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 Band selection is crucial for achieving high classification accuracy in 

hyperspectral image (HSI) analysis, especially when ground truth data are 

limited. While unsupervised algorithms are preferred in such scenarios, the 
effectiveness of k-means clustering depends heavily on the choice of 

similarity measure. This article presents a novel two-level clustering 

approach for band selection. In the first level, bands are clustered using  

k-means with various similarity measures such as Euclidean distance, 
spectral angle mapper (SAM), and spectral information divergence (SID). 

Subsequently, the second level leverages the chord metric k-means 

clustering to form clusters of HSI scenes upon optimal band clusters from 

the first level. This initial band selection reduces dimensionality and guides 
subsequent k-means clustering. The proposed chord-based clustering 

method, utilizing the chord metric, outperforms standard k-means variants, 

demonstrating significant improvements in accuracy. Experimental results 

on publicly available hyperspectral datasets confirm the effectiveness of the 
proposed approach as an alternative to traditional k-means algorithms, 

showcasing significant improvements in accuracy. 
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1. INTRODUCTION 

Hyperspectral imaging (HSI) provides more details about the objects that are captured in the scene 

with rich spectral information. Having large spectral information is very useful to characterize the objects and 

classify them efficiently. On the other hand, having more spectral bands makes results in less accuracy when 

using any machine-learning algorithm for classification. Hence, spectral band selection has been an important 

study in HSI classification [1], [2]. Mixed pixel due to low spatial resolution demand more robust band 

selection or dimensionality reduction techniques [3]. HSI band selection is crucial for capturing essential 

ground object information, reducing redundancy, and reducing computational costs. With continuous 

research on HSI imagery, HSI image analysis has been used in various applications such as environmental 

monitoring, precision agriculture, mineral exploration, and urban planning [1]. 

Su and Du [4] classified band selection methods into six categories, with a primary focus on 

ranking-based methods that prioritize bands based on spectral importance and an objective function. These 

methods, whether supervised or unsupervised, demonstrate a systematic and versatile nature, crucial for 

efficient analysis or classification tasks. While recognizing their potential, the study acknowledges that 

https://creativecommons.org/licenses/by-sa/4.0/
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ranking-based approaches may lead to suboptimal band subset selection (BSS), highlighting the nuanced 

decision-making involved in their deployment across diverse scenarios. Chang and Liu [5] propose  

a statistical-based band prioritization method for hyperspectral analysis, utilizing measures like variance and 

skewness for dimensionality reduction while preserving critical spectral information. Despite its efficiency, 

potential risks of inaccurate BSS impacting classification accuracy are acknowledged. In a related context, 

Pal and Foody [6] highlight the support vector machine (SVM) approach’s superior performance in 

discerning relevant features, with challenges noted in unsupervised datasets. Yu et al. [7] introduce the 

linearly constrained minimum variance BSS (LCMV-BSS) algorithm, optimizing band subsets in 

hyperspectral data for enhanced classification accuracy and computational efficiency. Meanwhile, Imani and 

Ghassemian [8] present the binary coding-based feature extraction (BCFE) method, surpassing principal 

component analysis (PCA) and linear discriminant analysis (LDA) in dimensionality reduction for 

hyperspectral analysis, particularly effective in capturing discriminative features for improved classification 

accuracy. Together, these studies underscore the nuanced considerations and challenges in optimizing 

hyperspectral data analysis through advanced feature selection techniques, offering promising avenues for 

improved dimensionality reduction and classification accuracy. 

