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 Challenge is to find the support vectors of the unknown block sparse vector 

with compressed measurements in an underdetermined system where the 

number of unknowns is more than that of measurements. To recover 
unknown block sparse vector, restricted isometry property (RIP) is a 

sufficient condition need to be satisfied. Finding the restricted isometric 

constant is a non-polynomial hard problem for large values of n. In this 

paper coherence-based recovery guarantee has been proposed to recover the 
support vectors using block generalized orthogonal matching pursuit 

(BGOMP). It is proved that BGOMP can able to recover the support vectors 

with lesser number of iteration than block orthogonal matching pursuit 

(BOMP) by selecting multiple block support elements per iteration. 
Simulation results show detection performance of BGOMP is better than 

BOMP, block subspace pursuit (BSP) and block compressive sampling 

matching pursuit (BCoSaMP) for different block sparsity and block length. 

In most of the cases for different block sparsity and block length 
computation time for BGOMP is lesser than BCoSaMP, BSP and BOMP 

due to the multiple selection of elements in each iteration. 
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1. INTRODUCTION 

In an underdetermined system, number of unknown variables will be more than that of number of 

observations or measurements. Compressed sensing is a technique to recover the unknown sparse vector 

using compressed measurements is as shown in Figure 1. Signal is transformed in to some other plane and it 

will be sparse i.e., fewer non zero elements in the vector or signal in the particular basis is much less than the 

dimension of the vector. By exploiting the sparsity of the unknown support column vectors of the sensing 

matrix will be recovered with the help of compressed measurements. To recover the unknown sparse signal 

many recovery guarantees are in the literature. One of the popular methods to guarantee the recovery of 

sparse vector need to satisfy the restricted isometry property (RIP). Restricted isometric constant (RIC) 

𝛿 ∈0.1 is the smallest constant that satisfy the relation given by (1-𝛿𝑝)‖𝑥‖2
2 ≤ ‖𝐻𝑥‖2

2  ≤ (1+𝛿𝑝)‖𝑥‖2
2 to 

recover a P-sparse unknown vector. The smallest constant 𝛿 satisfying RIP is referred as RIC. The majority 

of the suggested recovery guarantee relies on the use of RIC, which effectively recovers the sparse signal by 

leveraging RIP [1][7]. Typically, it is computationally difficult to determine the Restricted Isometric 

constant for a specific matrix H in order to meet the rigorous criteria [8]. The deep learning mechanism is 

https://creativecommons.org/licenses/by-sa/4.0/
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applied to estimate the images precisely [9]. Prior research has previously suggested using mutual coherence 

as a criterion for determining recovery conditions in the orthogonal matching pursuit algorithm. This 

criterion specifically applies when the number of selected support elements in the method is equal to one 

Q=1 [10][11]. Coherence statistics are valuable for resolving various signal processing issues, such as 

support detection and vector quantization [12][18]. 

 

 

 
 

Figure 1. Compressed sensing system model 

 

 

Proposed method establishes a sufficient criterion for ensuring the recovery performance of block 

generalized OMP, based on coherence. Several researchers have established a satisfactory criterion for 

orthogonal matching pursuit (OMP) [19]. OMP can precisely reconstruct the non-zero elements of an 

unknown P-sparse vector using a greater number of iterations compared to generalized orthogonal matching 

pursuit (GOMP). The proposed requirement in the literature is loosely constrained and relies on the 

coherence parameter. 

In recent years, recovery criteria based on the RIC have been proposed to guarantee the accurate 

recovery of a P-sparse signal using the GOMP algorithm. Moreover, the author [20] suggests that the 

adequate requirement has been enhanced to 𝛿𝑁𝐾+1 <
1

√𝐾/𝑁+1
. Although the requirements impose stricter 

constraints, determining the RIC of a matrix H is an NP-hard problem. A suggested sufficient condition, 

based on mutual coherence, enables accurate recovery of the support indices of a P-sparse signal using 

GOMP in the presence of noise [21]. The block generalized orthogonal matching pursuit (BGOMP) method 

allows for the selection of a maximum of Q elements in each iteration, where Q is less than or equal to  

(m-1)/P. In the general case, when the number of elements picked per iteration is equal to 1, it is same as 

block orthogonal matching pursuit (BOMP), which has a lower performance than BGOMP. The wireless 

sensor network (WSN) system and permit more efficient emergency reaction systems [22][24]. 

