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 The control process of welding requires manual operations, and this 

consumes time. Robot classifier can help by automatic detection of welding 

defect and by taking rapid actions to correct in situ the defect. This paper 

presents a convolutional neural network (CNN) model developed to classify 

the welding defect like splash, twisty, overlap, edge and copper adhesion 

based on machine vision. Using a resistance spot welding (RSW) dataset the 

CNN model was trained and evaluated to achieve the best performance.  

The batch size was varied to quantify its effect on the precision of the model. 

The model can predict the type of welding surface by confidence of 99.86%. 

Keywords: 

Automatic detection 

Control process 

Convolutional neural network 

Machine vision 

Welding defect This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Nissabouri Salah  

Department of Mechanical Engineering, ENSET-Mohammedia, Hassan II University 

Mohammedia, Morocco 

Email: salah.nissabouri@univh2c.ma 

 

 

1. INTRODUCTION  

Non-destructive Testing technics are recently more applied, especially in manufacturing thanks to 

their multiple advantages. To assess the integrity of a mechanical part, we can use multiple non destructive 

test (NDT) technics like ultrasonic [1]–[3] or radiographic images [4] which have been the most applied in 

Machine vision [5]. Welding is a process of joining two parts of metal (sometimes other materials) to form a 

strong and continuous bond. There are several different welding processes, each with its own characteristics, 

advantages, and limitations. 

A welding defect refers to an undesirable quality or characteristics of a welded joint. Welding 

defects can arise due to various factors such as improper welding techniques, material issues, equipment 

problems, or environmental conditions. Detecting and addressing welding defects is crucial to ensure the 

integrity, strength, and safety of the welded components. Some common welding defects include: 

− Porosity defect: it occurs when the weld metal contains the gas pockets or voids. This weakens the joint 

and this brings about structural integrity reduction. Incomplete penetration defect: it occurs when the joint 

does not full by the weld metal, resulting in a weak connection. This can be caused by inadequate welding 

parameters or improper joint preparation. 

− Incomplete fusion: Incomplete fusion occurs when there is a lack of proper bonding between the weld 

metal and the base metal, leading to weak and unreliable joints. 

− Undercutting: Undercutting is a groove that forms along the edge of the weld, typically due to heat 

increasing or bad choosing of the appropriate method. It leads to the weakness of the the joint and 

promote stress concentration. 

https://creativecommons.org/licenses/by-sa/4.0/
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− Overlap: overlapping happens when the joint bead does not properly insert with the base metal, resulting 

in a surface layer that is not securely attached. 

− Cracks: it can happens in the zone of  weld or the surrounding metal caused by the increasing of the 

stress, inappropriate preheating, or rapid cooling. Cracks can severely demonstrate the quality of the 

welding. Excessive heat affected zone (HAZ): Improper heat management can lead to an excessively 

large heat-affected zone, causing changes in material properties and potentially weakening the joint. 

− Burn-through: Burn-through occurs when the welding process melts through the base metal, creating 

holes or voids. This can weaken the joint and lead to structural failure. To control the welded parts, many 

technics can be employed such as: visual or manual inspection, radiographic, ultrasonic testing [6], [7], 

control by eddy current, evaluating the defects is difficult due to fact that it requires an experimented 

operator, time consuming and subjective. 

In our paper, we focus on six types of surface defect: twisty, splash; mutilation, overlap copper-

adhesion and edge as presented in the Figure 1. We aim to develop a robot classifier in our project. The robot 

classifier [8], [9] will use the data set of differnts type of welding captured by the camera vision [10].  

The robot will be propgarmed to put the scaned piece in the specified area depending on the detected type of 

defect. We focus fisrt on the development of the convolutional neural network (CNN) model. 

 

 

 
 

Figure 1. Six Surface welding defects and normal surface welding (first image on the left) 

 

 

The present article is organized as follows: in the first section, we introduce the type of welding 

defect. After that, a review of previous papers is conducted to list different classifiers of welding defect.  

The method and the model are presented in the next part. The proposed model is evaluated and discussed 

regarding the batch size parameter. In the last section, the robot classifier is used to capture the welding 

image. The validation of the prediction permit to verify the perofmormance of CNN model. 

 

 

2. STATE OF THE ART 

Previous works have been conducted to develop the welding defect classification. Liangliang  

in [11] has proposed a weld defect detection technic by designed wandering Gaussian. The authors  

in [12] have proposed an algorithm YOLOv5 to detect weld defect in steel pipe, and have discussed the two-

stage representative object detection algorithm Faster R-CNN. 

Others have shown that using machine-learning programs can also improve the precision of welding 

defect identification as reported in [13]–[18]. Many models have used logistic regression (LR), adaptive 

cascade boosting (AdaBoost), random forest (RF), k-N neighbor (k-NN), support vector machine (SVM) and 

neural network (NN). More than that, deep learning methods are more suitable at identification  and 

classification of weld flaws in radiographic images. The Table 1 resumes some models developed to classify 

the welding defect. 