Du and Yang [9] explored efficient band selection in hyperspectral analysis through linear 

regression-based (LP) and orthogonal subspace projection (OSP) methods, prioritizing bands with high 

prediction errors for dimensionality reduction and enhanced computational efficiency. Qian et al. [10] 

proposed a novel feature selection approach using Kullback-Leibler divergence and kurtosis-based similarity 

matrices, followed by Affinity Propagation clustering, improving classification accuracy by selecting 

informative bands and reducing dimensionality. Keshava [11] emphasized the significance of distance 

metrics like SAM and SID, coupled with spectral libraries, for material identification in hyperspectral data, 

enhancing the selection of informative bands and improving discriminative capabilities. Rajakani et al. [12] 

discussed various band selection methods, including BCM, BDM, BCC, and BDC, aiming to minimize 

redundancy and enhance discriminative power in hyperspectral datasets through normalized correlation-

based techniques. Finally, Thenkabail [13] highlighted band selection as a dimensionality reduction 

technique that selectively chooses informative bands without mathematically transforming the data, 

facilitating efficient processing and analysis by removing redundant or irrelevant bands while retaining 

crucial spectral information. Overall, these studies collectively contribute to advancing band selection 

methodologies for improved hyperspectral analysis. 

K-means clustering can be improved by effectively choosing the better similarity measure the study 

by Gupta and Chandra [14] shows that similarity metric has an impact on clusters formed by k-means.  

Gupta and Chandra [15] highlight the significant role that distance/similarity metrics play in pattern 

recognition tasks. They specifically mention Euclidean, Manhattan, Mahalanobis, and Minkowski metrics, 

emphasizing their adaptability even when dealing with binary data. In a similar vein, Konstantin and Gribov [16] 

delve into covariance models and explore the use of kriging and the chordal metric for analyzing 

multidimensional data points, with a specific focus on spatial analysis. The studies by Kapil and Chawla [17], 

Gupta and Chandra [15] provide valuable insights into the application of similarity/distance metrics in  

k-means clustering across different domains. The research emphasizes the sensitivity of the k-means 

algorithm to metric choices and highlights the impact of altering similarity metrics on cluster formation. 

These findings contribute to a better understanding of the optimal metric selection for k-means clustering, 

particularly in the context of online user data and IoT/multimedia applications. Further research in this area 

could explore additional domains and properties to ascertain the broader applicability of these insights. 

Khalifa et al. [18] investigated the application of clustering techniques with diverse similarity/ 

dissimilarity measures to select compounds from a chemical drug repository. The study focuses on a 

clustering approach termed “dissimilarity-based compound selection (DBCS),” aiming to identify a subset of 

chemical molecules from a drug database through agglomerative and hierarchical clustering methods. 

Agglomerative clustering employed the group-average technique with various similarity measures, while 

hierarchical clustering utilized the Jarvis-Patrick method. In the latter, molecules were added to a cluster if 

their nearest neighbor lists shared common elements with the cluster. 

The studies by various authors [19]-[22] provide valuable insights into the application of 

similarity/distance metrics in k-means clustering across different domains. The research emphasizes the 

sensitivity of the k-means algorithm to metric choices, highlighting the impact of altering similarity metrics 

on cluster formation and the trade-offs associated with traditional and innovative metrics. These findings 

contribute to a better understanding of the optimal metric selection for k-means clustering in various 

contexts, such as online user data, internet of things (IoT)/multimedia applications, high-dimensional data, 

text document analysis, and higher-dimensional spaces. Further research in this area could explore additional 

domains and properties to ascertain the broader applicability of these insights and potentially lead to 

enhancements in clustering algorithms for improved outcomes. The research articles by Qiao et al. [22], 
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Vijay et al. [23] shed light on the significance of distance metrics in deep learning and clustering analysis. 

Qiao et al. [22] emphasized the superiority of cosine similarity in classifying HSI, while Vijay et al. [23] 

highlighted the nuanced and context-dependent nature of distance metric selection in clustering problems. 

Their findings provide valuable insights for the effective application of distance metrics in diverse domains 

of deep learning and clustering analysis. 

Shirkhorshidi et al. [24] investigated the impact of similarity metrics on distance-based clustering in 

higher-dimensional spaces, introducing the effective chord metric with k-means clustering. Their study 

highlighted k-means’ versatility across diverse datasets with various metrics. Meanwhile, Ghazal et al. [25] 

extensively assessed similarity metrics on k-means performance, emphasizing the consistent superiority of 

the Manhattan metric in execution time across diverse datasets and cluster sizes. Both studies underscored the 

critical role of metric selection in optimizing k-means and suggested exploring alternative algorithms for 

enhanced clustering outcomes across different datasets. 

