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Abstract 
This paper studies the problem of the designing the robust local and centralized fusion Kalman 

filters for multisensor system with uncertain noise variances. Using the minimax robust estimation 
principle, the centralized fusion robust time-varying Kalman filters are presented based on the worst-case 
conservative system with the conservative upper bound of noise variances. A Lyapunov approach is 
proposed for the robustness analysis and their robust accuracy relations are proved. It is proved that the 
robust accuracy of robust centralized fuser is higher than those of robust local Kalman filters. Specially, the 
corresponding steady-state robust local and centralized fusion Kalman filters are also proposed and the 
convergence in a realization between time-varying and steady-state Kalman filters is proved by the 
dynamic error system analysis (DESA) method and dynamic variance error system analysis (DVESA) 
method. A Monte-Carlo simulation example shows the robustness and accuracy relations. 

  
Keywords: multisensor information fusion, centralized fusion, uncertain noise variance, minimax robust 

Kalman filter  
  

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

The aim of the multisensor information fusion is how to combine the local estimators or 
local measurements to obtain the fused estimators, whose accuracy is higher than that of each 
local estimator [1]. For the centralized fusion optimal Kalman filter, all the local measurement 
data are carried to the fusion centre to obtain a globally optimal fused state estimation [2]. 

 The darwback of the Kalman filter is that it only suitable to handle the state estimation 
problmes for systems with exact model parameters and noise variances. However, in many 
application problems, there exist uncertainties of the model parameters and/or noise variances. 
Under these uncertainties the performance of the Kalman filter will degrade [3], and an inexact 
model may cause the filter to diverge. This has motivated the designing of the robust Kalman 
filters, which guarante to have a minimal upper bound of the actual filtering error variances for 
all admissible uncertainties.  

 In order to design the robust Kalman filters for the systems with the model parameters 
uncertainties, two important approaches are the Riccati equation approach [4-6] and the linear 
matrix inequality (LMI) approach [7-9]. The disadvantage of these two approaches is that only 
model parameters are uncertain while the noise variances are assumed to be exactly known. 
The robust Kalman filtering problems for systems with uncertain noise variances are seldom 
considered [10, 11], and the robust information fusion Kalman filter are also seldom researched 
[12, 13]. 

In this paper, using the minimax robust estimation principle, the local and centralized 
fusion robust time-varying and steady-state Kalman filters are presented based on the worst-
case conservative system with the conservative upper bound of noise variances. The 
convergence in a realization between the time-varying and steady-state Kalman filters is 
rigorously proved by the dynamic error system analysis (DESA) method [14] and dynamic 
variance error system analysis (DVESA) method [15]. Furthermore, a Lyapunov equation 
approach is presented for the robustness analysis, which is different from the Riccati equation 
approach and the LMI approach. The concept of the robust accuracy is given and the robust 
accuracy relations are proved, it is proved that the robust accuracy of the centralized fuser is 
higher than that of the local robust Kalman filter. 
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The remainder of this paper is organized as follows. Section 2 gives the problem 
formulation. The robust centralized fusion time-varying Kalman filters are presented in Section 
3.  The robust local and centralized fusion steady-state Kalman filters are presented in Section 
4. The robust accuracy analysis is given in Section 5. The simulation example is given in 
Section 6. The conclusion is proposed in Section 7. 
 
 
2. Problem Formulation 

Consider the muiltisensor linear disceret time-varying system with uncertain noise 
varaince. 

 

         1x t t x t t w t                                                                                   (1) 

 

          , 1, ,i iy t H t x t t t i L                                                                         (2) 

 

Where t represents the discrete time,   nx t R  is the state,   im
iy t R is the 

measurement of the thi subsystem,   rw t R is the input noise,  t is the common disturbance 

noise,   im
i t R  is the measurement noise of the thi subsystem,  t ,  t and  H t are known 

time-varying matrices with appropriate dimensions. L is the number of sensors. 
Assumption 1.  w t ,  t and  i t are uncorrelated white noises with zero means and 

unknown uncertain actual variances  Q t ,  R t and  
i

R t at time t , respectively,  Q t ,  R t

and  
i

R t are known conservative upper bounds of  Q t ,  R t and  
i

R t , satisfying: 

 

           , ,
i i

Q t Q t R t R t R t R t      , 1, ,i L  , t                                             (3) 

 
Assumption 2. The initial state  0x  is independent of  w t ,  t and  iv t and has 

mean value  and unknown uncertain actual variance  0 | 0P which satisfies: 

 

   0 | 0 0 | 0P P                                                                                                      (4) 

 
Where  0 | 0P is a known conservative upper bound of  0 | 0P . 