 

 

2. METHOD 

Consider the following linear system model equation b = H c + vK-block sparse signal c ∈ Rn can 

be given as [c1, … ,  cd1⏟      
C[1]

 , cd1+1, … , cdg−1⏟          
C[2]

, … , cdg]
T and 𝑣 is AWGN noise where c[j](j ∈  ω = {1,2,… , L}) 

represents the jth block of c and the block size is di for the ith block.  b∈ RM×1 is an observation vector contains 

M elements. b ∈ RM×N (M<N) is an observation matrix where H = [h1, … , hd1⏟      
H[1]

 , hd1+1, … , hdg−1⏟          
H[2]

, … , hdg]
T. 

𝑐∈ RN×1 is the block sparse signal that we need to recover from the compressed measurements. c is 

considered as a K-block sparse signal, which is a signal consisting of ‘K’ non-zero blocks in an N-

dimensional space where K<<N. The above model indicates the assumption that every block 𝑐𝑖 ∈ R
𝑑𝑖×1 

satisfies a gaussian distribution. Block sparse signal c will be recovered from underdetermined linear 

measurements using an expression b = H c + v is as shown in Figure 2. 

 

 

 
 

Figure 2. Block diagram for recovery of unknown block sparse signal c using BGOMP algorithm 
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2.1.  Block restricted isometry property 

Definition 1 Let H∈ Rm×n be a given matrix. Then H is said to have the block RIP over I={𝑑1, 𝑑2, 𝑑𝐿} 
with constant δ𝐾 | 𝐼if for every c ∈ Rn that is block K -sparse signal over I. Let us assume that there is a matrix 

H∈ Rm×. Then, if we know that for every c ∈ Rn that is a block K-sparse signal over I, H is said to have the block 

RIP over I={d1, d2,···, dL}with constant δ𝐾 | 𝐼, then we can say that H has the block RIP over I: 

 

(1-δK |I )‖c‖2
2 ≤ ‖Hc‖2

2  ≤ (1+δK |I)‖c‖2
2 (1) 

 

It is worth noting that this study focuses on the detection of a block sparse signal with a same block size, i.e., 

I={d1 , d2,···, dL}. Remember that a block K-sparse vector is also Kd sparse. Every block K -sparse signals, H 

must hold if it fulfills the RIP of order Kd. However, this may not be true for all Kd sparse signals if H 

fulfills the block RIP of order K. As a result, the block RIP (of order K) is a more relaxed criterion than the 

normal RIP (of order Kd). The probability that a random matrix will satisfy the block RIP is much higher 

than the probability that it will meet the standard RIP. 

 

2.2.  Proposed BGOMP algorithm 

BGOMP algorithm consists of initialization, finding the index of highly correlated support vector 

index, appending in the list and updating the residual. It is unique in the way that it will not select the support 

vector twice. The various steps involved in proposed BGOMP algorithm 1 is given: 

 

Algorithm 1. BGOMP Algorithm 
Input:H ∈ Rm ×n, P, Q ≤ (m − d)/Pd 
Initialize the residual and the sub sampled measurements b ∈  Rn 
For Each 𝑡 ≤ 𝑃 Initialize the for loop with a condition that t is less than or equal to P 
Choose the Q block indices where the correlation of the active column indices is𝑖𝑡 =

 𝑎𝑟𝑔𝑚𝑎𝑥
𝑛∈𝑆𝑡

|Ĥ𝑛[𝑗]𝑟𝑡−1|,  𝑗 ∈  𝛾 = {1,2, . … , 𝐿}; 

Arrange the resulted 𝑖𝑡 column indices in descending order and pick ‘Q’ largest value 

indices in the current iteration it = {i1…iQ} 
Concatenate the newly identified column indices in the present iteration with the previous 

iteration entries St =  St−1 ∩ it 

Estimate the signal vector using the least squares  ẑt = argmin
z:supp(z)

‖b − Hstz‖2
2
where Hstdenotes𝑠t 

Column of H. 

