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Abstract

For the multisensor system with uncertain noise variances, using the minimax robust estimation
principle, the local and weighted measurement fusion robust time-varying Kalman predictors are presented
based on the worst-case conservative system with the conservative upper bound of noise variances. The
actual prediction error variances are guaranteed to have a minimal upper bound for all admissible
uncertainties of noise variances. A Lyapunov approach is proposed for the robustness analysis and their
robust accuracy relations are proved. It is proved that the robust accuracy of weighted measurement
robust fuser is higher than that of each local robust Kalman predictor. Specially, the corresponding steady-
state robust local and weighted measurement fusion Kalman predictors are also proposed and the
convergence in a realization between time-varying and steady-state Kalman predictors is proved by the
dynamic error system analysis (DESA) method. A Monte-Carlo simulation example shows the
effectiveness of the robustness and accuracy relations.
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1. Introduction

Multisensor information fusion is widely applied to many filelds including defence, target
tracking, GPS position and so on [1, 2]. Its aim is to combine the local estimators or local
measurements to obtain the fused estimators of the system state, whose accuracy is higher
than that of each local estimator. Kalman filtering approach is the basic tool of the information
fusion with the assumption that the model parameters and noise variances are exactly known.
When there exist uncertainties, the performance of the Kalman filter can be very poor [3], and
an inexact model may cause the divergent filter. In order to handle this problem, various studies
on designing of the robust Kalman filters have been reported [4-6]. The robust Kalman filters
guarantee to have a minimal upper bound of the actual filtering error variances for all admissible
uncertainties.

For the systems with the model parameters uncertainties, there are two important
approaches for designing the robust Kalman filters such that the Riccati equation approach [4],
[7-8] and the linear matrix inequality (LMI) approach [5-6], [9]. The disadvantage of these two
approaches is that only model parameters are uncertain while the noise variances are assumed
to be exactly known. The robust Kalman filtering problems for systems with uncertain noise
variances are seldom considered [10, 11], and the robust information fusion Kalman filter are
also seldom researched [12, 13].

For information fusion based on the Kalman filtering, there exist two methodologies [14,
15], the state and measurement fusion methods, the former method can give a fused state
estimator by combing or weighting the local state estimators, while the later fusion method is to
weight all the local measurement to obtain a fused measurement equation, and then to obtain
global optimal state estimator based on a single Kalman filter.

In this paper, using the minimax robust estimation principle, the local and weighted
measurement fusion robust time-varying and steady-state Kalman predictors are presented
based on the worst-case conservative system with the conservative upper bound of noise
variances. The convergence in a realization between the time-varying and steady-state Kalman
predictors is rigorously proved by the dynamic error system analysis (DESA) method [16, 17].
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Furthermore, a Lyapunov equation approach is presented for the robustness analysis, which is
different from the Riccati equation approach and the LMI approach. The concept of the robust
accuracy is given and the robust accuracy relations are proved, it is proved that the robust
accuracy of the robust weighed measurement fusion Kalman predictor is higher than that of
each local robust Kalman predictor.

The remainder of this paper is organized as follows. Section 2 gives problem
formulation. The robust weighted measurement fusion time-varying Kalman predictors are
presented in Section 3. The robust local and fused steady-state Kalman predictors are
presented in Section 4. The robust accuracy analysis is given in Section 5. The simulation
example is given in Section 6. The conclusion is proposed in Section 7.

2. Problem Formulation
Consider muiltisensor linear disceret time-varying system with uncertain noise varaince
and identical measurement matrix.

X(t+1) = @(t)x(t)+ I (t)w(t) )
i (8) = H(O)x () +7(t)+ & (t)i=1-,L &)

Where trepresents the discrete time, x(t)eR" is the state,y, (t)eR"is the
measurement of theithsubsystem, w(t)eR"is the input noise, 7(t)eR"is the common
disturbance noise, & (t)eR™is the measurement noise of theithsubsystem, ®(t),7"(t)and
H (t) are known time-varying matrices with appropriate dimensions. L is the number of sensors.

