grid-based predictive model with the stochastic approximation Monte Carlo 
(SAMC) algorithm [12].  

In this paper, a method with radial basis function neural network (RBFNN) auxiliary 
particle filtering algorithm is proposes, which was motivated by reduces the computational cost 
and improves the robustness for visual tracking, and we apply this neural-particle filtering 
schema in large abrupt motion tracking problems. We first having a description to the Bayesian 
state estimation framework for visual tracking task, then we introduce sampling-based Bayesian 
filtering, which the sampler able to estimate arbitrary distributions through evaluation of random 
samples in a state space. But for the unconstrained abrupt motion tracking problem, a certain 
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number of samples are still required to capture the abrupt motion due to the broadness of the 
whole state space, which stack in favour of computational cost. Therefore we further proposed a 
neural-Bayesian resampling filtering (NBRF) based on lower sampling hypothesis, utilizes the 
Monte Carlo sampling algorithm which with constraint count of particles to similar computation 
of the complex integration conjugate in Bayesian filtering, and the neural network (NN) via by 
compensate the Bayesian filtering error can be overcome the high computational burden 
caused by large number of particles problem, meanwhile the random abrupt  motion cause the 
model unfitable which will directly decrease the tracking performance also be improved by NN. 
Many compare experiments demonstrated that the NBRF can be effective and precise tracking 
largely unconstrained abrupt motion with robust even using less number of sampling particles. 
 
 
2. Resampling-Based Bayesian Filtering for Tracking Problem 

For a target as it with abrupt motion, it is a challenging problem to achieve the robust 
tracking, since the severe dynamic target was difficult represented by a linear approximated-
model. Herein, we introduce the resampling-based Bayesian filtering methods which is to 
enlarge the sampling variance to cover the possible motion uncertainty. 

Sampling technique such as Monte Carlo sequential importance resampling (SIR) [13] 
that is recursively estimates posterior probability density function (PDF) }/{ ):1((t) tp ZX by selecting 

and simulating a statistically relevant subset of possible system states, formally, the goal of SIR 
is to obtain a set of N discrete sample N
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As shown Algorithm 1, we introduce a sequential importance resampling Bayesian 

filtering (SIRBF), which an implementation of the Markov china Monte Carlo resampling 
algorithm for tracking problems. 
 
 

Algorithm 1.  SIRBF for target tracking 
for i=1:N do                                                         // Particles sampling with SIR 
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The SIRBF results are shown in Figure 1, the possible target position is presented by 

sampling particles with their corresponding weights, i.e., the success of the SIRBF highly relies 
on its ability to maintain a good approximation to the posterior distribution, but there exist 
potential primary drawback of sampling approaches for a large number of particles are required 
to guarantee sufficient sampling in the broad state space, and the estimation accuracy is linearly 
with the number of particles, as shown in Figure 2(a) the tracking accuracy will improves with 
the count of particles increase, Figure 2(b) show that the computational cost is fit with cubic 
polynomial based on number of sampling, given by: 
 

5628314 10749.610947.310062.110335.4-)(   xxxxf                    (3) 

 
Therefore, the high computational burden caused by a large number of particles often 

makes the SIRBF infeasible for practical applications. In view of above problems, we proposed 
a method associated with neural networks to aids the resampling-based Bayesian filtering to 
reduce the particle count, while maintaining tracking quality and the computational demands 
remain lower compare with the tradition particle filtering. 

 
 

 
(a) 

 

 
 

 

(b) 
Figure 1. Illustration of the Possible Target Position was Presented by Particles with Number 

100, 1500 Respectively, the Estimation Accuracy of Target Position is Linearly with the Number 
of Particles, (a) result of SIRBF, (b) the density distribution of sampling particles meet normal 

distribution 
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(a) 

 
 

(b) 
 

Figure 2. Illustration of the Estimation Accuracy of Possible Target Position Against to the 
Computational Cost of the SIRBF Algorithm, (a) the estimation result of SIR under different 

number of particles (from 50 to 1500), the tracking accuracy is increased with increasing particle 
number, (b) the computational cost is fitting with quadratic based on number of sampling, the 

cost fit with function f(x)=a3*x
3+a2*x

2+a1*x+a0. 
 

 
3. Neural Network Auxiliary Particle Filtering  

SIRBF algorithm involves the simulation of multiple particles hypotheses, in scene to high 
dimensionality of model-based tracking, the real-time performance remains challenge [14]. The 
solutions in [4] proposes a GPU-accelerated PF for 3D visual tracking application, in [15] aim to 
lower the dimensionality of the problem, and [16] have been modified to minimize the number of 
particles meeting to reduce the computational cost.  

