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 Retinal disorders impact millions of people globally. These disorders can be 

detected and diagnosed early enough to not only cure but also avoid 

permanent blindness. Manual identification of these diseases has always 

been tedious, time-consuming, and inconsistent. For ophthalmologists, 

retinal fundus images are a valuable source of information in diagnosing 

retinal diseases. Automatic identification of eye disorders using artificial 

intelligence (AI) based learning models has seen substantial development in 

the computer vision sector recently. Various models, particularly deep 

learning (DL) models are incredible in identifying and classifying diseases. 

In the presented review, we have performed an in-depth analysis of various 

existing DL models, involving preprocessing, classification, segmentation, 

and techniques to deal with data imbalance. We have also endeavored to 

gauge the effectiveness of these models by evaluating their performance 

using the metrics employed in their assessment. In addition, we explored 

various challenges along with the potential future scope in this domain. 
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1. INTRODUCTION 

According to current estimates, there are approximately 2.2 billion individuals suffering from visual 

impairments across the globe. At least 1 billion of these cases could have been averted or whose causes have 

not yet been addressed, per the World Health Organization (WHO) [1]. The major causes of these diseases 

are attributed to ocular diseases. Vision loss and blindness have significant adverse social and psychological 

effects in all societies. Medical imaging is evolving rapidly and has a substantial impact on patient 

management today. The precise and timely diagnostics by this imaging technique have shown promising 

results in visualizing anomalies existing in the patient’s body, determining disease stages, progression, and 

treatment planning. For instance, in ophthalmology, the availability of optical coherence tomography (OCT) 

is unparalleled. It has reduced the dependency on ophthalmologists’ expertise and knowledge. Examining 

and grading the images manually is not just cumbersome and laborious; it could also lead to misinterpretation 

and the waste of health data. However, with the increasing volume and complexities of medical diagnostic 

imaging, interpretation and controlling retinal disease is more complicated due to the diverse images and 

findings that are recorded for individuals, and also the hypothesis that supports it [2]. 

While conventional diagnostic techniques were heavily based on the physician’s ability to manually 

assess the medical data, modern clinical diagnostic techniques rely on intelligent technologies to manage the 

https://creativecommons.org/licenses/by-sa/4.0/
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medical data efficiently. Computer-aided diagnosis (CAD) and other artificial intelligence (AI) disciplines 

have proven to be highly productive in screening seemingly huge-scale data [2], [3]. Furthermore, AI has a 

substantial role in the field of ophthalmology, especially in diagnosis and therapy for retinal diseases because 

of its practical image interpretation [3], [4]. Retinal diseases vary widely based on categories and disease 

phases. Early detection is crucial for curable diseases, as overlooking them can lead to gradual vision loss 

and permanent blindness. Common retina diseases include diabetic retinopathy (DR), cataracts, glaucoma, 

age-related macular degeneration (AMD), retinal detachment, retinal tear, and macular hole. Limited clinical 

data availability makes refining the accuracy of medical imaging modalities challenging. However, with the 

advent of deep learning (DL), automated diagnosis of multiple retinal ailments has gained significant interest.  

The study’s remaining sections are structured as follows: Section 2 delves into the transition from 

traditional machine learning (ML) to DL, exploring various CNN models. Transfer learning, Multi-label 

classification, and Ensemble approaches are covered in Sections 3, 4, and 5, respectively. Section 6 addresses 

data imbalance through data augmentation techniques. Section 7 critically examines DL techniques, their 

performances, and vulnerabilities. The paper concludes in Section 8. 
 
 

2. OUTLINE OF DL METHODS 

A class of AI called ML trains the system to gain knowledge from the chunk of data, followed by 

accurate predictions without much human interference. It can further be classified as supervised, 

unsupervised, and reinforcement learning [5]-[9]. The conventional ML algorithms are shown in Table 1. 

According to current estimates, there are approximately 2.2 billion individuals suffering from visual 

impairments across the globe. At least 1 billion of these cases could have been averted or whose causes have not 

yet been addressed, per the WHO [1]. The major causes of these diseases are attributed to ocular diseases. 

Vision loss and blindness have significant adverse social and psychological effects in all societies. Medical 

imaging is evolving rapidly and has a substantial impact on patient management today. The precise and timely 

diagnostics by this imaging technique have shown promising results in visualizing anomalies existing in the 

patient’s body, determining disease stages, progression, and treatment planning. For instance, in ophthalmology, 

the availability of OCT is unparalleled. It has reduced the dependency on ophthalmologists’ expertise and 

knowledge. Examining and grading the images manually is not just cumbersome and laborious; it could also 

lead to misinterpretation and the waste of health data. However, with the increasing volume and complexities of 

medical diagnostic imaging, interpretation and controlling retinal disease is more complicated due to the diverse 

images and findings that are recorded for individuals, and also the hypothesis that supports it [2]. 