Assumption 3. The system (1) and (2) is uniformly completely observable and 
completely controllable. 

Defining: 
  
      , 1, ,i iv t t t i L                                                                                       (5) 

 
Where  iv t are white noises with zero means and the conservative and actual 

variances are given as: 
 

     
i ivR t R t R t   ,      

i ivR t R t R t   , 1, ,i L                                         (6) 

 

   
ijvR t R t ,    

ijvR t R t , i j                                                                        (7) 

 
From (3), we have: 
 

   
i iv vR t R t , 1, ,i L  , t                                                                                (8) 
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3. Robust Centralized Fusion Time-varying Kalman Filters 
Introduce the centralized fusion measurement equation: 
 

       c c cy t H t x t v t                                                                                        (9) 

 
With the definition: 
  

      TT T
1 , ,c Ly t y t y t    ,       TT T, ,cH t H t H t    ,       TT T

1 , ,c Lv t v t v t      (10) 

 
And  cv t has the conservative and actual variance matrice cR and cR  as: 

 

i

i

i

v

c
v

v

R R R

R
R

R R

R R R

 





 

 
 
   
 
  



  

 



  ,  

i

i

i

v

c
v

v

R R R

R
R

R R

R R R

 





 

 
 
   
 
  



  

 



                                         (11) 

 
Therefore from (3) and (8), accroding to the Lemma 1 and Lemma 2 in Appendix, we obtain: 
  

   c cR t R t                                                                                                         (12) 

 
Based on the worst-case conservative system (1) and (9) with Assumptions 1-3 and 

conservative upper bounds  Q t and  cR t , the globally optimal centralized fused time-varying 

robust Kalman filters are given as: 
 

         ˆ ˆ| 1 | 1c c c c cx t t t x t t K t y t                                                                 (13) 

 

       = 1c n c ct I K t H t t                                                                              (14) 

 

              1T T= | 1 | 1c c c c c c cK t P t t H t H t P t t H t R t


                                         (15) 

 

             T T1| |c cP t t t P t t t t Q t t                                                       (16) 

 
The fused conservative filtering error variance  |cP t t is given as: 

 

       | | 1c n c c cP t t I K t H t P t t                                                                         (17) 

 
It can be rewritten as the Lyapunov equation: 
  

           

               

T

TT T

| 1 | 1

1 1 1

c c c c n c c

n c c c c c

P t t t P t t t t H t

t Q t t I K t H t K t R t K t

   

 

      

       
                 (18) 

 
With the initial values  ˆ 0 | 0 ,cx  and    0 | 0 0 | 0cP P , where nI is the n n identity 

matrix. 
The actual prediction and filtering errors are obtained as: 
 

             ˆ1| 1 1| 1 |c c cx t t x t x t t t x t t t w t                                           (19) 

               ˆ| | | 1c c n c c c c cx t t x t x t t I K t H t x t t K t v t                                (20) 
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Substituting (19) into (20) yields: 
  

                 | 1 | 1 1c c c n c c c cx t t t x t t I K t H t t w t K t v t                       (21) 

 
The actual fused filtering error variance      Τ| Ε | |c c cP t t x t t x t t     , according to (21), we 

have: 
 

           

               

T

TT T

| 1 | 1

1 1 1

c c c c n c c

n c c c c c

P t t t P t t t t H t

t Q t t I K t H t K t R t K t

   

 

      

       
                 (22) 

 
With the initial value    0 | 0 0 | 0cP P . 

Theorem 1. For multisensor uncertain system (1) and (9) with Assumptions 1-3, the 
actual centralized fusion time-varying Kalman filters with the conservative upper bound  Q t ,

 cR t and  0 | 0cP are robust in the sense that for all admissible actual variances    , cQ t R t and 

 0 | 0cP satisfying (3), (4) and (12), for arbitrary time t , we have: 

 

   | |c cP t t P t t                                                                                                  (23) 

 
And  |cP t t is the minimal upper bound of  |cP t t for all admissible uncertainties of noise 

variances. We call the actual fused Kalman filters as the robust centralized fusion Kalman filters. 
Proof. Defining      | | |c c cP t t P t t P t t   , subtracting (22) from (18) yields the 

Lyapunov equation. 
 