 

 

Table 1. Welding defect classifiers 
Reference Model Precision 

Hou et al. [19] deep neural network + sparse auto-encoders 90,27 

Mery and Berty [20] - 90,91% 

Silva et al. [21] ANN–Non linear - 
Kumar et al. [22] ANN 86,1 

Wang and Liao [23] Multi-layer perceptron (MLP), fuzzy (K-NN)  - 

Zapata [24], Vilar et al. [25] Adaptive-network-based fuzzy inference system (ANFIS) - 
Naddaf and Zargaradeh [26] VGG-16, VGG- 19, AlexNet, ResNet 96% 

Thakkallapally [27] VGG-19 91% 

Valavanis and Kosmopoulos [28] Sequentiel backward selection (SBS) - 
Yang and Jiang [29]  Unifed DNN 91,36% 
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More models have been developed to classify the welding defect. They are different in terms of 

architecture and thus they have a different accuracy. Choosing a suitable classifier is very important to ensure 

a best detection. 

 

 

3. PROPOSED METHOD 

The method as illustrated in Figure 2, is divide into three main steps, namely the data set 

preparation, training the model and evaluation. In the first step we collect the data. Data set is taken from 

resistance spot welding (RSW) datasets [30]. It includes information on seven types of welding surface: 

normal, splash, twisty, overlap, edge and copper adhesion. The data set file contains 7892 images with a size 

of 2.12 Go. 

After that the pre-processing is carried out and finally the scaling the features by normalizing the 

input data between 0 and 1. In the second step, the model is trained by 80% of the data set and validated by 

20%. The data set augmentation is applied in order to feed the model with all possible positions of the defect. 

At last, the obtained output is evaluated and the accuracy is calculated by varying the batch size. Four cases 

are considered, batch size equals to 10, 15, 20, and 25. 

 

 

 
 

Figure 2. Methodology of the proposed model 

 

 

4. MODEL 

As illustrated in the Figure 3, the sequential model is constituted by three of convolutional blocs 

with layer of maximum pooling for each layer of convolution. The model is fully connected layers of size 

128. The function of activation is Relu (1). The rectified linear units is a non-lineair function that equals:  

 

𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥) (1) 

 

 

 
 

Figure 3. Architecture of CNN implemented model 
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5. RESULTS AND DISCUSSION  

5.1.  Data set augmentation 

The model is fed by a random transformation of the images. This helps in increasing the 

performance of the model. The Figure 4 shows the increasing accuracy for two cases. The Figure 4(a) and 

Figure 4(b) illustrate the variation of the loss and the accuracy in the case of data augmentation. The  

Figure 4(c) and Figure 4(d) show the variation of loss and accuracy for non-augmented data. By comparing 

the two cases, we conclude that the augmented data allow increasing the accuracy. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 4. Learning curves of the proposed model; (a) and (b) for augmented data, (c) and (d) for non-

augmented data 

 

 

5.2.  Effect of batch size on the model accuracy 

To find the effect of the batch size on the performance of the model, we calculate the accuracy 

variation for different batch sizes. The Figure 5 presents the variation of validation accuracy for four cases of 

batch size. As shown in the figure, the validation accuracy does not depend on the batch size. The four curves 

are slightly different. 
 
 

 
 

Figure 5. Validation accuracy for different cases of batch size 
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5.3.  Evaluation of the model for different batch size 

To evaluate the proposed model, we try to predict the type of welding surface by 4 batch sizes for 

the same number of epochs. The Table 2 demonstrates that as the size of batch increases the time of 

computation also increases. Concerning the confidence, it does not depend on the batch size. It appears that 

using the batch size of 10 let the model to be more precise. 

 

 

Table 2. Confidence for different batch size 
Batch size Time (ms/step) Confidence (%) 

10 357 99,72 
15 396 98,86 

20 472 99,53 

25 707 99,63 

 

 

5.4.  Experimental validation  

The idea is to feed the classifier robot presented in Figure 6. The robot presented in the Figure 6(a) 

is equipped with a precise-vision camera that scans the part. The captured image Figure 6(b) is then inserted 

into the program. The proposed method is accurate by predicting the type of welding with a precision  

of 99%. 

 

 

 

 

(a) (b) 

 

Figure 6. Experimental validation (a) robot with vision camera and (b) tested welding image 

 

 

6. CONCLUSION 

This study aims to develop a CNN model to predict the type of welding surface by radiographic 

images. We found that the data augmentation helps a lot to earn more accuracy. In addition, the batch size 

does not affect the accuracy. Moreover, we demonstrated that the batch size affects the computational time. 

The automation of weld defect detection is possible by deep learning. The performance of the model depends 

on the architecture of the classifier. The robot classifier development will be studied in the next articles. 
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