While conventional diagnostic techniques were heavily based on the physician’s ability to manually 

assess the medical data, modern clinical diagnostic techniques rely on intelligent technologies to manage the 

medical data efficiently. CAD and other AI disciplines have proven to be highly productive in screening 

seemingly huge-scale data [2], [3]. Furthermore, AI has a substantial role in the field of ophthalmology, 

especially in diagnosis and therapy for retinal diseases because of its practical image interpretation [3], [4]. 

Retinal diseases vary widely based on categories and disease phases. Early detection is crucial for curable 

diseases, as overlooking them can lead to gradual vision loss and permanent blindness. Common retina 

diseases include DR, cataracts, glaucoma, AMD, retinal detachment, retinal tear, and macular hole. Limited 

clinical data availability makes refining the accuracy of medical imaging modalities challenging. However, 

with the advent of DL, automated diagnosis of multiple retinal ailments has gained significant interest.  

The study’s remaining sections are structured as follows: Section 2 delves into the transition from 

traditional ML to DL, exploring various CNN models. Transfer learning, multi-label classification, and 

Ensemble approaches are covered in sections 3, 4, and 5, respectively. Section 6 addresses data imbalance 

through data augmentation techniques. Section 7 critically examines DL techniques, their performances, and 

vulnerabilities. The paper concludes in section 8. 
 

 

Table 1. Classification of ML techniques 
Classification Description Applications Algorithms 

Supervised 
learning 

The system is trained with labeled 
datasets 

Classification, regression, 
and forecasting 

Linear Classifiers, SVM, Random 
Forest, Decision Tree, Logistic 

Regression, KNN, Naive Bayes 

Unsupervised 
learning 

The system is provided with datasets 
that aren’t precisely labeled 

Clustering and 
Dimensionality 

Reduction 

k-means, PCA, Hierarchical 
clustering, Mean Shift 

Reinforcement 
learning 

Intelligent agent acquires behavior in 
an uncertain, complex environment 

through trial-and-error mechanism 

Modeling non-linear 
relationships 

in high dimensional data 

ANN, Markov Decision Process, 
Q-learning, 

Temporal difference learning 
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High-resolution images are crucial for disease identification and diagnosis applications. Conventional 

ML algorithms are inadequate due to the unpredictable traits of medical images. Their manual feature selection 

process and susceptibility to errors from overfitting/underfitting training datasets further hinder accurate 

predictions [8]. Among the techniques involving medical imaging, the one that has seen a breakthrough in 

recent years is DL. The major inspiration for DL, a subset of ML that resembles the structure of a human 

neuron, is the connectivity between neurons in the brain. The deep neural network comprises artificial neural 

nodes, organized into three layers: an input layer, multiple hidden layers, and an output layer, as illustrated in 

Figure 1. DL algorithms are capable of performing automatic feature extraction from large data sets to provide 

accurate results. Numerous DL techniques are available [10], [11] as depicted in the Table 2. 

 

 

 
 

Figure 1. Architecture of deep neural network 

 

 

Table 2. Classification of DL techniques 
Classification Description Applications 

Deep belief networks Machines are trained using labeled training 

data 

Classification, regression, recognition, and 

forecasting 
Convolution neural network Machine analyses and cluster unidentified 

patterns without human intervention 

Clustering and dimensionality reduction 

Deep autoencoder Machines are trained to analyze optimal 

behavior in their environment to make suitable 

decisions 

Modeling non-linear relationships in high-

dimensional data 

Deep boltzmann Machine Extension of RNN, additionally hidden layers 

and directionless connections between its 

nodes 

Dimension reduction, categorization, 

regression, collaborative filtering, feature 

learning 
Multi-layer Perceptron (MLP) MLP has layers of activation-function 

equipped perceptions 

Software for machine translation, 

image, and voice recognition 

Radial basis Functions (RBFs) RBFs are neural network activation used in 

RBFNs 

Regression, categorization, timeseries 

forecast 

 

 

Assessing retinal illness severity relies on fundus datasets, but the raw image quality often lacks 

precision for minor changes. Noise removal, a critical initial step in fundus image processing, involves 

applying filters like mean, median, Gaussian, and Wiener to address image imperfections [12], [13]. 