         T| 1| 1c c c c cP t t t P t t t U t                                                             (24) 

 

                  
        

TT

T

1 1 1 1c n c c n c c

c c c c

U t t t t Q t Q t t I K t H t

K t R t R t K t

                 

 
  (25) 

 
Applying (3), (12) and (25) yields that   0cU t  , and from (4) we have: 

 

         0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0c c cP P P P P                                                      (26) 

 
Hence from (24), we have  1|1 0cP  . Applying the mathematical induction method yields

 | 0cP t t  , for all time t , i.e. the inequality (23) holds. Taking        , c cQ t Q t R t R t  and

   0 | 0 0 | 0P P , then comparing (18) with (22), we have    | |c cP t t P t t . For arbitrary other 

upper bound  * |cP t t , we have      *| | |c c cP t t P t t P t t   which yields that  |cP t t is the minimal 

upper bound of  |cP t t . The proof is completed. 

Corollary 1. For uncertain multisensor system (1) and (2) with Assumptions 1-3 and 
conservative upper bounds  Q t and  

ivR t , similar to the robust centralized fusion time-varying 

Kalman filters, the robust local time-varying Kalman filters are given by: 
 

         ˆ ˆ| 1| 1i i i i ix t t t x t t K t y t     , 1, ,i L                                                    (27) 

       = 1i n it I K t H t t     ,        T 1= | 1
ii iK t P t t H t R t
                         (28) 
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         T| 1
i ii vR t H t P t t H t R t                                                                    (29) 

 

             T T1| |i iP t t t P t t t t Q t t                                                       (30) 

 

       | | 1i n i iP t t I K t H t P t t                                                                         (31) 

 
The conservative local filtering error variance  |iP t t can be rewritten as the Lyapunov 

equation [2]. 
 

                 

         

T T

T T

| 1 | 1 1 1 1

i

i i i i n i

n i i v i

P t t t P t t t t t t Q t t

I K t H t K t R t K t

               

    
     (32) 

 
With the initial values    0 | 0 0 | 0iP P . And the actual  filtering error variances are given by the 

Lyapunov equations. 
 

                 

         

T T

T T

| 1 | 1 1 1 1

i

i i i i n i

n i i v i

P t t t P t t t t t t Q t t

I K t H t K t R t K t

               

    
      (33) 

 
Similarly, the local time-varying Kalman filters are also robust, i.e., 
 

   | |i iP t t P t t , 1, ,i L                                                                                     (34) 

 
 

4. Robust Local and Centralized Fusion Steady-state Kalman Filters 
Theorem 2. For multisensor uncertain time-invariant system (1) and (9) with 

Assumption 1 and 3, where  t  ,  t  ,  H t H ,      , ,
i i

Q t Q R t R R t R      ,and 

 Q t Q ,  R t R  ,  
i i

R t R  are all the constant matrices, then the actual centralized fusion 

steady-state Kalman filters are given by: 
 

     ˆ ˆ| 1| 1s s
c c c c cx t t x t t K y t                                                                           (35) 

 

 =c n c cI K H  , 
1T T=c c c c c c cK H H H R 


                                                        (36) 

 
T T

c c Q        ,   =c n c c cP I K H                                                                  (37) 

 
The prediction error variance c satisfies the steady-state Riccati equation: 

 

  1T T T T=c c c c c c c c c cH H H R H Q        
     

                                               (38) 

 
Where the superscript s denotes “steady-state”, the fused conservative filtering error 

variance cP is given as: 

 

   TT T T
c c c c n c c n c c c c cP P H Q I K H K R K                                                 (39) 

The fused actual filtering error variance cP is given as: 
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   TT T T
c c c c n c c n c c c c cP P H Q I K H K R K                                                 (40) 

 
The actual centralized fusion steady-state Kalman filters (35) are robust in the sense 

that for all admissible uncertainties of noise variances Q and 
ivR satisfying (3) and (8), we have: 

 

c cP P                                                                                                                  (41) 

 
And cP is the minimal upper bound of cP . 

Proof. As t  , taking the limit operations for (13)-(18), (22) and (23), we obtain (35)-

(41). Taking , c cQ Q R R  , from (39) and (40), we have c cP P . If cP is arbitrary other upper 

bound of cP  for all admissible Q and cR satisfying , c cQ Q R R  , then we have c c cP P P  , which 

yields that cP is minimal upper bound of cP . The proof is completed. 