Lundholm and Svensson [26] present a comprehensive overview of Clifford geometry, delving into 

its origins and applications. Their study rigorously explores the Clifford framework, substantiating claims 

with proofs, and highlights applications in cybersecurity, image processing, neural networks, and geometric 

fields, showcasing the efficacy of Clifford algebra. Simultaneously, Hitzer et al. [27] extensively explore 

Clifford algebra applications, emphasizing its relevance in cybersecurity for robust data analysis and in 

image processing for advanced techniques. The integration with neural networks introduces innovative 

algorithms for complex tasks in machine learning and pattern recognition. Overall, both studies underscore 

the versatility and significance of Clifford algebra across diverse technological domains, offering valuable 

insights into its potential for advancing various fields, including computer graphics, design, and robotics. 

As per Dorst [28] there is a brief discussion of the chord metric detailed analysis procedure, where 

Dorst has mentioned chord metric and its relationship with Clifford algebra. Dorst defines the chord metric 

utilization which follows the Clifford algebra principle and also proves how Clifford algebra principles are 

being followed by the chord metric defined in (10). As per drost, the chord metric follows the Clifford 

principle upon scalars, vector space, bi-vector space, and tri-vector spaces which are defined as Clifford 

algebraic blades defined in (1). 

 

1, (𝑒1, 𝑒2, 𝑒3), ((𝑒1Λ𝑒2), (𝑒1Λ𝑒3), (𝑒2Λ𝑒3)), (𝑒1Λ𝑒2Λ𝑒3) (1) 

 

The first segment of (1) [28] is a scalar product of values, and the second part of (e1, e2, e3) is a 

vector space representation of Clifford Algebra Blades which separate the multidimensional representation 

by utilizing orthogonal subspaces. The third part of equation 1 is a Bi-vector space representation separated 

with a combination of orthogonal subspace blades like (e1 ^ e2) where e1 and e2 are two orthogonal 

subspace vectors and the last part (e1 ^ e2 ^ e3) is Tri-vector orthogonal representation of a vector which has 

three orthogonal subspace blades of Euclidean subspace representation. As per Ruhe et al. [29] the Clifford 

algebra is used for constructing deep neural networks (DNNs), Brandstetter et al. [30] offer a comprehensive 

study on the utilization of Clifford algebra, highlighting its advantages in deep learning. The research 

specifically emphasizes the application of Clifford geometry in constructing neural networks, leading to 

improved accuracy. The authors propose Clifford neural networks as an alternative implementation for 

solving partial differential equations (PDEs), showcasing promising results in comparison. Drost [28], 

Brandstetter et al. [30] described geometric Clifford algebra networks (GCANs) which are based on 

symmetric group transformations using this geometry of Clifford. These GCANs are more suitable for places 

that require manipulating geometric transformations for dynamic systems. In summary, the research 

endeavors discussed encompass band selection, clustering with various similarity metrics, and clustering 

algorithms. 

Band selection methodologies, presented in [6], [8], [9], [12], provide a wide range of techniques 

from leveraging statistical variation to treating band selection as a ranking or regression problem, 

emphasizing the importance of reducing dataset dimensionality while capturing fundamental spectral 

information. Further, the unsupervised band selection approaches take advantage of the ability to handle 

unlabeled data without ground truth. Having the greater advantage of linear time complexity and ease of 

implementation, the k-means clustering method and its improvement with spectral similarities are revisited in 

the proposed work and a two-level clustering approach for band selection. The first level focuses on 

identifying the spectrally dissimilar bands and the second level clustering leverages the chord metric distance 

to further improve the accuracy of the band selection. This unsupervised approach effectively preserves 

spectral information, handling complex characteristics for accurate band selection and improved 

hyperspectral data analysis results. 
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2. METHOD 

The key objective of the research work presented in this paper is to identify a subset of bands using 

an unsupervised (clustering) approach leveraging spectral similarity measure and to incorporate chord metric, 

improvising the classification accuracy of the traditional k-means clustering algorithm. 