Enhancing fundus images for precise detection of subtle variations in the retinal vasculature or advanced 

disease detection requires overcoming challenges like varying vessel lengths, branches, low contrast, and 

vessel crossings. In the Figure 2, the contrast enhancement comparison with respect to HE as shown in 

Figure 2(a), AHE as shown in Figure 2(b), and CLAHE as shown in Figure 2(c) is clearly depicted. CLAHE 

has gained popularity for effectively enhancing contrast in retinal vessels. It surpasses both AHE and 

conventional HE making it the preferred choice for performance improvement [14]–[19]. 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. Comparison of contrast enhancement using HE, AHE, and CLAHE: (a) histogram equalization (HE), 

(b) adaptive histogram equalization (AHE), and (c) contrast limited adaptive histogram equalisation [20] 
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Various techniques employing CLAHE, involving top-hat and high-boost filters like Butterworth, 

Frangi, etc were used to eliminate Gaussian, salt-pepper noise and strengthen the red, green, and blue 

channels [20]–[23]. Techniques involving modified particle swarm optimization (MPSO), a fully attention-

based network (FANet) were used on CLAHE to limit intra-class inconsistencies and improve segmentation 

results [24] A unique fundus image quality assessment and segmentation of OD using CNN and Grab cut 

algorithm was introduced. The model achieved an accuracy of 98.72%, 99.21%, and 96.43% on DRION, 

DRISHTI-GS, and RIM-ONE datasets respectively [25]. 

In the realm of DL, convolutional neural networks (CNNs) stand out significantly, particularly in 

applications related to computer vision. CNN architecture as shown in Figure 3, consists of input layers for 

image data, followed by convolutional layers that extract features. Pooling layers reduce spatial dimensions, 

and fully connected layers perform classification. ReLU activation functions introduce non-linearity, aiding 

in feature learning. CNNs excel in tasks like image recognition due to their hierarchical feature extraction 

[26]–[31]. Figure 3 depicts the standard framework of a Deep CNN model. 

Liao et al. [32] proposed EAMNet, an interpretable model for efficient glaucoma diagnosis. 

EAMNet includes a CNN backbone for feature extraction, multi-layer average pooling (M-LAP) for 

connecting semantic and location information, and evidence activation mapping for detection and 

identification. It achieved an accuracy of 0.88, surpassing contemporary diagnostic techniques. Kou et al. [33] 

suggested an enhanced residual U-Net (ERUNet), for the segmentation of Microaneurysms (MA) and 

Exudates (EX). ERU-Net generates three U-paths, each made up of three up-sampling paths and one down-

sampling path. ERU-Net improves the associated feature fusion and captures the nuances of fundus images 

with its three U-path structures. Bilal et al. [34] introduced a mixed model for DR grading. Three classifiers 

were used in the classification phase: A model combining support vector machine (SVM), k-nearest neighbor 

(KNN), and binary tree (BT) models, along with a majority voting method to acquire the final output. Multiple 

diagnoses from disease grading databases were employed to complete this project, which led to an accuracy of 

98.06%, sensitivity of 83.67%, and specificity of 100%. Islam et al. [35] developed a multi-stage CNN-based 

system called DiaNet based on a pre-trained CNN model on ImageNet to diagnose diabetes mellitus. 

 

 

 
 

Figure 3. Architecture of a typical deep convolutional neural network 

 

 

Additional layers were inserted to improve its ability to recognize more complicated patterns in the 

input. The model is primarily finetuned for DR identification. DiaNet uses Dense-Net as its base CNN and 

performs multistage fine-tuning to provide a high degree of accuracy of 84.4%. Xu et al. [36] introduced a 

global-local attention network (GLA-net) to tackle the classification of cataracts. The system proposes two 

subnet levels, global-level attention emphasizes global structure information, and local attention network 

focuses on discriminative features of specific regions. The model achieved a detection accuracy of 90.65%, 

grading accuracy of 83.47% and classification accuracy of 81.11%. Zamani et al. [37] observed the lack of 

extensive analysis in the field of pterygium identification using DL and proposed a new framework, VggNet16-

wbn, a CNN-based trained network obtained from VggNet16. A network analysis of six pre-trained CNN 

networks to recognize pterygium led to the presentation of a new CNN-based network architecture. Moosawi 

and Khudeyer [38] proposed ResNet-n\DR by modifying and adding three residual units to Resnet-34. The 

proposed model achieved 93.5% accuracy, 90.7% sensitivity, 98.2% specificity, 90.1% F1 score, and 89.5% 

precision on APTOS-2019 dataset. For maximum performance, DL approaches require large-scale databases to 

be implemented. Because of data-acquisition elements and other needs, acquiring large-scale images or datasets 

in various domains, particularly in medical imaging, is a challenging and time-consuming operation. 
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3. TRANSFER LEARNING 

Transfer learning (TL) is a standard technique that is comparable to DL in computer vision as well 

as natural language processing (NLP) jobs [39]. The foundation of the image classification problem 

comprehends the training, validation, and testing phases of DL algorithms. The DNN training procedure can 

be carried out with either new or existing CNN-trained networks as training datasets. Learning from scratch 

requires a manual network to be built and the structure of DNN to be clearly understood [40]–[42]. 