Similarly, the actual local steady-state Kalman filters are given by: 
 

     ˆ ˆ| 1| 1s s
i i i i ix t t x t t K y t    , 1, ,i L                                                              (42) 

 

 =i n iI K H  ,   1T T=
ii i i vK H H H R 


 ,  i n i iP I K H                                     (43) 

 
The prediction error variance i satisfies the steady-state Riccati equation. 

 

  1T T T T=
ii i i i v iH H H R H Q        

     
                                                 (44) 

 
The conservative and actual local filtering error variances satisfy the steady-state 

Lyapunov equations. 
 

   TT T T

ii i i i n i n i i v iP P Q I K H K R K                                                       (45) 

 

   TT T T

ii i i i n i n i i v iP P Q I K H K R K                                                     (46) 

 
The actual local steady-state Kalman filters (42) are robust, i.e., 
 

i iP P , 1, ,i L                                                                                                   (47) 

 
And iP is the minimal upper bound of iP .  

Theorem 3. Under the conditions of Theorem 2, and assume that the measurements

 iy t , 1, ,i L  are bounded, then the robust time-varying and steady-state Kalman filters

 ˆ |ix t t and  ˆ |s
ix t t ,  ˆ |cx t t and  ˆ |s

cx t t given by (27) and (42), (13) and (35) have each other 

the convergence in a realization, such that: 
 

   ˆ ˆ| | 0s
i ix t t x t t    , as t  , i.a.r                                                                     (48) 

 

   ˆ ˆ| | 0s
c cx t t x t t    , as t  , i.a.r                                                                (49) 

 
Where the notation “i.a.r” denotes the convergence in a realization [15], and we have 

the convergence of variances. 

 |i iP t t P ,  |i iP t t P , as t  , 1, ,i L                                                    (50) 
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 |c cP t t P ,  |c cP t t P , as t                                                                    (51) 

 
Proof. According to the complete observability and complete controllability of each 

subsystem, the time-varying local Kalman filters (27) have the convergence that [16]: 
 

 | 1i iP t t   , as t  , 1, ,i L                                                                         (52) 

 
From (28) and (31), we have: 
 

 i it  ,  i iK t K ,  |i iP t t P , as t  , 1, ,i L                                       (53) 

 
Setting    i i it t    ,    i i iK t K K t  in (27), applying (53) yields   0i t 

  0iK t  , as t  . Subtracting (42) from (27), and defining      ˆ ˆ| |s
i i it x t t x t t   , we 

have: 
 

     1i i i it t u t                                                                                            (54) 

 
With          ˆ 1| 1i i i i iu t t x t t K t y t     . Noting that  i t is uniformly 

asymptotically stable [17], and    i iK t y t is bounded, applying Lemma 4 to (27) yields the 

boundedness of  ˆ |ix t t . Hence we have   0iu t  . Applying Lemma 4 to (54), noting that i is 

a stable matrix, so it is also uniformly asymptotically stable, hence   0i t  , i.e. the 

convergence (48) holds. The convergence of (49) can be proved similarly.  
From (33) and (46), defining    |i i it P t t P    yield the Lyapunov equation. 

 

     T1i i i i it t U t                                                                                     (55) 

 

         
       

       

TT T

T T T

T

1 | 1

1 | 1

i

i

i n i n i i v i

n i n i i v i i i i

i i i i i

U t t Q I K t H K t R K t

Q I K H K R K P t t t

t P t t t t

    

      

   

         
      

   

          (56) 

 
From (33), noting that  i t is uniformly asymptotically stable, applying  i iK t K ,

  0i t  and Lemma 3 yields  1| 1iP t t  is bounded. From (56) yields that   0iU t  . 

Applying Lemma 3 to (55) yields   0i t  , as t  , i.e.,  |i iP t t P  holds. Similarly, we can 

prove (51) holds. The proof is completed. 
 
 

5. The Accuracy Analysis 
Definition 1. The trace  tr |P t t of the upper bound  |P t t of the actual filtering error 

variances  |P t t for all admissible uncertainties is called the robust accuracy or global accuracy 

of a robust Kalman filter, and  tr |P t t is called as its actual accuracy. 