The proposed methodology runs in two steps:  

a. Initial band selection by clustering the spectral bands using k-means with spectral similarity measure 

(KM-SSM).  

b. Implement chord k-means (CKM) for optimal band selection. 

Band selection is performed with k-means as shown in Algorithm 1 where bands selected for step 2 

(CKM clustering) these chosen bands are the original represented bands of the original HSI data sets. In our 

proposed approach, the spectral similarity measures viz., spectral angel mapper (SAM), spectral information 

divergence (SID), hybrid measure with spectral angle mapper (SIDSAM), Jeffery-Matusita (JM), JM with 

SAM (JM-SAM), and normalised cross correlation (NCC) are used in place of Euclidean measure for 

spectral similarity. The mathematical formulae to compute the ED, SAM, SID, SIDSAM, JM, JM-SAM, and 

NCC are shown in (2)-(8). The step 2 process involves applying Algorithm 2 for band selection using (2)-(8). 

Then, the bands selected by Algorithm 1 are used as input for the Algorithm 2. By evaluating and fine-tuning 

‘r’ for each set of bands, the goal is to improve the performance of the chord k-means algorithm, particularly 

for datasets with high dimensionality (more than 20 bands). 
 

Algorithm 1. K-means clustering with SSM for band selection in HSI (DN×M, k, π(0)) (KM-SSM) 
1. Initialize the seed cluster centers K-means++ initialization, denoted by  

𝜇(0) = {𝑏1
(0)

, 𝑏2
(0)

, . . . 𝑏𝑘
(0)

}. 
2. For each spectral band bi in D, find its nearest spectral(l) band bj using 

ED/SAM/SID/SIDSAM, and assign bi to C
l
j. 

3. Compute the updated mean spectral similarity of each cluster Clj. 
4. Reassign each spectral band bi in D, find its nearest spectral band bj(

l+1) using 

ED/SAM/SID/SIDSAM, and assign bi to Clj+1. 

5. Repeat steps 2 through step 4 till convergence. 
6. Identify one optimal band bi(0) from each cluster such that bi(0) is the most spectrally 

similar to the center of the cluster Ci(0). 

7. Output: selected spectral bands from each cluster.  

 

ED (Si, Sj)  =  √{∑ (Si  −  Sj)
2L

{i,j=1}  } (2) 

 

𝑆𝐴𝑀(𝑆𝑖, 𝑆𝑗  ) = 𝑐𝑜𝑠 −1(𝜃),  
 

𝜃 =  [{
∑ {𝑆𝑖𝑆𝑗}𝐿

𝑖,𝑗=1

{√{∑ {𝑆𝑖
2}𝐿

𝑖=1 }}∗{√{∑ {𝑆𝑗
2}𝐿

𝑗=1 }}

}] (3) 

 

𝑆𝐼𝐷(𝑆𝑖 , 𝑆𝑗) =  ∑ 𝑆𝑖 ∗ log(
𝑆𝑖

𝑆𝑗
)𝐿

𝑖=1 + ∑ 𝑆𝑗 ∗ log(
𝑆𝑗

𝑆𝑖
)𝐿

𝑖=1  (4) 

 

𝑆𝐼𝐷𝑆𝐴𝑀(𝑆𝑖, 𝑆𝑗) = 𝑆𝐼𝐷(𝑆𝑖 , 𝑆𝑗) ∗  tan ( 𝑆𝐴𝑀 (𝑆𝑖, 𝑆𝑗)) (5) 
 

𝐽𝑀(𝑆𝑖, 𝑆𝑗) =  √∑ [√𝑆𝑖 − √𝑆𝑗]2𝐿
𝑖=1  (6) 