Additionally, a large volume of data sets is required. TL is an alternative to training data from the outset, 

which necessitates large-scale data, for compact data representations in DL [43]. Jabbar et al. [44] introduced 

a VGG-16-based TL model to enhance the classification performance of DR. The model was trained using 

EyePACS and Kaggle datasets. The model achieved an accuracy of 96.61% which was way higher than the 

accuracies of ResNet, AlexNet, and GoogleNet. Alghamdi and Mottalebet [45] proposed an automatic 

glaucoma diagnosis framework using three CNN models— Transfer CNN (TCNN), semi-supervised CNN 

with self-learning (SSCNN), and semi-supervised CNN with autoencoder (SSCNN-DAE). TCNN transfers 

knowledge from VGG-16 to a small dataset, SSCNN uses self-learning, and SSCNN-DAE employs a 

denoising autoencoder for feature extraction. Results show SSCNN-DAE outperformed TCNN and SSCNN, 

achieving accuracy rates of 93.8%, 91.5%, and 92.4%, respectively. 

 

 

4. MULTI-LABEL CLASSIFICATION 

Multi-label classification (MLC) is regarded as a prominent topic in the research field, especially in the 

world of computer vision, particularly medical imaging analysis. In MLC, an object can be classified into more 

than one class. There is no restriction on the number of labels a subject could be assigned in the multi-label 

problem. We use a range of multi-label classification-specific methodologies to overcome these challenges: 

a) Problem transformation: It is the way of transforming a multi-label dataset into a single-label dataset. 

Machine-readable single-label datasets make it easier to create models. The following techniques are 

used to transform problems: 

− Binary relevance: This technique considers every label independently, and MLC is used to separate 

them. 

− Classifier chain: It is a sequential process in which one classifier output is used as the input for the next 

classifier in the chain. 

− Label power set: It changes the problem to a multi-class problem. The unique label combinations found 

in the data are then used to train each multi-class classifier. 

b) Adapted algorithms: This technique uses the algorithm adaption method to perform MLC. 

c) Ensemble model: This is a hybrid method that combines the capabilities of both the above techniques. 

Abdelmaksoud et al. [46] proposed a multi-label CAD system for detecting and diagnosing DR. The 

system standardizes retinal image sizes, utilizes GLRLM to extract texture features from pre-processed 

fundus images, and employs U-Net for automatic detection of exudates, MA, haemorrhages, and blood 

vessels. Six features are extracted, and a classifier chain ML-SVM is employed to distinguish between 

different DR grades. Fu et al. [47] presented M-Net, a one-stage multilabel system for optic disk (OD) and 

optic cup (OC) segmentation. M-Net incorporates a U-shaped CNN, multi-scale input layer, side-output 

layer, and a multilabel loss function. The input layer generates a pyramid representation for various receptive 

field sizes, and a U-Net model trains the hierarchy structure. The side-output layer acts as an initial classifier, 

providing local forecast maps for different scale layers. A multi-label loss function yields the final 

segmentation map, and polar transformation enhances segmentation performance by providing an image 

depiction in polar coordinates. The system demonstrated satisfactory performance in glaucoma screening on 

ORIGA and SCES datasets during testing.  

Lin et al. [48] proposed two MLC schemes: MCG-Net, using graph convolutional networks, and 

MCGS-Net, combining graph convolutional networks with self-supervised learning. MCG-Net-GCN 

captures crucial information from multi-label fundus images, while MCGS-Net enhances classification with 

self-supervised learning. Tested on ODIR and SSL datasets, both demonstrated superior categorization, 

achieving a 4.74% boost in recall. MCGS-Net exhibits stronger generalization, especially for unseen fundus 

picture collections. Wang et al. [49] introduced Efficient-Net for precise identification of fundus 

abnormalities in retinal images. It comprises a feature extraction network that scales depths, widths, and 

resolutions efficiently. The second component is an ML classification neural network with a unique structure. 