From this definition, the smaller  tr |P t t or  tr |P t t means the higher robust accuracy 

or actual accuracy. The robust accuracy gives the lowest bound of all possible actual accuracies 
yielded from the uncertainties of noise variances. 

Theorem 4. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the 
accuracy comparison of the local and fused robust Kalman filters is given by: 
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   | | ,i iP t t P t t 1, ,i L                                                                                   (57) 

 

     | | | ,c c iP t t P t t P t t  1, ,i L                                                                     (58) 

 

   tr | tr |i iP t t P t t ,      tr | tr | tr |c c iP t t P t t P t t  , 1, ,i L                             (59) 

 
, , 1, , ,i i c c iP P P P P i L                                                                                     (60) 

 
tr tri iP P , 1, , ,i L  tr tr trc c iP P P                                                                    (61) 

 
Proof. According to the robustness (23) and (34), we have (57) and the first inequality 

of  (58). The second inequality of (58) has been proven in [18]. Taking the trace operations for 
(57) and (58) yields the inequalities (59). As t  , taking the limit operations for (57), (58) and 
(59) yields (60) and (61). The proof is completed. 

From the inequalities (59), we can see that all admissible actual traces  tr |iP t t  and

 tr |cP t t  are globally controlled by the upper bound  tr |iP t t and  tr |cP t t , respectively, and 

the robust accuracy of the centralized robust fuser is higher than that of each local robust 
Kalman filter. 

 
 

6. Similation Example 
Consider a three-sensor time-invariant tracking system with uncertain noise variances. 
 

     1x t x t w t    ,         , 1, 2,3i iy t Hx t t t i                                  (62) 

 
2

0 0

0

1 0.5
,

0 1

T

T


 

  
    
   

, 2H I                                                                         (63) 

 

Where 0 0.25T  is the sampled period,       T

1 2,x t x t x t    is the state,  1x t and  2x t

are the position and velocity of target at time 0tT .  w t ,  t and  i t are independent Gaussion 

white noises with zero mean and unknown uncertain actual variances Q , R and 
i

R respectively.  

In the simulation, we take 1Q  , 0.8Q  , diag(1.5,2.5)R  , diag(1, 2)R  ,
1

diag(3.6,2.5)R  , 

1
diag(3,1.8)R  ,

2
diag(8,0.36)R  ,

2
diag(6,0.25)R  ,

3
diag(0.5, 2.8)R  ,

3
diag(0.38, 2)R  , the 

initial values    T
0 0 0x  , 0  ,     20 | 0 diag(1.1,1.2), 0 | 0P P I  . 

The comparisons of the filtering error variance matrices and their traces of the robust 
steady-state local and centralized fusion Kalman filters are shown in Table 1 and Table 2. 
These matrices and their traces verify the accuracy relations (60)-(61). 

The traces of the conservative and actual robust filtering error variances are compared 
in Figure 1. We see that the traces of the local and fused robust time-varying Kalman filters 
quickly converge to these of the corresponding steady-state Kalman filters, which show the 
robust accuracy relations (59) and (61) hold. 
 
 
 
 
 

Table 1. The Conservative and Actual Accuracy Comparison of iP and iP 1, 2,3,i c  

1P  2P  3P  cP  
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0 10 20 30 40 50 60 70 80 90 100
0.2 

0.4 

0.6 

0.8 

1

1.2 

1.4 

1.6 

1.8 

t/step

2trP

1trP

2trP

3trP

1trP

tr cP

3trP

tr cP

0.8247 0.3416

0.3416 0.3750

 
 
 

 
1.0554 0.3278

0.3278 0.3405

 
 
 

 
0.4360 0.2383

0.2383 0.3233

 
 
 

 
0.3771 0.1956

0.1956 0.2805

 
 
 

 

1P  2P  3P  cP  

0.6442 0.2669

0.2669 0.2956

 
 
 

 
0.7994 0.2545

0.2545 0.2689

 
 
 

 
0.3119 0.1770

0.1770 0.2495

 
 
 

 
0.2726 0.1478

0.1478 0.2191

 
 
 

 

 
 

Table 2. The Conservative and Actual Accuracy Comparison of tr iP , tr iP , 1, 2,3,i c  

1tr P , 1tr P  2tr P , 2tr P  3tr P , 3tr P  tr cP , tr cP  

1.1998,0.9398 1.3959,1.0683 0.7593,0.5613 0.6576,0.4917 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. The Traces of the Conservative and Actual Local and Fused Kalman Filters 
 
 
In order to verify the above theoretical accuracy relations, taking 200  Monte Carlo 

simulation runs, the mean square error (MSE) values at time t of local or fused robust Kalman 
filters are defined as: 

 

                   Τ

1

1
ˆ ˆMSE | |j j j j

j

t x t x t t x t x t t


   

   , 1,2,3,c                      (64) 

 

Where    jx t  or    ˆ |jx t t denotes the thj realization of  x t or  ˆ |x t t . 