 

𝐽𝑀 − 𝑆𝐴𝑀(𝑆𝑖 , 𝑆𝑗) = 𝐽𝑀(𝑆𝑖 , 𝑆𝑗) ∗ tan ( 𝑆𝐴𝑀(𝑆𝑖 , 𝑆𝑗)) (7) 
 

𝑁𝐶𝐶(𝑖, 𝑗) =  
∑ [𝐷𝑖(𝑥,𝑦)−𝐷𝑖̅̅ ̅]∗[𝐷𝑗(𝑥,𝑦)−𝐷𝑖̅̅ ̅]𝑥,𝑦

√∑ (𝐷𝑖(𝑥,𝑦)−𝐷𝑖̅̅ ̅)2
𝑥,𝑦 ∗√∑ (𝐷𝑗(𝑥,𝑦)−𝐷𝑗̅̅̅̅ )2

𝑥,𝑦

 (8) 

 

𝑁𝑜𝑟𝑚(𝑆𝑖 , 𝑋) =  
𝑆𝑖−𝑋

𝜎(𝑥)
 (9) 

 

𝐶𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑖,𝑆𝑗) =  
𝑆𝑖 ,𝑆𝑗

𝑆𝑖∗𝑆𝑗
 , Θ =  cos−1( 𝑐𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 )  

 

𝐶ℎ𝑜𝑟𝑑(𝑆𝑖 , 𝑆𝑗) = 2 ∗ 𝑟 ∗ sin
Θ

2
 (10) 
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Algorithm 2. Chord k-means clustering with band selection HSI (DL×k L = N ×M Pixels, K, Lab(1)) (chord-KM) 
1. Use reduced bands from Algorithm 1 for each method of (2) to (7) so that the data set is 

represented with the bands of the methods as DL×k = {b1, b2, ..., bk} 

2. Normalise the reduced DL×k with Z-score normalisation as (9) 
3. For DL×k, randomlyinitialise the seeds as µ(0) = {p1, p2, ..., pK} 

4. For each point in DL×k find its nearest point from µ(0) seeds using chord metric in 

equation 10 and group the points according to the nearest seed as clusters Clj. 

5. Compute the updated mean of each cluster Clj. 
6. Reassign each point in DL×k, find its nearest seed updated in step 5. 
7. Repeat steps 5 and step 6 till convergence and label each point according to cluster Clj. 
8. Final labels of each point in DL×k is compared to ground truth for accuracies. 
Output: the labels of step 7 are Lab(1) = {l1,l2, ..., lk} 

 

Here in (2) to (7) Si and Sj are the pixel vectors of an HSI image, wherein it holds the condition that 

i,j< L where L is the number of bands present in an HSI. In (8) Di (x,y), Dj (x,y) represents (x,y) indexed 

pixel value of an HSI band, and D̅ represents the mean of the band pixels of HSI. 

In (10) represents the chord metric that follows the Clifford Algebra principles as described by Dorst [28] 

where the principle of the chord is applied by slicing the multidimensional Sphere as shown in Figure 1. 

Where the chord metric is a slice of the sphere with a certain radius that variation of radius tries to 

differentiate the clusters formed by k-means with non-convex shapes. In Figure 1 (10) ‘r’ is the radius of the 

sphere which is sliced at a part of the sphere and ‘Ɵ’ is the angle formed by the radius of the sphere which is 

sliced, Figure 2 represents the quaternion representation of Clifford algebra of the sliced sphere where e1, e2, 

e3 are of (10). 
 
 

 
 

Figure 1. Chord metric of (10) 
 

 

To enhance the approach, it’s crucial to consider the effectiveness of both the 1 and 2 algorithms,  

as well as the suitability of the equations for band selection. Additionally, the dataset’s characteristics will 

play a key role in determining the selected bands’ relevance and the approach’s overall success. 
 

