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 An efficient deep-learning prediction model for identifying chronic kidney 

disease (CKD) from exhaled breath is presented in this paper. The 

concentration of urea will be higher in CKD patients. Salivary urease breaks 

down the stored urea into ammonia, which is then excreted through breath. 

Thus, by monitoring the breath ammonia content, it is possible to identify 

the presence of high urea levels in the body. In this work, a novel sensing 

module is developed and applied to measure and assess the amount of 

ammonia in exhaled breath. Moreover, an effective deep learning prediction 

model that combines the CatBoost algorithm and convolutional neural 

network (CNN) is used to automate the prediction of disease. The proposed 

model, which combines the benefits of gradient-boosting and CNN, attained 

an exceptional accuracy of 98.37%. Experiments are conducted to evaluate 

the proposed model using real-time data and to assess how well it performs 

in comparison with existing deep learning methods. Our study's findings 

demonstrate that kidney disease can be accurately and noninvasively 

diagnosed using the proposed approach. 

Keywords: 

CatBoost  

Convolutional neural network 

Deep learning  

Exhaled breath  

Kidney disease  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Navaneeth Bhaskar 

Department of Computer Science and Engineering (Data Science) 

Sahyadri College of Engineering and Management 

Mangalore, India 

Email: navbskr@gmail.com 

 

 

1. INTRODUCTION  

Kidney disease is the term used to describe damage to the kidneys that makes it difficult for them to 

filter wastes as efficiently as they should. Insufficient kidney function results in an accumulation of waste 

products and excess fluid in the circulation, leading to imbalances and toxins in the body [1]. Chronic kidney 

disease (CKD) develops over several months or years. A steady decline in kidney function is an indicator of 

end-stage renal disease, in which the kidneys completely fail and require dialysis or a kidney transplant to 

survive. Common causes of CKD include diabetes, hypertension, and glomerulonephritis. The signs and 

symptoms of kidney damage can include fatigue, edema, shortness of breath, nausea and confusion [2]. 

Depending on the type and severity of renal failure, there are a variety of treatment options available, 

including treating the underlying cause, changing one's diet, taking medication, and in severe cases, 

undergoing kidney replacement therapy [3]. Diagnosing CKD frequently involves a combination of 

laboratory testing, physical examination, and medical history. There are numerous biomarkers, or 
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components that can be found in the blood or urine, that can be used to track the development of kidney 

disease. Blood urea nitrogen (BUN), or serum urea, is a major biomarker used in the assessment of renal 

disease and kidney function [4]. Urea is a waste product that is produced as the body breaks down proteins; 

the kidneys filter it out of the bloodstream so that it can be expelled in urine. A blood test is commonly used 

to check for kidney failure since it detects the amount of urea in the blood serum. The amount of urea in the 

blood indicates how well the kidneys filter. Elevated urea levels indicate impaired renal function. 

Analysis of exhaled breath is a new subject of research in the areas of biomarkers and medical 

diagnostics. It may provide rapid, low-cost, non-invasive methods for diagnosing and monitoring a range of 

diseases, including several kidney-related conditions. While exhaled breath analysis has shown promise in 

the identification of certain respiratory and metabolic disorders, its potential as a direct biomarker for CKD is 

still under investigation. The gases, particles and volatile organic compounds (VOCs) that make up exhaled 

breath can reveal a multitude of information about a person's diet, metabolism, health and environmental 

exposure. VOCs in exhaled breath indicate metabolic activity and can function as biomarkers for certain 

illnesses [5]. We investigated the possibility of using breath ammonia as a biomarker for the diagnosis of 

CKD in our method. The breakdown of proteins and amino acids causes the body to release the gas ammonia. 

It is present in exhaled breath and can give details on renal and metabolic function. Ammonia builds up when 

kidney function is impaired in patients with CKD. The blood's ammonia levels will rise as a result.  

The relationship between breath ammonia and kidney disease has already been the subject of numerous 

investigations. However, only a few research have shown how to use breath samples to identify CKD [6].  