The final classification result is obtained by blending outcome probabilities from various models. Training 

and testing were conducted using the ODIR 2019 dataset, showing superior outcomes even when trained on 

fewer datasets [49]. Using MLC and a graph convolutional network (GCN), this model identified eight 

fundus lesion types in color images.  
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It consists of a CNN-based Res-Net-101 for image feature extraction and a GCN for classification, 

utilizing matrices from label embeddings and co-occurrence patterns. The model accurately recognized 

various lesions, including hemorrhages, laser scars, retinal arteriosclerosis, micro-aneurysms, and hard/soft 

exudates [50]. MLC-driven gradient-weighted class activation mapping (Grad-CAM) was developed by  

Jiang et al. [51] and it could classify and automatically detect the DR regions with different lesions. First, DR 

lesions were used as labels for the collection of additional learning data. Second, lesion identification was 

accomplished by combining Grad-CAM and multi-label classification. They formed a Res-Net-based DL 

model and achieved 94.4% specificity and 93.9% sensitivity. 

 

 

5. ENSEMBLE LEARNING 

The fundamental idea behind ensemble methods is a linear combination of numerous model-fitting 

approaches as opposed to only using single-fit. Ensemble learning includes various learning models to 

achieve better predictive performance than a single model. Ensemble methodologies are broadly classified as 

Homogeneous Ensemble approaches, involving Bagging and Boosting, Heterogenous Ensemble approaches 

involving Stacking, and Majority voting algorithms [52]–[55]. 

− BAGGing: This technique creates an ensemble model through aggregation and bootstrapping, adapting 

similar learners to small sample populations and using majority voting to combine predictions. 

− Boosting: An iterative method aimed at reducing bias error, boosting builds a robust predictive model 

by adjusting the weights of previous classifications, though it may lead to overfitting.  

− Stacking: This method optimally combines predictions from diverse high-performing ML models. 

− Majority voting algorithm: Enhancing efficiency through voting, this method determines the final 

prediction based on the majority vote from each learning algorithm [52], [54]. 

To enhance the model’s prediction, Qummar et al. [56] suggested a combination of five DCNN 

models (Resnet50, Inception-v3, Xception, Dense121, and Dense169) are trained to classify different DR 

stages by encoding the rich information. Lyu et al. [57] proposed a training method for categorizing multiple 

labels with varying sample sizes and difficulty levels. They calculate inverse frequencies for each category to 

guide model training. The model is iteratively trained with adjusted class weights, addressing flaws and 

emphasizing challenging samples. Experimental results from RIADD-2021 yielded an 88.24% accuracy [57]. 

 

 

6. DATA AUGMENTATION TECHNIQUES 

The scarcity of substantial, freely available retinal image datasets has been a stumbling block to 

successful AI implementation. The majority of publicly accessible datasets contain fewer than a thousand 

images. Since the most crucial necessity of automated retinal disease diagnosis is its affordability and 

extensive screening of the general public, these automated solutions should be capable of performing well in 

actuality with fundus images captured in everyday practice with little constraints [58]. Despite several 

publicly available datasets, there remains a scarcity of large, diverse, and accurately annotated datasets, 

particularly for severe cases like PDR and Macular Edema. One potential solution to this problem is 

synthesizing data through augmentation techniques, involving fundamental image manipulations such as 

translation, scaling, rotation, and elastic deformation applied to original training data samples [59].  

Generative adversarial networks (GANs) have made breakthroughs in retinal image synthesis in 

recent years. GANs are built with two models in mind: a generator and a discriminator [60]. The generative 

model creates realistic images from random noise, while the discriminative model distinguishes between 

authentic and generated images. The generator tries to deceive the discriminator by producing realistic 

visuals, and the discriminator strengthens its ability to avoid being misled [61], [62]. 

A 2-stage GAN for high-resolution retinal images was introduced by Andreini et al. [63].  

The suggested model employs a two-step procedure: Primarily, a GAN is trained to provide semantic label 

maps that describe the vasculature as it grows over time. Second, realistic retinal images are produced from 

generated vasculature using an image-to-image translation method. In DR patients, the majority of cases are 

mild or moderate NPDR, with only 5% corresponding to PDR. Due to the scarcity of PDR lesions for model 

training, Araujo et al. [59] introduced a heuristic-based data augmentation approach. They utilized a neo-vessel 

generation algorithm to synthesize neo-vessel (NV)-like structures. The DRGraduate model for DR grading was 

trained with this data augmentation technique, and experiments were performed to assess its impact [64]. Chen 

et al. [65] introduced RF-GANs, comprising two generative models, RF-GAN1 and RF-GAN2. RF-GAN1 

addresses the domain gap between semantic segmentation datasets and EyePACS. It utilizes HR-Net to enhance 

high-resolution representation through continuous multi-scale fusion across parallel convolutions, preserving 

high-resolution features by integrating parallel convolutions from high to low resolution. 
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7. LIMITATIONS OF EXISTING TECHNIQUES AND FUTURE DIRECTIONS 

According to the review conducted in this study, we determine the following areas for further 

research investigations: 

a) Lightweight neural network architectures: While many DL methods for retinal ailments exhibit 

exceptional performance, their efficiency is often accompanied by high computational resource 

consumption. Addressing this challenge is crucial to reduce computing requirements without 

compromising the model's performance. 

b) Image synthesis using data augmentation approaches: Another concern arises from the use of small datasets 

in the evaluation of many techniques. The performance of models on large databases remains uncertain 

when implemented, compounded by issues of dataset imbalance and limited sample availability. 