 

 
 

Figure 2. Quaternions representation of Clifford algebra [28] 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Datasets 

Indian Pines were collected by the airborne visible/infrared imaging spectrometer (AVIRIS) sensor 

over the Indian Pines test site in Northwestern Indiana, USA. The dataset contains 145×145 pixels, with 224 

spectral bands covering the wavelength range from 0.4 to 2.5 micrometers, and has a spatial resolution of 20 

meters per pixel in 16 different classes. Salinas was collected by the AVIRIS sensor over the Salinas Valley 

in California, USA. The dataset contains 512×217 pixels, with 224 spectral bands covering the wavelength 
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range from 0.4 to 2.5 micrometers, and has a spatial resolution of 3.7 meters per pixel. the ground truth 

contains 16 different classes. 

Pavia Univeristy hyperspectral data was acquired by the ROSIS sensor during a flight campaign 

over Pavia, northern Italy. It has 610*610 pixels and the ground truth contains 9 classes. (Provided by Prof. 

Paolo Gamba). Pavia center contains 610 spectral bands and covers an area of approximately 610×340 pixels, 

with each pixel representing a square of 1.3 meters. This hyperspectral dataset has nine classes, which 

represent different land-cover types in the city of Pavia. 

 

3.2.  Results 

This section represents the utilization of real-time HSI datasets in applying the proposed 

methodology. The results are presented in Tables 1 and 2 as the overall accuracy and kappa coefficient, 

where Algorithm 2 is used with a chord metric ranging from 2 to 3. The highlighted values indicate the 

highest accuracy achieved using the respective method described in each column. 
 

 

Table 1. Overall accuracy of Pavia center 
R ED SID JM JM-SAM NCC SAM SID-SAM 

2 0.97 0.95 0.97 0.98 0.97 0.97 0.95 

2.05 0.97 0.95 0.96 0.98 0.96 0.97 0.94 

2.1 0.97 0.97 0.97 0.98 0.97 0.97 0.97 

2.15 0.96 0.94 0.97 0.98 0.97 0.97 0.96 

2.2 0.97 0.95 0.97 0.98 0.97 0.97 0.97 

2.25 0.97 0.97 0.97 0.97 0.97 0.97 0.95 

2.3 0.96 0.96 0.97 0.98 0.97 0.98 0.95 

2.35 0.97 0.97 0.96 0.98 0.97 0.98 0.97 

2.4 0.97 0.95 0.97 0.98 0.97 0.97 0.97 

2.45 0.96 0.96 0.97 0.98 0.96 0.97 0.95 

2.5 0.95 0.96 0.96 0.98 0.97 0.97 0.95 

2.55 0.96 0.97 0.97 0.98 0.97 0.97 0.97 

2.6 0.97 0.97 0.97 0.98 0.97 0.95 0.96 

2.65 0.97 0.97 0.97 0.98 0.97 0.95 0.97 

2.7 0.97 0.95 0.97 0.98 0.96 0.97 0.97 

2.75 0.97 0.94 0.96 0.98 0.97 0.97 0.95 

2.8 0.96 0.97 0.97 0.98 0.96 0.97 0.97 

2.85 0.97 0.97 0.97 0.98 0.97 0.97 0.97 

2.9 0.97 0.97 0.96 0.96 0.94 0.96 0.95 

2.95 0.97 0.97 0.97 0.97 0.97 0.95 0.95 

 
 