Assumption 1. w(t), »(t)and¢ (t) are uncorrelated white noises with zero means and
unknown uncertain actual variancesQ(t), R, (t)and R, (t)at timet, respectively, Q(t),R,(t)

and R, (t) are known conservative upper bounds of Q(t),R,(t)and R, (t), satisfying:

Q(1)<Q(1).R, (t) <R, (t),R. (1) <R, (t),i =1L, vt @3)

Assumption 2. The initial state x(0) is independent of w(t), »(t)andv,(t)and has

mean value x and unknown uncertain actual variance P(0]0)which satisfies:
P(0]0)<P(0]0) 4)

Where P(0]0)is a known conservative upper bound of 5(0 10).

Assumption 3. The system (1) and (2) is uniformly completely observable and
completely controllable.
Defining:

vi(t)=n(t)+&(t),i=1-,L (5)

Where v, (t) are white noises with zero means, the conservative and actual variances
and cross-covariances are given as;

R, (t)=R,(t)+R. (1), R, (t)=R, (t)+R. (t),i=1-,L (6)

RV” (t)= R” (t)’ Iivu' (t)=§77 (t)'i # J (7)
From (3), we have:
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R, (t)<R, (t),i=1--L,Vvt (8)

3. Robust Weighted Measurement Fusion Time-varying Kalman Predictors
Introduce the centralized fusion measurement equation.

Ye (1) = He (1) x(t) +ve (1) =eH (t) x(t) +ve (1) ©)

With the definitions:

Ve (1) =[y (0) WL (O] He () =[HT (1) HT (1)]

e =[l,,1,] (10)

And the fused noise v, (t) respectively has the conservative and actual variances as:

R, R, R, R, R, -~ R,
R . . _ R .o
R =| . . R= . - = (11)
o ROOR . R, R,
R, R, R, R, R, R,

Applying the weighted least square method [18], from (9), we have the conservative
weighted fusion measurement equation.

Yu (t) =H (t)X(t)+VM (t) (12)

Whereyy,, (t)is the conservative weighted fusion measurement andv, (t)is the

conservative fused measurement white noise with conservative variance R, (t), such that:

yu (1) = €"R*(t)e) "e" R (1) Y. (1) (13)
vy (1) = "R (t)e) "e R (v, (1) (14)
Ry (t) = €"R*(t)e)™ (15)

Based on the worst-case conservative system (1) and (12) with Assumptions 1-3 and
conservative upper bounds Q(t)andR, (t), the conservative optimal weighted measurement
fused time-varying Kalman predictors X,, (t+N |t), N >1are given as.

When N =1, the one-step predictor is given as:

R (E+118) =4, ()%, (1E-0)+ K, (D33 (1) (16)
¥y ()=2(t) =Ky (H (1) (17)
Ky (1)=@ ()R, (tI=DHT ([ H (1)R, (tIt-DHT (1) +R, ()] (18)
P (t+118) =, (P, (L1E-1)] () + T (OQ T (1) +Ky (R, (KL () (19)
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with X, (110)=x, B, (110)=P(0]0), and B, (t+1|t)satisfies the Riccati equation.

P, (t+1|t)=¢(t)[PM (tIt=1)—=P, (tIt=1)HT (t)(H ()R, (t[t-1)HT (t)+R,, (1))

xPy (tIt=1)]@" (t)+ I ()Q(t) I (1) .
When N > 2, the multi-step predictor is given by:
Sy (t+N[t)=@(t+ N, t+1) R, (t+1]t),N>2 (21)
With the definition @(t,i)=@(t-1)@(t-2)---@(i),@(t,t)=1,.
The conservative N -step prediction error variance B, (t+ N |t)is given by:
P, (t+N[t)=@(t+N,t+1)P, (t+1]t)@" (t+N,t+1)
(22)

£ DNt IO (t j-1)Q(t j 1) 7T (t+ j 1)@ (t+N,t+ )

j=2
Substituting the actual measurement vy, (t) into the conservative weighted measurement
fusion Kalamn predictors (16) and (21), we obtain the actual one-step and N -step time-varying

Kalman predictors.
The actual prediction errors are given as:

K (t+1[t) = x(t+1) =X, (t+1]t) =@ (t+1) %, (tIt)+ L (t)w(t) (23)
R (£18) = X(0)= %, (L1 =[1, ~ Ky (OH (O] 8 (£1E-2) =K, (v, (1 (24)
Substituting (24) into (23) yields:

Xy (t+11t) =, ()%, (tt=1)+ 7 (w(t) =Ky (t)vy (1) (25)

The actual weighted measurement fused one-step prediction error variance satisfies the
Lyapunov equation.