According to the studies conducted by Bevc et al. [7] there is a linear correlation between breath 

ammonia, urea, and creatinine levels. Breath-based screening measures the amount of ammonia in exhaled 

breath to detect the presence of kidney disease. However, there isn't much ammonia gas released in the 

exhaled breath. As a result, it is challenging to measure the concentration of ammonia gas in breath samples 

without the use of extremely sensitive sensors. There aren't many tools or techniques for determining the 

amount of ammonia in breath. Krishnan et al. [8] reviewed the most modern analytical methods for detecting 

ammonia in exhaled breath. The existing laboratory-based testing methods are not suitable for rapid and 

precise diagnosis in real time since they require large detection devices and clinical procedures. 

Consequently, a rapid, non-invasive, accurate CKD diagnosis technique is needed. Therefore, in the proposed 

study, we built a detection apparatus based on a metal oxide semiconductor (MOS) sensor to measure the 

target biomarker from the exhaled breath [9]. 

In the healthcare sector, machine learning techniques are employed for automated prediction, 

development identification, and analysis of big, complex datasets. Convolutional neural networks (CNN) 

have virtually taken the role of classic machine learning approaches in many medical diagnostic applications 

in recent years. In the CNN learning network, the CNN itself handles both the feature extraction and the 

classification tasks [10]. This eliminates the need for an additional algorithm for feature extraction. CNN 

provides more dependable outcomes for automated disease identification than traditional learning methods. 

The use of innovative architectural principles and parameter optimization techniques has had a significant 

impact on CNN model development. Over the past few years, there has been a considerable advancement in 

CNN models [11]. Current research efforts are directed toward enhancing CNN architectures, investigating 

new methods for augmenting data and tackling interpretability and generalization issues across a range of 

demographics. To enhance classification performance, researchers have proposed hybrid networks that 

combine multiple learning models. CNNs with other neural network types or machine learning models 

combined into a hybrid network can provide several benefits depending on specific scenarios. This study 

presents the design and implementation of an effective CNN-CatBoost hybrid model that can provide 

automated predictions of diseases. CatBoost is an extremely effective gradient-boosting approach for 

classification-related applications [12]. 

 

 

2. METHOD  

To identify the biomarkers and to make automated predictions of kidney disease, we have developed 

a novel medical detection system using CNN-CatBoost deep learning model. Figure 1 shows the block 

representation of the complete procedure. The entire system is composed of a deep-learning ensemble model 

for prediction and a gas sensing chamber. A sensor for measuring ammonia is integrated inside the breath 

analyzer chamber. We have also added a sensor to measure temperature and humidity, as these factors affect 

the ammonia estimation readings inside the gas chamber.  

 

2.1.  Detection model 

A high concentration of ammonia in the blood and potentially in the breath can occur from the 

kidneys' inability to efficiently eliminate ammonia from the body when they are not operating at optimal 

capacity. To date, several techniques, such as chemical ionization, gas spectrometry and laser spectroscopy, 
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have been developed for determining the concentration of different gases in exhaled breath [13]. The majority 

of developed instrumental methods are expensive, complicated and unsuitable for use in diagnostic settings. 

Although numerous sensor-based techniques, such as quartz crystal microbalance and chemical and optical 

sensors, have been developed, many of these are not suited for real-time application due to issues with detection 

limits or functioning in actual humidified breath samples. Numerous clinical trials have demonstrated that the 

electrochemical sensors utilized in recent studies are efficient [14]. In this work, we developed a new detection 

module to track the ammonia concentrations in exhaled breath. Over the commonly used blood test, the breath-

based method suggested in this study offers numerous benefits due to its expedited and non-invasive nature. 

 

 

 
 

Figure 1. Block representation of the entire process 

 

 

The schematic design of the breath analyzer detection chamber developed for the analysis is shown 

in Figure 2. The detection chamber has a mouthpiece for blowing the breath. A calibrated TGS 826 sensor is 

used to measure the amount of ammonia gas in the exhaled breath. The TGS 826 exhibits a change in 

electrical conductivity when exposed to ammonia gas. Tin dioxide (SnO2), a MOS material, and an 

integrated heating element make up the MOS gas sensor that is being employed [15]. The conductivity of the 

sensor varies when exposed to ammonia, and this variation is used to calculate the gas concentration. The 

TGS 826 sensor used here has a high sensitivity to ammonia gas, which allows it to detect the gas even in 

low concentrations. The sensing element is heated by an internal heating source within the sensor module. 

Ammonia detection requires this heating procedure in order to be accurate and consistent. 