Table 2. Kappa coefficient of Pavia center 
R ED SID JM JM-SAM NCC SAM SID-SAM 

2 0.91 0.86 0.91 0.93 0.90 0.91 0.86 

2.05 0.91 0.86 0.88 0.93 0.86 0.92 0.83 

2.1 0.91 0.91 0.91 0.94 0.91 0.91 0.90 

2.15 0.87 0.83 0.91 0.93 0.91 0.91 0.89 

2.2 0.91 0.86 0.91 0.93 0.91 0.92 0.90 

2.25 0.91 0.91 0.91 0.91 0.91 0.91 0.86 

2.3 0.87 0.89 0.91 0.93 0.91 0.93 0.86 

2.35 0.91 0.90 0.87 0.93 0.91 0.93 0.91 

2.4 0.91 0.86 0.90 0.93 0.91 0.91 0.91 

2.45 0.87 0.89 0.91 0.93 0.87 0.91 0.86 

2.5 0.86 0.89 0.88 0.93 0.91 0.92 0.86 

2.55 0.87 0.91 0.91 0.93 0.90 0.91 0.91 

2.6 0.91 0.91 0.91 0.94 0.91 0.86 0.89 

2.65 0.91 0.91 0.91 0.93 0.91 0.86 0.90 

2.7 0.90 0.86 0.91 0.93 0.87 0.91 0.91 

2.75 0.91 0.82 0.89 0.93 0.90 0.91 0.86 

2.8 0.87 0.90 0.91 0.93 0.86 0.92 0.91 
2.85 0.91 0.91 0.91 0.93 0.91 0.92 0.91 

2.9 0.91 0.91 0.87 0.88 0.83 0.89 0.86 

2.95 0.91 0.91 0.91 0.91 0.91 0.84 0.86 

 

 

For instance, Table 1 represents the scene of Pavia center and the column labeled ‘R’ corresponds to 

the range of ‘r’ values in (9). Additionally, the columns which are implementation of Algorithm 1 KM-SSM 

band selection methods which are defined as follows: 

- ED: represents the ‘Euclidean distance’ method applied in (2). 

- SAM: denotes the ‘Spectral angle mapper’ as defined in (3). 
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- SID: denotes the ‘Spectral information divergence’ as defined in (4). 

- SIDSAM: denotes the ‘Spectral information divergence’ with ‘spectral angle mapper’ as defined in (5). 

- JM: denotes the ‘Jeffereys Matusita’ as defined in (6). 

- JM-SAM’: denotes the ‘Jeffereys Matusita’ with ‘spectral angle mapper’ as defined in (7). 

- NCC: denotes the ‘normalised cross co-relation’ in (8). 

Figure 3 represents the graphical representation of Algorithms 1 and 2 and the workflow of the 

complete proposed method. Algorithms 1 and 2 are applied one after the other, and the result of Algorithm 1 

is given as input to Algorithm 2. The ground truth and classification images of the Pavia center after the 

proposed work are represented in Figures 3 to 5. Tables 1 and 2 provide insights into the accuracy achieved 

by the proposed method, with columns like ED, SID, representing various techniques for band selection from 

Algorithm 1. Each column in the tables corresponds to the accuracy achieved by applying these band 

selection methods with chord metric-based clustering by Algorithm 2. The first column, denoted as R, 

signifies the chord metric radius, varying between 2 and 3 with an interval of 0.05. Notably, the best accuracy 

varies for each band subset generated by Algorithm 1. JM-SAM stands out with the highest accuracy, 

indicated by a kappa value of 0.94 in Table 2. In comparison to other seeding mechanisms like Random-

Seeding and Kmeans++, “chord k-means with spectral similarity measures-based band selection (CKM-

SSB)” demonstrates superior performance. Specifically, for the JM-SAM band subset, the Kappa values are 

0.722 for random seeding, 0.694 for KM++, and notably higher at 0.942 for CKM-SSB, highlighting its 

efficacy in achieving improved accuracy.  

The KM-SSM-Chord-KM algorithm exhibits superior performance compared to traditional k-means 

methods, namely KM-RS and KM++, as demonstrated on the Pavia center dataset. With a Kappa value of 

0.942, KM-SSM-Chord-KM outperforms other k-means approaches (Kappa values around 0.72) shown in 

Table 3 when coupled with various band selection strategies such as SID and JM. The results are consistent 

across different datasets, highlighting the algorithm’s robustness and efficacy. The research suggests that 

KM-SSM-Chord-KM holds promise for HSI analysis, potentially surpassing current state-of-the-art 

clustering algorithms. Further exploration into its generalizability and avenues for future research is 

warranted. The result of Algorithm 1 is represented in Table 4 where the bands represent from 0 to the 

number of bands present in the bands set, band 0 represents the first band of the data set. 