Update residual rt = b − Hst ẑstwhere ẑstrepresents estimation of z with support indices𝑠t 
Increment the loop count by one  

Go to step 2  

End for Return �̂� =  𝑆𝑡; 

Output: �̂� 
End 

 

2.3.  Description of proposed BGOMP algorithm 
BGOMP comprises 4 steps that are initialization of input, identification, concatenation, and 

updating residual: 

- In the initialization process from lines 1 to 3, sensing matrix H∈ Rm ×n, b ∈  Rn, P, Q ≤ (m − d)/Pd 

were initialized where His a sensing matrix whose number of columns is higher than the number of rows, 

𝑏is compressed measurement column vector which has lesser number of elements compared to the 

unknown vector and the residual. 

- Line 4 and 5 of the proposed algorithms have a sample space of all the column indices of H. Algorithm in 

step 4 will find out the Q-independent column indices by calculating the correlation between the columns 

of the sensing matrix and the residual vector of the previous iteration represented by 𝑟𝑡−1. Arrange the 

resulting column indices in descending order and pick ‘Q’ largest value indices in the current iteration 

it = {i1… iQ}. 
- In line 6, concatenate the newly identified column and symmetric indices in the current iteration with the 

previous iteration entries St = St−1 ∩ it.  
Line 7 to 9 is the residual update step; the support column indices in the current iteration will be 

transformed into the orthogonal space. In that way, the same column indices will not repetitively occur in the 

selection process. In that way, a unique set of support vector column indices will be found. With the help of 

it, the residual will be updated as specified in line 8. The loop count will be incremented, and the condition 

will be checked to execute the upcoming iteration. If the condition is false, it will come out of the loop and 

consolidate the active column indices to reconstruct the signal. 
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The key distinction between the BOMP method and the proposed approach lies in the fact that the 

BGOMP algorithm selects N block indices throughout each iteration. A larger value of N will lead to the 

selection of more block indices, hence reducing the computation time. In contrast, a smaller value of N leads 

to smaller block indices at each time, resulting in a longer computation time. In addition, the BGOMP 

algorithm, like the BOMP algorithm, requires prior knowledge of block sparsity [25][29]. It is worth noting 

that the residual r in the kth iteration of the BOMP is perpendicular to the column of H∧k, means that: 

 

〈H∧k , r
k〉 =  〈H∧k, P∧k

Ʇ b〉 =  〈H
∧k
T , P

∧k
Ʇ b〉 = H

∧k
T (P

∧k
Ʇ )Tb = 0 (2) 

 

As stated in the BOMP algorithm, the block indices that are newly selected do not overlap with the preceding 

ones. In other words, the cardinality of the intersection of the k-th block indices, denoted as |∧𝑘|is equal to 

Nk. However, it is possible that some of the indices chosen in each iteration are incorrect, resulting in S ∩  ∧k 

being less than or equal to Nk. Furthermore, the convergence within a maximum of K steps implies that, in 

each iteration, at least one accurate block index is selected, which can be expressed as S ∩  ∧k ≥ k. The 

BGOMP algorithm can be utilised in various applications, such as spectrum sensing [23][27]. 

 

2.4.  Recovery guarantee condition 

In this section, a constraint has been proposed to ensure the recovery of unknown signal based on 

the coherence for BGOMP, as shown in Figure 3. 

Lemma 1: let 𝐻satisfy the block RIP of order P and 𝛬 be set with |𝛬| ≤ 𝑃. Then for anyc ∈  𝑅𝑚‖HΛ
T𝑐‖ ≤

(1 + δP)‖c‖2. 

Lemma 2: let Λ1, Λ2 be two sets of 𝛺 with | Λ2 − Λ1| ≥ 1 if a matrix A satisfies the block RIP of order 
| Λ1 ∪ Λ2|, then for any vector. 