P, (t+1]t) =, ()P, (t1t-2)¥y ()+ T ()Q(t) I (t)+K,, ()R, (1)K} (1) (26)
With the initial value P, (1]0) =P (0]0), and from (4), we have:

Ry (110) <P, (1]0) (27)
Where R, (t)is the actual variance of v,, (t), and from (14) and (15) we have:

Ru (1) = ("R (D) "e"RIDR. (DR (De(e R (e) (28)
Ry (1) <R, (1) (29)

Iterating (1), we have the non-recursive formula:
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X(t+N)=@(t+ N, t+D)x(t+1)+ > @(t+ N (i~ Lw(i-1),N >2 (30)

i=t+2
The actual prediction errors are given as:

Sy (LEN ) =x(t+N) =X, (t+N]t)
=@ (t+N,t+1)%, (t+1[t)+ HZN: @ (t+ N, (i-1)w(i-1)" N>2 (31)

i=t+2
So we have the actual N step weighted measurement fused prediction error variances.

P, (t+N[t)=@(t+N,t+1)B, (t+1|t)@" (t+N,t+1)
S DN )t T-DQ(t+ -1 I (t+ ]-1)@ (14Nt ]) (32)

i=2

Theorem 1. For multisensor uncertain system (1) and (12) with Assumptions 1-3, the
actual weighted measurement fusion time-varying Kalman predictors are robust in the sense

that for all admissible actual variances (3(t),l5vi (t)and B, (1/0)satisfying (3) and (4), for
arbitrary timet, we have:

Py (t+N[t)<P, (t+N][t), N=>1 (33)

And B, (t+N|t)is the minimal upper bound of B, (t+ N |t)for all admissible uncertainties of

noise variances. We call the actual fused Kalman predictors as the robust weighted
measurement fusion Kalman predictors.

Proof. When N =1, defining 4R, (t+1[t)=P, (t+1|t)— P, (t+1]t), subtracting (26) from
(19) yields the Lyapunov equation.

AR, (t+1]t) =¥, (1) 4R, (t[t-1)%y (1) +4, (1) (34)

4, ()= (O)(Q1)-Q(U) 1 (1) + Ky (1) (Ru (1) =Ry (1)) K (1) (35)
Applying (3), (29) and (35) yields that 4, (t)> 0, and from (4) we have:

4P, (1]0)=PR, (1]0)-R, (1]0)=P(0]0)-P(0]0)>0 (36)

Hence from (34), we have 4P, (2|1)>0. Applying the mathematical induction method yields
4P, (t+1]t) =0, for all timet, i.e. the inequality (33) holds for N =1. WhenN >2, Defining
AR, (t+N[t)="P, (t+N[t)-B, (t+ N |t), subtracting (32) from (22) yields:

AR, (t+N[t) =@ (t+N,t+1)(P, (t+1]t)=R, (t+1[t))@" (t+N,t+1)
+i¢(t+N,t+ j)F(t+j—l)<Q(t+j—1)—(§(t+j—l))FT(t+j—1)<15T(t+N,t+ i) 37)

j=2
Applying the robustness of the one-step predictor (33) and (3), we get 4P, (t+N |t)20,
therefore (33) holds for N >2. TakingQ(t)=Q(t),R, (t)=R, (t)and B, (1/0)="P, (1/0), then

comparing (19) with (26) and (22) with (37), we haveP, (t+N|[t)=PR, (t+N[t),N >1. For
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arbitrary other upper bound P, (t+N [t), we have B, (t+N[t)=R, (t+N[t)<P, (t+N[t) which

yields that B, (t+ N [t)is the minimal upper bound of B, (t+N|t). The proof is completed.
Corollary 1. For uncertain multisensor system (1) and (2) with Assumptions 1-3 and
conservative upper bounds Q(t)andR, (t), similar to the robust weighted measurement fusion

time-varying Kalman predictors, the robust local time-varying Kalman one-step and multi-step
predictors are given by:

L (t+1t) =% ()% (t[t-1)+ K (t)y; (t),i=1--,L (38)
7 (1)=2(t) =K () H(1) . K ()= ()R (tIt-1)HT ()Q.'(t) (39)
Q. (t)=H(t)P(t|t-1)HT(t)+R;(t) (40)

With the initial value %, (1] 0) = »,P,(1]0) = P(0|0), and we have the Riccati equation.

-1

Pi(t+1|t):cD(t)[Pi(t|t—1)—R(t|t—1)HT(t)(H(t)PM (tIt-)HT (1)+R, (1))

xH (1P (t[t-1)@" (t) ]+ 7 ()Q(t) I (t)

(41)

The conservative and the actual one-step prediction error variances satisfy the
Lyapunov equations.

P(t+1]t)=%; ()P (t|t-1) (t)+ 7 (1)Q(t) T (t)+ K, ()R (t) K/ (t) (42)
R(E+11t) = (R (tIt-2)#7 (1) + 7 (OQ() 77 (1) + K ()R (KT (1) (43)

With the initial values P (1| 0)=P(0]0), P,(1/0)=P(0]0).
The conservative local optimal time-varying Kalman multi-step predictors are given by:

S (t+N[t)=@(t+N,t+1) % (t+1]t),i=1---,L,N>2 (44)
The conservative optimal N step prediction error variances P (t +N |t) are given by:

P(t+N|t)=@(t+N,t+1)P(t+1[t)@" (t+N,t+1)

N (45)
+Y @(t+Nt+8) (t+5-1)Q(t+s-1) 7" (t+s-1)@" (t+N,t+5)
s=2
The actual N step prediction error variances are give by:
P(t+N|t)=@(t+N,t+1)P (t+1]t)@" (t+N,t+1)
N _ (46)
+Y @(t+Nt+s) (t+5-1)Q(t+s-1) /" (t+s-1)@T (t+N,t+s)

Il
N

S

Similarly, the local time-varying Kalman one-step and multi-step predictors are also
robust, i.e.,

(t+1]t) t+1t), i=1---,L (47)

P <R
P(t+N[t)<P(t+N|t),N=2,i=1.--L (48)
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And P, (t+N [t)is the minimal upper bound of B (t+N|[t),N>1.

4. Robust Local and Fused Steady-state Kalman Predictors
Theorem 2. For multisensor uncertain time-invariant system (1) and (12) with

Assumptions 1-3, where @(t)=@,7(t)=7",H(t)=H,Q(t)=Q,R,(t)=R,R. (t)=R., and

Q(t)=Q.R,(t)=R,, R. (t)=R, are all constant matrices. Assume that the measurements y, (t)

,i=1---,Lare bounded, then the actual weighted measurement fusion steady-state Kalman
predictors are given by:

Ky (t+1]t) =%, &, (tIt-1)+ Ky, (t),N =1 (49)
5 (t+N 1) =" 8%, (t+1]t),N>2 (50)
¥, =[1,-K,H]®, K, =05, H[H5,HT+R, | (51)
2y =PI + Q" +K, R, Ky, (52)
3, =¥y 2P + QI +K, R, K} (53)

Where the superscript s denotes “steady-state”, the initial value X;, (0 | O) can arbitrarily
be selected, y, (t)are the actual measurements, and:

Yu () =(e"R"e) "Ry, (t) (54)
Ry, =(€'R')™, R, =("R'e)"e'"R'R.R'e(e'R'e)™ (55)

The conservative and actual steady-state prediction error variances satisfy the
Lyapunov equations.