Figure 6 demonstrates the comparative impact of the proposed algorithm method against traditional 

mechanisms like k-means with standard random seeding and k-means++ seeding. It reveals a marginal 

decrease in accuracy when employing traditional methods, whereas CKM notably enhances dataset accuracy. 

Interestingly, CKM consistently outperforms traditional methods across various metrics, including ED, SID, 

SAM, NCC, JM, and hybrid methods like SID-SAM and JM-SAM. This improvement is evident even with 

metric variations in the k-means algorithm. 

 

 

 
 

Figure 3. Flowchart of proposed work 
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Figure 4. Classification map of Pavia center by the proposed 

method with r = ‘2.6’ 

 

Figure 5. Ground truth map of Pavia center 

 

 

Table 3. Kappa of Pavia center data set 
Method KM+RS KM++ SSB-CKM 

ED 0.544 0.725 0.914 

SID 0.558 0.689 0.909 

SAM 0.628 0.701 0.932 

SIDSAM 0.558 0.689 0.907 

NCC 0.622 0.686 0.912 

JM 0.480 0.722 0.914 

JM-SAM 0.722 0.694 0.942 

 

 

Table 4. Bands selected using the proposed method for Pavia center 
Data set Method Bands selected from SSB methods 

Pavia 

center 

ED 0/ 1/ 2/ 3/ 4/ 5/ 6/ 7/ 16/ 17/ 18/ 28/ 29/ 30/ 42/ 43/ 44/ 69/ 70/ 71/ 83/ 84/ 85 

SAM 0/ 1/ 2/ 3/ 11/ 12/ 13/ 25/ 26/ 27/ 38/ 39/ 40/ 55/ 56/ 57/ 72/ 73/ 74/ 83/ 84/ 85 

SID 0/ 1/ 2/ 3/ 4/ 5/ 6/ 8/ 9/ 10/ 24/ 25/ 26/ 41/ 42/ 43/ 68/ 69/ 70/ 83/ 84/ 85 

SID-SAM 0/ 1/ 2/ 3/ 4/ 5/ 6/ 8/ 9/ 10/ 24/ 25/ 26/ 41/ 42/ 43/ 68/ 69/ 70/ 83/ 84/ 85 

NCC 0/1/2/3/4/5/6/15/16/17/31/32/33/52/53/54/72/73/74/83/84/85 

JM 0/ 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 11/ 12/ 17/ 18/ 19/ 26/ 27/ 28/ 36/ 37/ 38/ 54/ 55/ 56/ 71/ 72/ 73/ 83/ 84/ 85 

JM-SAM 2/ 3/ 11/ 14/ 21/ 23/ 26/ 27/ 29/ 32/ 33/ 34/ 36/ 39/ 40/ 41/ 42/ 43/ 44/ 45/ 46/ 47/ 48/ 49/ 50/ 56/ 57/ 62/ 

63/ 65/ 66/ 67/ 70/ 71/ 72/ 74/ 78/ 80/ 84/ 85/ 86/ 98 

 

 

 
 

Figure 6. Comparison of the proposed method with different k-means variants with overall accuracy 

 

 

4. CONCLUSION 

The proposed approach demonstrates a notable enhancement over conventional k-means clustering 

techniques employing random seeding and k-means++ seeding. Specifically, k-means-SSM clustering is 
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executed for feature selection. It becomes evident that incorporating DR into the chord k-means framework 

contributes to improved results. The proposed chord metric-based k-means (chord-k-means) clustering 

finding the exact ‘r’ value which yields the best accuracy is another problem perspective. This strategic 

integration of DR enhances the algorithm’s ability to extract relevant features, leading to a more refined and 

effective clustering process. Furthermore, exploring the impact of different seeding methods on the execution 

of chord k-means provides promising results.  
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