Constrained the counts of particles with low-level hypotheses is the effective resolution 
for lower the computational cost for SIRBF, however, a certain number of samples are still 
necessary to capture the severe dynamic motion due to the broadness of the whole state space, 
so, simply decrease the number of particles inevitable severe deteriorate the tracking accuracy. 
Herein we present a methodology using constrained particles-weights pair to approximate 
estimation the posterior PDF, and the deteriorated performance causes by minimized particles 
was compensated via aided by radial basis function neural network (RBFNN). 

According to the Equation (2) the target position will be optimal approximated by 
selecting and simulating statistically relevant subsets with enough larger numbers, however, 
number-constrained particle subsets will directly leading to deteriorated errors caused by absent 
particles. Therefore, the desired target position should be given by: 

 
)()(ˆ)(ˆ * ttt parXXX                                                                                       (4)  

 
Where tpar )(X refers to deteriorated error causes by Minimized particles. In this paper a 

method to compensate for the errors tpar )(X is proposed to improve the estimation accuracy 

of the SIRBF with lower particles by incorporating the RBFNN into the state estimation stage. As 
appears Figure 3, the RBFNN is embed into resampling-based Bayesian filtering to overcome 
he high computational burden caused by a large number of particles. The algorithm of neural-
Bayesian resampling filtering (NBRF) consists of system model, SIR sampling, state estimation. 

The RBFNN we chosen with one hidden layer which is the most widely spread 
architecture type, and the activation function of the hidden nodes is chosen to be a radial basis 
function, the output of each hidden neuron with Gaussian basis function is defined as: 
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Where nmR G  is the input samples set and mnR 1C  is the central vector with the ith element 

denoted as 1 m
i Rg , 1 m

i Rc ,respectively; 1
ib is the threshold of ith neuron in the hidden 

layer. The output of the network is the linear sum of the outputs of the hidden neurons. So, the 
compensation for the errors for target position estimation is approximated as: 
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Figure 3. The Structure of Neural-Bayesian Resampling Filtering (NBRF) 
 
 
4. Experimental Results 

To test the empirical performance of our tracking approach, we collected several motion 
sequences that involve severe dynamic in various scenarios, which including the low-frame-
rate, sudden dynamic changes, and the sudden dynamic changes with downsampling videos. 
All the experiments we implemented to compare the tracking performance of our tracker, i.e., 
NBRF and SIRBF with different count of particles.  

Scenario 1 low-frame-rate video: We have first investigated how the number of particle 
affects the tracking performance of SIRBF and how can our proposed NBRF to improve the 
tracking precise even with lower particles. In this experiments, the test videos with random 
smooth motion, which a tennis running on the floor, we begin by giving the comparison of the 
tracking performance of SIRPF and NBRF on a low-frame-rate video squash, which is 
downsampled by keeping one frame in every 10 frames from a original video. In order to 
qualitatively evaluating the impact of the count of particles, we test SIRBF with samples 100 and 
1000 scenarios, and the sample frames of result are shown in Figure 4. In Figure 4(a), the 
performance of SIRBF with lower 100 particles is bad, even lost the tracking due to the abrupt 
motions caused by severe frame dropping, whereas when the particles increasing to 1000 the 
result of SIRBF (Figure 4(b)) is accurately tracking the ball after frame 19th(original frame 190), 
but this at the cost of large number of particles, while our NBRF method (Figure 4(c)) can 
effectively dealt with this difficulty using only lower 100 samples, and keeping more accurately 
performed than SIRBF throughout the sequence.  

We then perform a quantitative comparison of tracking accuracy between SIRBF and 
NBRF with different particles to further verify that the use of RBFNN does help on a similarly 
test video.  The comparison is based on the position error in pixels, as follows:  
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Where ),( i
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p yx  is the estimation value of target position by SIRBF or NBRF, ),( i

g
i
g yx is the 

ground-truth position. Tracking error is evaluated as the difference between the measurement 
position and the position estimated by the SIRBF or NBRF. The tracking performance of the 
SIRBF and the NBRF with different particles are compared in Figure 5, the position error of 
NBRF is apparently lower than that of SIRBF with the same particles, as shown the result with 
100 particles. On the other hand, it is worth note that all five experiments demonstrate our 
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NBRF performed higher accuracy than SIRBF even with lower particles, and the SIRBF 
performed same as NBRF but cost more than 10 times number of particles. We believe that the 
improved tracking performance of NBRF is mainly due to the proposal RBFNN to compensate 
the errors during the constrain particles, to cover the possible motion uncertainty will be a direct 
solution to improve the tracking precise, meanwhile, the RBFNN can be well decrease the 
computational cost via by constrain the number of particles and keeping the well performances. 
 