R, (N)=@" 5, (@" ) + S orQr (°)" N22 (56)
s=0

P, (N)=0""3, (@”‘1)T+N22¢3F(§FT (@) \N22 (57)
s=0

The actual steady-state Kalman predictors are robust, in the sense that:

Sy <2y, B (N)<PR, (N) (58)

And X, and B, (N are the minimal upper bounds of %, and B, (N), respectively.

Proof. Ast —» o, taking the limit operations for (14)-(33) with @,7",H,QandR, are
constant matrices yields (49)-(58). Taking Q =Q and F?vi =R, , from (55), we have Ry, =R, , SO
that from (52) and (53) yields %, = %,, , hence from (56) and (57), we have B, (N)=P, (N). If
Zyor P;(N)is the arbitrary other bound of X, orR, (N), we haveZ, =3, <%, or

P, (N)="P, (N)<PR; (N), which yields that ,, and B, (N )are minimal. The proof is completed.
Similarly, the actual local steady-state Kalman predictors are given by:
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K (t+1t) =P (tIt-1)+ Ky, (t),i=1-,L (59)
=1, ~-KH]® K =05HT(HZHT+R, ) (60)
The conservative and actual prediction error variances satisfy Lyapunov equation.

S =PIV +IQr" +KRK',i=1---,L (61)
3 =¥YI¥ +IQI" +KRK ,i=1.-,L (62)
The actual steady-state fused Kalman multi-step predictor is given as:

% (t+N[t) =" % (t+1t),i=1-,L,N>1 (63)

The conservative and actual local steady-state N step prediction error variances are
given as:

R(N)=0"15 (") +§@SFQFT(@S)T N22,i=1L (64)
s=0

B(N)=0"15 (0" +N22¢SFQFT(CDS)T N>2i=1--L (65)
s=0

The actual local steady-state Kalman predictors (59) and (63) are robust in the sense

that for all admissible uncertainties of Q and ﬁvi satisfyingQ <Q,R, < R, » we have:

5<%, B(N)<PR(N),i=1--L (66)

And %, and P, (N ) are the minimal upper bounds of X and P (N), respectively. Hence they are

called the robust steady-state Kalman predictors.
Lemma 1. [16, 17] Consider a dynamic error system.

S(t)=F(t)s(t-1)+u(t) (67)

Wheret>0,5(t)eR",u(t)eR", and F (t)is uniformly asymptotically stable, i.e., there
exist constants 0< p <landc > 0 such that:

||F(t,i)||s cp' T Vt>i>0 (68)

Where the notation| |denotes the norm of matrix, F(t,i)=F(t)F(t-2)---F(i+1),
F(i,i)=1,.If u(t)is bounded, then §(t)is bounded. Ifu(t) > 0, then §(t) > 0, ast »> .

Theorem 3. Under the conditions of Theorem 2, the robust time-varying and steady-
state Kalman local and fused one-step and multi-step predictors have each other the
convergence in a realization, such that:

[% (t+1]t)-% (t+1]t)] >0, ast >0, iar (69)

[)"(i(t+N [t)-% (t+N |t)]—>0,ast—>oo,i.a.r,N >2 (70)
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[)"(M (t+1]t)-%;, (t+1|t)]—>0,ast—>oo,i.a.r (71)
[Ru (t+N[1)=%, (t+ N [t)] >0, ast > o0, iar,N>2 (72)

Where the notation “i.a.r" denotes the convergence in a realization [17], and we have
the convergence of variances.

P(t+1]t)> %, B, (t+1]t)> %, ,ast >0 ,i=1-,L (73)
P(t+N[t)>P(N), P, (t+N|t)> B, (N),ast > ,i=1--,L (74)
Proof. According to Assumption 3, we have [18]:

P(t+1]t)> %, ast > o ,i=1--,L (75)
Then from (19) and (39), we have:

Y (1) > ¥, K (t) > K, P, (t+1]t) > %, ast > ,i=1-,L (76)

Similarly, we can prove (74) holds, Setting ¥, (t)=%;+4%;(t),K;(t)=K;+4K;(t)in
(38), applying (76) yields 4%, (t) >0 4K, (t) >0, ast > . Subtracting (59) from (38), and
defining &, (t) =% (t+N[t)—- % (t+N[t), we have:

5 (t)=%6,(t-1)+u,(t) (77)

Withu, (t) =A%, ()% (t|t—1)+ 4K, (t)y; (t). Noting that¥;(t)is uniformly asymptotically
stable [19], and 4K; (t)y; (t)is bounded, applying Lemma 1 to (38) yields the boundedness of
% (t+1]t). Hence we haveu,(t)—>0. Applying Lemma 1 to (77), noting that¥;is a stable

matrix, so it is also uniformly asymptotically stable, hence ¢, (t) — 0, i.e. the convergence (69)
holds. The convergence of (70)-(72) can be proved similarly. The proof is completed.

5. The Accuracy Analysis
Definition 1. The tracetrP(t+N|t)of the upper boundP(t+N|t)of the actual

prediction error variances I5(t+ N |t)for all admissible uncertainties is called the robust accuracy
or global accuracy of a robust Kalman predictor, and trl5(t+N |t)is called as its actual

accuracy. The smallertr P(t+N [t)or trP(t+N|t)means the higher robust accuracy or actual

accuracy. The robust accuracy gives the lowest bound of all possible actual accuracies yielded
from the uncertainties of noise variances.

Theorem 4. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the
accuracy comparison of the local and fused robust Kalman predictors is given by:

P(t+N[t)<P(t+N]t),i=1--,L, N>1 (78)
Py (t+N[t)<P, (t+N[t)<P(t+N]t),i=1-,L,N2>1 (79)
trR(t+N|t)<trR(t+N|t),i=1-, L, N>1 (80)
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trB, (t+N[t)<trB, (t+N[t)<trP(t+N|t),i=1-,L,N>1 (81)
P(N)<P(N),R,(N)<P, (N)<P(N), i=1--L,N>1 (82)
With the definitions P, (1)=%;,R (1)=2,,R, (1)=2,.P, (1) =2,

trP(N)<trPR(N),trB, (N)<trP, (N)<trP(N),i=1--,L, N>1 (83)

Proof. According to the robustness (33), (47) and (48), we have (78) and the first
inequality of (79). Since the conservative weighted measurement fuser is equivalent to the
conservative centralized fuser [20], the second inequality of (79) has been proven in [21].
Taking the trace operations for (78) and (79) yields the inequalities (80) and (81). As t >«
taking the limit operations for (78)-(81) yields (82) and (83). The proof is completed.

6. Similation Example
Consider a three-sensor time-invariant tracking system with uncertain noise variances.

X(t+1) =X (t)+ Iw(t), y, (t) = Hx(t)+ 7 (1) + & (1), =1,2,3 (84)
q):{; H,r:{o'?ﬂﬁ:g (85)

WhereT, =0.35is the sampled period, x(t)=|x(t),x, (t)]T is the state, x (t)and x,(t)
are the position and velocity of target at time tT,. w(t), »(t)and¢ (t) are independent Gaussion
white noises with zero mean and unknown uncertain actual variancesQ , R, and ﬁ:. respectively.
In the simulation, we takeQ=1,Q=0.8, R, =diag(1.5,2.5), ﬁ” =diag(1,2) , R, =diag(3.6,2.5),
R. =diag(31.8), R, =diag(8,0.36), R, =diag(6,0.25), R, =diag(0.5,2.8) , R, =diag(0.38,2), N =1

N =2. The initial values x(0)=[0 0], #=0,P(0]0)=diag(t.11.2),P(0]0)=1,.

The comparisons of the prediction error variance matrices and their traces of the robust
steady-state local and weighted measurement fusion Kalman predictors are shown in Table 1-
Table 3. These matrices and their traces verify the accuracy relations (82) and (83).

The traces of the conservative and actual robust one-step and two-step prediction error
variances are compared in Figure 1 and Figure 2. We see that the traces of the local and fused
robust time-varying Kalman one-step and two-step predictors quickly converge to these of the
corresponding steady-state Kalman predictors, which show the robust accuracy relations (80),
(81) and (83) hold.