According to the ergodicity [19], we have: 
 

 MSE trt P  , as ,t   ,  1,2,3,c                                                  (65) 

 
The MSE curves of the local and fused time-varying robust Kalman filters are shown in 

Figure 2, which verify the accuracy relations (59) and (61), and verify the ergodicity (65). 
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Figure 2. The Comparison of  MSE t and trP , 1,2,3,c   

 
 

7. Conclusion 
For multisensor system with uncertain noise variances, using the minimax robust 

estimation principle, the lcoal and centralized fusion robust Kalman time-varying Kalman filters 
are presented. Based on the Lyapunov equation approach, their robustness are proved and 
their robust accuracy relations are also proved. It is proved that the robust accruacies of the 
centralized fusion Kalman filters are higher than those of the local robust Kalman filters. The 
convergence problem of the robust local and centralized fusion time-varying and steady-state 
Kalman filters is proved by the dynamic error system analysis (DESA) method and the dynamic 
varaince error system analysis (DVESA) method. This extension of this paper to systems with 
uncertain noise variances and model parameters is under study. 
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Appendix 

Lemma 1. Let be the r r positive semi-definite matrix, i.e. 0  , then the following 
rL rL matrix  is also positive semi-definite, i.e., 

 

0

rL rL



 


 


 
   
  



  



                                                                                    (A.1) 

 
Proof. Consider the characteristic polynomial of  . 
 

r

r
rL

r

I

I
I

I



   
   

 

   




 





   



                                                        (A.2) 

 
Adding all the other columns to the first column yields: 
 

r

r r
rL

r r

L I

L I I
I

L I I



   
    

 


    


 

 

 



  



                                                        (A.3) 

 
Subtracting the first row from each row starting off with the second row to the thL row 

yields: 
 

 10 0

0 0

r

Lr
rL r r

r

L I

I
I L I I

I



   


    








    





   



                              (A.4) 

 
Which yields the characteristic equation: 
 

1
0

L

rL r rI L I I                                                                                  (A.5) 
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Its all eigenvalues are determined by: 
 

0,rL I    0rI                                                                                     (A.6) 

 
Since 0  , then 0L  , so that L has all the eigenvalues 0i  , 1, ,i r  which are 

also the eigenvalues of  . The other eigenvalues of  are determined by
1

0
L

rI   , i.e. 

   1
0

r L   , which yields all the other eigenvalues of  are 0i  , 1, ,i r rL   . Therefore all 

eigenvalues i of  are non-negative, i.e., 0  . The proof is completed. 

Lemma 2. Let iR be the i im m positive semi-definite matrix, i.e. 0iR  , the following

m m block-diagonal matrix R is also positive semi-definite, i.e., 

 
 1diag , 0LR R R                                                                                         (A.7) 

 
With 1 Lm m m   . 

Lemma 3. [14] Consider the time-varying Lyapunov equation. 
 

         T
1 21P t F t P t F t U t                                                                            (A.8) 

 
Where 0t  , the output  P t and the input  U t are the n n matrices, and the n n

matrices  1F t and  2F t are uniformly asymptotically stable, i.e., there exist constants 0 1j 

and 0jc  such that: 

 

 , , 0, 1, 2t i
j j jF t i c t i j                                                                           (A.9) 

 
Where the notation denotes the norm of matrix,        , 2 1 ,j j j jF t i F t F t F i  

 ,j nF i i I . If  U t is bounded, then  P t is bounded. If   0U t  , then   0P t  , as t  . 

Notice that  U t is called to be bounded, if  U t c (constant), for arbitrary 0t  . 

Lemma 4. [15] Consider a dynamic error system. 
 

       1t F t t u t                                                                                           (A.10) 

 
Where 0t  ,   nt R  ,   nu t R , and  F t is uniformly asymptotically stable. If  u t is 

bounded, then  t is bounded. If   0u t  , then   0t  , as t  . 

 