 

 

 
 

Figure 2. Schematic design of the detection chamber unit 

 

 

The amount of free electrons in the sensing element changes as a result of interactions between the 

ammonia molecules and the metal oxide surface. The MOS material's electrical conductivity is impacted by 

this shift in electron concentration. To detect humidity and temperature, a DHT11 sensor is employed [16]. 

The sensor is calibrated by subjecting it to known concentrations of ammonia and monitoring variations in 

electrical resistance. With the help of the calibration curve, variations in the resistance of the sensor can be 

associated with ammonia concentrations. The conductivity of the sensor is directly proportional to the 

amount of ammonia gas produced inside the breath analyzer. An analog voltage is produced as a result of this 

change in conductivity. A microcontroller processing board is used to obtain the sensor's output response.  

An electrical circuit configuration is used to measure the electrical conductivity of the sensor element.  

 

2.2.  Deep learning prediction model 

We developed a CNN-CatBoost deep learning hybrid model, which blends CNN with CatBoost,  

a gradient-boosting technique application, to generate predictions. This hybrid model performs better in 

predictions and can offer improved accuracy since it combines the benefits of CNN and CatBoost. Deep 

learning models find extensive use in applications related to pattern and image recognition. They are made up 

of several layers, including fully connected, pooling and convolutional layers. CNNs can be used for feature 

extraction since they automatically learn hierarchical representations of features from the input data [17]. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

CNN-CatBoost ensemble deep learning model for enhanced disease detection and … (Navaneeth Bhaskar) 

147 

The sensor's output signal is directly fed into the CNN as an input. The core of the CNN layout is 

the convolution layer. Using kernels, this layer extracts the important input features [18]. Two functions are 

involved in the mathematical process known as convolution. The result is the shifted and reversed form of the 

original function, which is obtained by multiplying one function by the other. The following equations 

describe how the kernel and the input are convoluted in CNN. 

 

𝑓(𝑛) =  𝑠(𝑛) ∗ 𝑘(𝑛) (1) 

 

𝑓𝑖(𝑛) =  𝑠(𝑛)𝑘(1)  +  𝑠(𝑛 − 1)𝑘(2)  +  … +  𝑠(0)𝑘(𝑛) (2) 

 

𝑓𝑖(𝑛) = ∑ 𝑠(𝑙 + 1)𝑘(𝑚 − 𝑙 + 1)𝑛
𝑙=−𝑛  (3) 

 

where s represents the input signal, k represents the kernel, n and m represent the lengths of s and k, and f 

represents the output signal. 

The features that CNN extracted are given to the CatBoost algorithm to perform the classification 

task in our work. Similar to other gradient-boosting methods, CatBoost constructs a sequence of decision 

trees. Every tree makes up for the mistakes made by the one before it, making the final prediction more 

accurate. CatBoost's inherent capacity to handle categorical features is one of its advantages. Since CatBoost 

can operate directly with categorical data, we don't need to explicitly preprocess categorical variables into 

numerical representations [19]. To avoid overfitting, CatBoost uses regularization techniques. Regularization 

improves the ability of the model to generalize to new data. Computational efficiency is a key design 

principle of CatBoost. On multicore computers, it facilitates parallel training, which speeds up the model 

training process. Furthermore, CatBoost will leverage GPU acceleration to expedite training. It can generate 

robust models that capture complex relationships in the data and perform better than many other techniques. 

 

2.3.  Samples and testing  

The proposed sensing module was tested on 82 kidney patients and 102 healthy people. Prior to the 

testing phase, the fundamental testing procedures were followed. All participants received oral health 

instructions prior to the analysis. Before the test, the subjects were instructed not to eat, drink, smoke, or use 

mouthwash for a specific amount of time because these activities may introduce substances that could alter 

the accuracy of the results. The breath analyzer is calibrated before tests are administered to guarantee 

precise readings. Calibration involves adjusting the sensor readings in accordance with accepted standards to 

ascertain its accuracy. The participants are asked to blow into the breath analyzer through the mouthpiece 

section of the device. The user should continue to breathe evenly and continuously until the device indicates 

that a sufficient sample has been obtained.  

The ammonia in the exhaled breath reacts with the ammonia sensor inside the test instrument.  