Traditional data augmentation and class balancing techniques are insufficient to address this challenge, 

highlighting the need for more effective augmentation methods to enhance diagnostic performance. 

c) Strengthening generalisability: Most of the systems have to deal with the overhead of pre-processing and 

post-processing stages. So, effective models need to be developed to standardize techniques in terms of 

implementation, performance, and accuracy and also to accept retinal images of varying sizes in datasets. 

d) Disease-based system rather than lesion-based system: The majority of the existing work we see today is 

mainly based on DR detection and classification of lesion types. Likewise, there is considerable work on 

glaucoma detection as well. Works relevant to diseases like retinitis pigmentosa, retinoblastoma, macular 

hole, retinal tear, retinal detachment, and some other rare syndromes and genetic eye disorders are not 

explored. So, there is a need to devise disease-based models rather than lesion-based models [46]. 

e) Integrating deep CNN and active learning framework: To drastically reduce annotation effort, a deep 

active learning system that integrates fully the CNN model and active learning may be created. Active 

learning would assist in deciding which images need annotation to acquire outstanding performance with 

a low budget and quantity of time [66]. 

Ocular disease diagnosis is evaluated and validated using various performance metrics like 

Accuracy, Sensitivity, Specificity, F1-Score, and Dice Similarity. Figure 4, depicts the performance 

evaluation of the various DL techniques. Table 3 (in Appendix) we have summarized various DL approaches, 

datasets, their performance and shortcomings presented in this study. 
 

 

 
 

Figure 4. Performance evaluation of DL techniques discussed in this study 

 

 

8. CONCLUSION 

Medical imaging has evolved into a primary tool for clinical and differential diagnosis, with 

significant advancements. This paper provides a comprehensive summary of diverse DL techniques for 

ocular disease diagnosis, classification, and segmentation, ranging from traditional ML to advanced methods 

like CNN, Transfer Learning, Ensemble Learning, and MLC. The discussion includes strategies to address 

data scarcity, such as augmentation techniques and the use of GANs for generating comparable images. The 

analysis highlights significant methodological variations in pre-processing, classification, segmentation, and 

performance evaluation. Notably, most DL methods discussed apply to specific pathological conditions, 

posing a challenge for universal disease detection in the clinical context. 
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APPENDIX  

 

Table 3. Summary of various DL techniques, performance, and shortcomings (continue) 
Reference Aim Technique Dataset Performance Shortcoming 

[15] Contrast 

Enhancement 

Triangular Fuzzy 

Membership-CLAHE  

CASIA-IRIS Mean Squared Error - 

0.0006 

Peak-Signal-to-Noise-
Ratio -42.2291 

The clipping value varies 

according to the image, 

the limiting factor is 
image-dependent 

[24] Contrast 

Enhancement 

CLAHE-MPSO DRIVE, 

STARE 

Sensitivity-83.15% 

Specificity-84.33% 

Accuracy-97.50% 

A fixed Scale value of 

optimization 

[67] Contrast 

Enhancement 

Upgraded CLAHE, 

TCNN ResNet50  

STARE Sensitivity- 100% 

Specificity- 100% 

Accuracy-100% 

Only applicable for 5 

lesion conditions 

[68] Contrast 

Enhancement 

Fuzzy Clipped 

CLAHE 

MIAS Peak-signal-to-noise ratio 

(PSNR)-18.735 
Discrete Entropy-5.633 

The complex, chosen clip 

point isn’t block adaptive 

[35] Distinguish 

healthy and 
diabetic eye 

Multi-Stage CNN  

called Dia-Net 

EyePACS, 

QBB 

Accuracy-84% 

Sensitivity-85.86% 
Specificity-83.06% 

F1-Score-84.71% 

Cannot distinguish 

lesions and stages of DR 

[33] MA and Exudates 
(EX) 

segmentation  

Enhanced residual U-
net (ERU-net) with 

three up-sampling and 

three down-sampling 
paths 

E-Ophtha, 
IDRiD, and 

DDR 

Area under the curve 
(AUC) of 0.9956, 0.9962, 

0.9801, for MA and 

0.9866, 0.9679, 0.9609 for 
Ex  

Applicable only to MA 
and EX, other lesion 

types like hemorrhages 

could be misclassified  

[34] DR detection and 

Classification 

Mixed models (SVM, 

BT and KNN) is 
applied for 

classification 

IDRiD Accuracy-98.06% 

Specificity-100% 
Sensitivity-83.67% 

Strong reliance on feature 

extraction and pre-
processing processes. 