 

 
 

Figure 4. Tracking Performances of the Two Trackers on Low-frame-rate Video (green target 
position, red tracking result), (b) SIRBF with 100 particles, (c)SIRBF with 1000 particles, (d) our 

NBRF with 100 particle 
 

  

(a)                                                              (b) 
 

Figure 5. Tracking Error with Different Particle Conditions, (a) SIRBF, (b) NBRF 
 
 
Scenario 2 bounced ball with dynamic changes: To further qualitatively evaluate the 

tracking performance of our NBRF, where we are shown our experiments are a bounced table 
ball that back and force struck the floor with sudden dynamic changes. The unexpected motion 
dynamic makes the tracking task rather hard by an accurate motion model. Our experiments to 
illustrate the proposed NBRF approach can effectively deal with this difficulty only using lower 
particles. 
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Sample frames are shown in Figure 6, with 100 samples, our NBRF method (Figure 
6(c)) successfully tracked the bouncing pingpong throughout the sequence. Note that, even with 
1000 samples, SIRBF method (Figure 6(b)) performed poor tracking ability, experiencing a 
significant drift of the target object. Moreover, SIRBF (Figure 6(a)) failed to track the table ball in 
most frames using the number of samples lower 150. 

The frame-by-frame comparison of the position error in pixels for those two trackers is 
shown in Figure 7. It can be seen that compared with the SIRBF tracking result, our method 
NBRF is more closer to the ground-truth position, it means that with the aid of RBFNN the 
performance of NBRF is better than the SIRBF, due to the RBFNN can improve the robustness 
of NBRF for severe dynamic changes.  

 
 

 

Figure 6. Tracking Performances of the Two Trackers On Dynamic Changes Video (green 
target position, red tracking result), (b) SIRBF with 150 particles, (c) SIRBF with 1000 particles, 

(d) our NBRF with 150 particles. 
 

     
 
Figure 7. The Tracking Position Error in Pixels of the SIRBF and the NBRF with 100,500 ,1000 

particles, respectivel 
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to qualitatively evaluate the tracking performance of the NBRF and SIRBF on a synthetic 
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SIRBF. The resulr of sample frames are illustrated in Figure 8. It is observed that our approach 
can effectively track the object throughout the sequence even the ball bounced back with 
sudden dynamic changes. On the other hand, SIRBF frequently lose the track and poorly 
perform on this sequence due to the large motion uncertainty. It means that the performance of 
our NBRF is better than the SIRBF, and it also illustrate the neural network plays an important 
role in error compensation to improve the NBRF tracking ability, experiments proved that our 
proposed NBRF with intensive tracking performance for largely unconstrained abrupt motion 
even with less number of particles.  
 

 
Figure 8. Compare the Tracking Results of SIRBF and NBRF with the smae100 Particles on the 
Sudden Dynamic changes with Low-frame-rate video (green target position, red tracking result) 
 
 

For the sake of test our proposed tracker’s robustness for different number of particle, 
many other tracking experiments with the video same as Figure 8, the successful tracking rate 
with two tracker compare in Table 1, which demonstrated that the tracking performance of 
SIRBF is sensitive to the number of particles, it is worth noting that if particles less 50 the SIRBF 
will lost the tracking ability, and with more than 1000 particles the successful tracking rate will 
towards stability 83%. While our NBRF only with lower 100 particles performed good tracking 
which the same as SIRBF with 1000 particles. SO, we can kindly gets conclusion that our 
method is a robust tracker no matter with lower particles could be intensive tracking the 
unconstraint motion. 

 
 

Table 1. The Successful Tracking Rate (×100%) of SIRBF and NBRF with the Different Particles 
on Sudden Dynamic Changes with Low-frame-rate Video 

method 
The number of particles 

50 100 300 500 1000 >1000 
SIRBF lost 0.41 0.57 0.65 0.81 0.83 
NBRF 0.66 0.87 0.96 0.96 0.96 0.96 

 
 
5. Conclusion 

In this paper, a method with  neural network auxiliary seqential importance resampling 
Bayesian filtering (SIRBF) has been presented to improve the performance for robust tracking 
with lower particles. The SIRBF can enlarge the sampling variance to cover the possible motion 
uncertainty, however, the high computational burden caused by a large number of particles 
often makes the SIRBF infeasible for real-time applications. Therefore, a novel method was 
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proposed with RBFNN merge together with  resampling-based Bayesian filtering, and  the 
RBFNN has useful to improve the tracking precise even with less particles. Many compare 
experiments illustrate that our proposed NBRF with robust tracking performance for largely 
unconstrained abrupt motion only require lower number of particles compare with SIRBF, on the 
other hand, our method also with strong adaptive for different number of particle. 
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