Table 1. The Conservative and Actual Accuracy Comparison of One-step Prediction Error
Variances Matrices X and Z,,i=1,2,3,M
b) z

2 3

2z

1 ZM
{1.4931 0.6538} {1.7995 0.6200} {0.8558 0.4877} {0.7315 0.4098}

0.6538 0.6314 0.6200 0.5833 0.4877 0.5592 0.4098 0.4995

2‘1 ZZ 23 ZM

1.1667 0.5123 1.3698 0.4836 0.6202 0.3672 0.5365 0.3134
0.5123 0.4989 0.4836 0.4617 0.3672 0.4346 0.3134 0.3922
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Table 2. The Conservative and Actual Accuracy Comparison of Two-step Prediction Error
Variances Matrices P and P,i=12,3 M
R(2) P,(2) P.(2) P.(2)
{2.0319 0.8963} {2.3087 0.8455} {1.2694 0.7049} {1.0833 0.6060}
0.8963 0.7539 0.8455 0.7058 0.7049 0.6817 0.6060 0.6220
R(2) P(2) R(2) P.(2)
{1.5894 0.7040} {1.7679 0.6624} {0.9335 0.5365} {0.8069 0.4678}

0.7040 0.5969 0.6624 0.5597 0.5365 0.5326 0.4678 0.4902

Table 3. The Robust and Actual Accuracy Comparison of tr> ,tr> , andtrP,trP i=1,2,3,M

trx,trx trx,, X, trx,, trz, trx, ,trx,
2.1245,1.6656 2.3828,1.8315 1.415,1.0548 1.231,0.9287
trP(2),rP(2) twR(2),wrP(2 trR(2),trR(2) trP,(2),trP,(2)
2.7858,2.1863 3.0144,2.3276 1.9511,1.4661 1.7053,1.2971

tr,
_ tr2) i
tr2,
trX
tr2, .
trz,
- tr2,
1+ .
trx,
05 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

t/step

Figure 1. The Traces of the Conservative and Actual Local and Fused Kalman One-step

Predictors
35
trR,
trP,
trR, 1
P, trP, 4
K trP,
15k . tre, ]
trP,,

L L ! 1 1 ) L L 1
10 10 20 30 40 50 60 70 80 90 100
t/step

Figure 2. The Traces of the Conservative and Actual Local and Fused Kalman Two-step
Predictors
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In order to verify the above theoretical accuracy relations, taking o =200 Monte Carlo
simulation runs, According to the ergodicity [22], we have:

MSE, (t) >trP,,as t > w0, p > 0, (0=12,3,M) (86)

The MSE curves of the local and fused time-varying robust Kalman predictors are
shown in Figure 3, which verify the accuracy relations (80), (81) and (83), and verify the
ergodicity (86).

35

MSE

0 _
trP,

2

trP

1

P tr,
tr M( / trfl
1.5 ), e - X A, St”sa
tr23 X X IS

tr
tr2, K
trZ,

14 AKX g A DAL t f

+—+ ~—1 LIRS eSS T —t—t <1y
0.5 e e e L e e e e e e L S o e e e B s s m S
20 30 40 50 60 70 80 90 100110120130140150160170180190200210220230240250260270280290300
t/step

—0— MSE1(2) —B— MSE2(2)  —A— MSE3(2)  —%— MSEM(2)
—%— MSE1(1) —6— MSE2(1)  —»— MSE3(1) —+— MSEM(1)

Figure 3. The Comparison of MSE, (t)and trP,,0=12,3,M

7. Conclusion

For multisensor system with uncertain noise variances, using the minimax robust
estimation principle, the Icoal and weighted measurement fusion robust Kalman time-varying
predictors are presented. Based on the Lyapunov equation approach, their robustness are
proved, and their robust accuracy relations are also proved. It is proved that the robust
accruacies of the weighted measurement fusion Kalman predictors are higher than that of each
local robust Kalman predictor. The convergence problem of the robust local and weighted
measurement fusion time-varying and steady-state Kalman predictors is proved by the dynamic
error system analysis (DESA) method. This extension of this paper to systems with uncertain
noise variances and model parameters is under study.
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