[69] DR Grading CAB for 
discriminative regions 

and GAB for global 

attention features 

DDR, 
Messidor, 

EyePACS 

Accuracy- 
0.7813, Kappa- 

0.7699 

Challenging to find tiny 
lesion spots owing to the 

image supervision level. 

Can only provide grading 
scores, not lesion types. 

[37] Pterygium 

Detection 

VggNet16-wbn model 

with additional batch 
normalization layers on 

TL 

OPKOM-26, 

UBIRIS 

Accuracy-99.2% 

Sensitivity-98.45% 
Specificity-100% 

Limited dataset with 

questionable clinical 
applicability 

[36] Cataract  
Detection 

GLA-net based on 
two-level subnets 

focussing on Global 

level attention and 
local-level attention 

models 

9912 retinal 
fundus images 

from Beijing 

Tongren Eye 
Center 

Detection accuracy -
90.65% 

Grading Accuracy-83.47% 

Classification Accuracy-
81.11% 

Extensive supervision is 
required for detection and 

grading tasks involving 

global and local attention 
models, and limited data 

availability complicates 

the problem. 
[32] Glaucoma 

Diagnosis 

EAM-net based on 

multi-layer average 

pooling (M-LAP) 

ORIGA Accuracy-0.88 

OD segmentation (Dice)-

0.9 

High-resolution maps are 

hard to represent. 

Besides, Optic cup 
segmentation is 

completely ignored 

 [70] Glaucoma 
detection (Optic 

cup (OC) and OD 

segmentation) 

Fuzzy Broad Learning RIM-ONE-r3, 
SCRID 

DC Score of 0.953,0.856 
for OD and OC, 

and AUC of 0.906 and 

0.923  

Cannot eliminate noisy 
images, to accomplish 

segmentation, individual 

channels must be 
extracted. 

[71] Glaucoma 

Diagnosis 

Compactly self- 

organized Operational 
Neural Networks (Self 

-ONNs) 

ACRIMA, 

RIM-ONE, 
ESOGU 

F1 score of 100% 73.9% 

93.9% 
for ESOGU, RIMONE 

and ACRIMA 

Must be tuned and pre-

trained for the 
classification issue. 

[72] Glaucoma 
Screening 

CDeD-Net cup-disc 
encoder for combined 

OC 

and OD segmentation 

DRISHTI-GS, 
RIM-ONE 

Sensitivity-95.67%, 99.81% 
for OC, 97.54%, 99.73% for 

OD on Drishti, 95.17% and 

99.81% for OC, 
97.34%,99.73% for OD on 

RIM-ONE 

A large number of 
unlabelled targets are 

needed. The model’s 

applicability to diverse 
datasets is questionable. 

[73] Glaucoma 

Screening 

Five distinct 

ImageNet 

trained CNNs as 
glaucoma classifiers: 

VGG16,19, ResNet50, 

InceptionV3, 

Xception. 

ACRIMA AUC of 0.9605 after 

optimizing Xception 

architecture, with a 
95.92~97% confidence  

Performance worsened 

when tested on different 

datasets. 
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Table 3. Summary of various DL techniques, performance, and shortcomings (continue) 
Reference Aim Technique Dataset Performance Shortcoming 

[74] Multi-class 
AMD 

classification 

(Drusen, 
Choroidal 

Neovasculariz

ation (CNV)) 

(ANU-net-FPOA) 
Atten -tion based U-

net, (FPOA) Flower 

pollination 
optimization algorithm 

for hyperparameter 

tuning. Squeeze-net 
for classification task 

University of 
California 

San Diego 

(UCSD) 

Accuracy-98.7% 
Specificity-99.8% 

Sensitivity-99.7% 

Though the proposed 
model successfully 

classified Drusen and 

CNV, it was unable to 
classify cases of Macular 

Edema (DME) 

[75] Retinal 

Vessel 
Segmentation 

Multi-modal 

framework 
ELEMENT with 

connectivity and 

region-growing 
features 

DRIVE, 

STARE, 
CHASE-DB, 

IOSTAR, 

VAMPIRE FA, 
RC -SLO 

Accuracy -97.40% on 

Drive, 98.27%, 97.78%, 
98.34%, 98.04% and 

98.35% on STARE, 

CHASE-DB, 
VAMPIRE FA, 

IOSTAR and RC-SLO. 