The reaction produces an electrical current, and the magnitude of this current is proportional to the amount of 

ammonia in the breath. The amount of ammonia in the breath is directly correlated with the electrical current 

generated by the reaction. Using an Arduino board equipped with an ATmega328P controller, analog signals 

are obtained. MATLAB support packages for Arduino hardware are used to connect and communicate with 

the Arduino board. The analysis includes measurements of temperature, humidity, and voltage. We have 

incorporated a temperature and humidity sensor in the detection unit to account for the impacts of 

temperature and humidity. The sensor's raw signal is captured for 100 seconds and then sent directly into  

a trained deep-learning model to make the automatic prediction. 

 

 

3. RESULTS AND DISCUSSION  

Breath analysis holds great promise for clinical research and disease diagnosis while being a relatively 

new field of study. Medical research indicates that certain conditions or disorders change the makeup of the 

VOCs in the breath [20]. Breath samples can be automatically used to identify a variety of diseases thanks to 

advanced sensing methods and machine learning algorithms. The use of breath analysis for non-invasive kidney 

disease screening is addressed in this research. The objective of this research is to create personalized, quick, 

and affordable medical diagnostic tools that can be used to non-invasively identify CKD. The deep-learning 

technology for clinical diagnostics is explored in this work alongside a novel sensing methodology. 

Since the detection unit we used is based on a novel methodology, it is required to evaluate the 

sensor's ability to identify kidney disease using an established technique for ammonia gas detection as shown 

in Figure 3. The detection range of the employed sensor is 1 to 10 ppm. To assess the sensor's 

responsiveness, it was initially subjected to a range of ammonia gas concentrations. Figure 3(a) displays the 

recorded voltage measurements for the different amounts of ammonia concentration. As the concentration of 

ammonia gas inside the breath analyzer chamber rises, the sensor's output voltage also rises. Healthy 
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individuals usually have ammonia levels between 0.1 and 1.0 ppm. However, this concentration tends to 

increase in the breath of individuals with CKD because of the disturbance of the hepatic urea cycle. The degree 

of correlation between blood urea levels and exhaled breath ammonia was determined using Pearson's 

correlation analysis [21]. For these two parameters, a correlation coefficient of r=0.88 was attained. This 

indicates that the blood urea and breath ammonia values have a substantial positive correlation. A chemical 

analyzer was used to assess blood urea concentration, and our proposed detection module was used to monitor 

breath ammonia concentration for this analysis. 

Voltage, humidity and temperature readings are among the test parameters measured in the analysis. 

The voltage output signal of the sensor for a healthy test sample and a kidney patient is displayed in Figure 3(b). 

This illustrates the relationship between rising ammonia concentrations and the sensor's voltage value. The 

output voltage of the sensor was lower in healthy samples than in disease cases. Temperature and humidity 

had no discernible effect on our test results because our testing was conducted in a controlled environment 

under normal operating conditions. By correctly calibrating the sensor signal, the impacts of humidity and 

temperature can be minimized. 
 
 

 
(a) 

 
(b) 

 

Figure 3. Sensor response (a) to changes in the concentration of ammonia gas and (b) voltage output signals for 

a patient case and a healthy test sample 
 

 

The CNN model extracts the best features from the sensor signal. The test samples are then 

categorized using the integrated CatBoost classifier based on the selected features. For validation, a k-fold 

validation procedure is employed. In order to compare the performance of the proposed approach, we have 

designed and implemented the conventional deep learning models and evaluated them using the test samples. 

Conventional deep learning algorithms such as the Xception model, AlexNet, ResNet, DenseNet and 

MobileNetV2 are compared [22]. CNN along with the CatBoost classifier are used to build the proposed deep-

learning network. A detailed performance comparison was conducted to examine the effectiveness of each of 

these models. The performance values that were achieved for each of these approaches are presented in Table 1. 
 

 

Table 1. Comparison of the proposed model's performance values with those of the other deep learning 

models investigated in this study 
Models Accuracy (%) Sensitivity Specificity Precision F1 score Miss rate 

AlexNet 85.32 0.857 0.85 0.805 0.831 0.143 

ResNet 85.87 0.85 0.865 0.829 0.839 0.15 

DenseNet 90.76 0.911 0.904 0.878 0.894 0.089 
MobileNetV2 93.48 0.937 0.933 0.915 0.926 0.063 

EfficientNet 95.65 0.951 0.961 0.951 0.951 0.049 

Xception 96.74 0.975 0.961 0.951 0.963 0.025 
CNN-CatBoost 98.37 1 0.971 0.963 0.981 0 

 

 

The Xception model produced the best accuracy of 96.74% when compared to all other conventional 

deep learning techniques analyzed in this study. Xception's primary architectural distinction is its utilization 

of depthwise separable convolutions. Since every filter in a typical convolution functions on every input 

channel, there are a lot of parameters involved. Pointwise and depthwise convolutions are the two distinct 

procedures that make up a depthwise separable convolution [23]. This lowers the computational complexity 

and parameter count. EfficientNet classified the samples with 95.65% accuracy. Compound scaling is used in 

this model, where the depth, width and resolution are all scaled at the same time. Conventional methods, on 
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the other hand, only scale one of these elements. Inverted residuals, where the shortcut connections are 

between the narrow bottleneck layers, are a concept introduced by MobileNetV2 [24]. This structure 

facilitates better information flow and preserves low-dimensional embeddings. The samples were classified 

by AlexNet, ResNet, and DenseNet with 85.32%, 85.87% and 90.76% accuracy rates, respectively. 

Compared to the other algorithms examined in this study, the CNN-CatBoost model achieved the 

highest accuracy of 98.37%. The proposed model's miss rate is zero, indicating that all instances of the 

positive class are correctly identified by the proposed model. Of the 184 samples evaluated, the proposed 

approach successfully identified 105 as healthy and 79 as kidney patients. A comparison of the error rates of 

different models is presented in Figure 4. The error rate indicates the frequency with which these models 

provide inaccurate results or forecasts that deviate from the actual values. It is an essential measure for 

determining a model's correctness and evaluating its performance. It is computed by finding the sum of false 

positive and negative cases and dividing it by the total number of predictions. The error rate of the proposed 

network is 0.016, which is quite low in comparison to all other approaches. To validate the test results, 

clinical validation is performed. We conducted the validation test with the assistance of medical experts, and 

the physicians verified the results. The outcomes of the clinical evaluation have almost exactly matched our 

test results. Only three samples had been missed by the proposed CNN-CatBoost model. All healthy case was 

correctly classified by the proposed model.  

Receiver operating characteristic (ROC) curves for the proposed model and the Xception model are 

plotted to give a visual depiction of the connection between true positive rate and false positive rates.  

The ROC performance shows how well breath ammonia can determine whether a person has renal disease or 

not. The relationship between the true positive rate and false positive rate for various test set cut-off values is 

represented graphically by the ROC plot [25]. The ROC plot for the CNN-CatBoost and Xception models is 

shown in Figure 5. To check the accuracy of the analysis, the area under the curve (AUC) is computed from 

these plots. The best operating point for the model is determined by looking at the position on the ROC curve 

that maximizes the AUC. The AUC values obtained are 0.971 and 0.965 for the CNN-CatBoost and Xception 

classification models, respectively. This clearly shows the suggested model's superiority over the other 

traditional deep learning models. 
 

 

 
 

Figure 4. Comparison of error rates between various deep learning models 
 

 

  
 

Figure 5. ROC curves obtained for testing samples for CNN-CatBoost and Xception models 
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4. CONCLUSION 

In this work, a hybrid deep-learning model for improved kidney disease detection and classification 

has been developed by combining the CNN model and the CatBoost classifier. By combining CNN with 

CatBoost, model diversity is increased, which enables the ensemble model to identify and interpret a wider 

variety of patterns and correlations found in the sensor response signal. This work uses a novel sensor module 

that is designed to detect and measure the ammonia concentration in exhaled breath. To evaluate the proposed 

approach's discriminative ability to identify people with and without kidney disease, ROC and correlation 

analyses are performed. The statistical analysis shows that the proposed sensing method can be used as a non-

invasive kidney disease detection method. To validate system performance, analysis metrics were compared 

with conventional deep-learning models. The Xception model had the highest classification accuracy of 96.74% 

among all conventional deep-learning approaches. Nevertheless, the proposed CNN-CatBoost model 

outperforms all other standard deep learning techniques, classifying the data with 98.37% accuracy. It is important 

to remember that breath-based CKD detection techniques are still in the early phases of research and development, 

despite these encouraging prospective benefits. To determine the validity, precision and clinical usefulness of these 

techniques in the diagnosis and follow-up of CKD, more research, clinical trials and validation are required. 
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