Performs segmentation 

based on 2D connectivity 
features, not applicable for 

3D Vessel segmentation. 

[46] Pathological 

changes and 

diagnosing 

DR stages 

MLCAD system using 

U-Net based 

Multilabel SVM and 

classifier chain 

IDRiD, 

DIARETDB1 

Accuracy-95.1%, 

AUC-91.9%, 

sensitivity-86.1%, 

specificity-86.8%, 
dice score-86.2% 

Applicable only for DR 

and its classification. 

doesn’t work well for other 

retinal disease 

[49] To identify 
one or more 

retinal 

disorders 

Efficient Net model 
with CNN based 

multilabel 

classification 

ODIR 2019 Accuracy-0.90, 
AUC-0.67, 

F1Score- 0.85, 

Kappa-0.43 

Works well with limited 
number of datasets, clinical 

applicability is still an open 

issue. 
[50] Diagnosis of 

multiple 

fundus lesion 

Graph neural network 

- based ML 

classification to 
identify eight different 

types of retinal lesions 

7459 fundus 

images from 

2282 patients 
were used to 

create a corpus 

of fundus data  

F1 Score -0.808, 

AUC- 0.986, 0.954, 

0.946, 0.957, 0.952, 
0.889, 0.937, and 

0.926 

Model demonstrated a 

lackluster performance for 

MA, soft, and hard EX 
detection 

[51] DR lesion 

classification 

and detect 
lesion region 

ML classification 

including a mechanism 

for gradient-weighted 
class activation (Grad-

CAM) using ResNet 

3228 fundus 

images were 

collected 

Sensitivity-93.9%, 

Specificity-94.4% 

Ineffective for bright and 

low-light fundus images 

don’t work for PDR cases 

[57] Identifying 
multiple and 

coexisting 

retinal 
diseases 

A heuristic stacking 
technique based on 

multi-label ensemble 

learning 

RFMiD Accuracy-88.24% Works well for the RFMiD 
dataset, but it is uncertain 

how well it performs with 

different datasets. 

[59] Synthesis of 

PDR cases in 
DR 

Heuristic-based Data 

Augmentation scheme 

Messidor-2 

Kaggle 
SCREEN-DR 

kappa value-0.78,0.74, 

0.70 in SCREEN-DR, 
Kaggle, Messidor-2 

Misclassifies PDR signs 

with (retinal hemorrhages 
and fibrosis). 

[63] High-

resolution 
retinal image 

generation 

Two Stage GANS 

with progressively 
growing GAN and 

image translation 

DRIVE, 

CHASE_DB 

AUC-98.65%,99.16% 

Accuracy-96.90%, 
97.72% in DRIVE, 

CHASE 

Performance comparison is 

not convincing due to the 
varied experimental setups 

[65] Synthesis of 
DR images 

Two generative 
adversarial models 

called RFGAN1 and 

RF-GAN2 

EyePACS Increase in 
Accuracy-1.53% 

Kappa-1.70% 

Doesn’t work well with 
low-illumination images 

and the uneven distribution 

of vessel trees affects 
image synthesis 

[76] Automatic 

detection of 
39 retinal 

conditions 

Two-level hierarchical 

system constituting 
CNNs and Mask-

RCNN 

249,620 fundus 

images from 
various hospitals 

in China, the US, 

and databases like 
Messidor, IDRiD, 

and Refuge. 

F1 score- 0.923, 

Sensitivity -0.978, 
Specificity - 0.996 

Accuracy-87.98 

Weak image segmentation 

and locality of lesions were 
not accurately identified 

 [77] Segmenting 
OD for 

Glaucoma 

Diagnosis  

SL-EACM: Saliency- 
Level set with 

enhanced and 

modified Active 
Contour Model 

CHASE-DB 
DRION-DB 

DRISHTI-GS1 

Accuracy of 0.994, 
0.992, 0.991, and Dice 

score of 0.979, 0.982, 

0.970 on Chase, Drion, 
and Drishti respectively 

The suggested approach 
failed occasionally with 

smaller ODs. Relocating 

the priors would avert this 
issue 

[78] Detection of 

DR lesion 
(Hard 

exudates) 

Exudates detection 

using binary operation 
and fuzzy-based 

classification 

DIARETDB0, 

DIARETDB1 

Accuracy-98.2% 

Specificity-96.96% 
Sensitivity-98.10% 

The model's evaluation, 

focused on 75 selected 
DiaretDB0 images for 

exudate classification, 

prompts questions about its 
performance in the 

presence of other lesions. 
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