Lemma 3: an arbitrary matrix 𝐴, the RIP constant 𝛿𝑃 bounded by δS  ≤ μ (P − 1) where P is the sparsity of 

the vector x and 𝜇 represents coherence of matrix 𝐴. 

 

 

Supporting lemmas 

Lemma 3.2Lemma 3.1 Lemma 3.3

Coherence based sufficient condition

Theorem 3.1 Theorem 3.2

Main Theoretical Results

Lemma 3.4

 
 

Figure 3. Block diagram of theoretical results based on the theorems and lemmas 

 

 

Theorem1: let A satisfy the coherence iterations with μ ≤
1

1−√
|ω|

Q
+1 [(Q(P+1)+|ω|−P)−1]μ

 for an integer Q 

with 1 ≤ 𝑄 ≤ (𝑚 − 𝑑)/𝑃𝑑. Then BGOMP identifies at least 𝑡0 indices in 𝜔 if GOMP terminates after 

performing 𝑡0 iterations with 1 ≤ t0 ≤ P or recovers 𝜔 in P iterations if and only if min
i∈P
‖c[i]‖2 >

2ε

1−√
|ω|

Q
+1 [(Q(P+1)+|ω|−P)−1]μ

. 

Theorem 2: let A satisfy coherence with μ ≤
1

1−√
|ω|

Q
+1 (Q|ω|)

 for an integer Q with 1 ≤ Q ≤ (m− d)/Pd. 

Then BGOMP identifies at least t0 indices in 𝜔 if BGOMP terminates after performing t0 iterations with 1 ≤

t0 ≤ P or recovers 𝜔 in P iterations if and only if min
i∈P

‖c[i]‖2 >
2ε

1−√
|ω|

Q
+1 (Q|ω|)μ

. 

Lemma 4: let set Λ ⊆ ω satisfy Λ = kP and P ∩  Λ = 1 for some integers P, k and l with 0 ≤ k ≤ l ≤ |P| −
1 and 𝑁(k + 1) + |P| − k ≤ m/d. Let 𝑊 ⊆ 𝑃𝑐 satisfy |W| = Q and W∩  Λ = ∅. If H satisfies the block 
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RIP of order Q(k + 1) + |P| − l ≤ m/d, then ‖HP−Λ
T PΛ

ꞱHP−ΛcP−Λ‖2,∞ −
1

Q
∑ ‖HT[j]Hj

TPΛ
ꞱHP−ΛcP−Λ‖

2
j∈W ≥

 
(1−√

|P|−l

N
+1 δQ(k+1)+|P|−l)‖cP−Λ‖2

√|P|−l
. 

Proof: initially, we must demonstrate that the act of choosing Q elements that have at least one support index 

during iterations would be deemed as a successful detection. It is important to provide proof for the initial 

iteration. Let us assume: 
 

V = {j1, j2, … , jN} (3) 
 

Instead of proving Pt+1\Pt ∩ ω ≠ ∅, we will show: 
 

|𝐻𝑗1
𝑇 𝑟𝑡| ≥ ⋯ ≥ |𝐻𝑗𝑁

𝑇 𝑟𝑡| ≥ |𝐻𝑗∈ 𝜔𝑐\𝑉
𝑇 𝑟𝑡| (4) 

 

max
𝑗∈ 𝜔

|𝐻𝑖
𝑇𝑟𝑡| > |𝐻𝑗𝑁

𝑇 𝑟𝑡| (5) 

 

By expression (6), |HjQ
T rt ≤

1

Q
max
j∈W

|Hj
Trt |. Thus, to show Pt+1 \Pt  ∩  ω =  ∅ , it suffices to show: 

 

max
i∈W

|Hi
Trt| >

1

Q
max
j∈W

|Hj
Trt | (6) 

 

residual in the algorithm at the tth iteration can be expressed as: 

 

rt = y − HStcSt̂ = (I − HSt(HSt
T HSt)

−1HSt
T )y = PSt

Ʇ(Hωcω + v) (7) 

 

    = PSt
Ʇ(Hω∩Stcω∩St + Hω\Stcω\St + v)  

 

    = PSt
ꞱHω\Stcω\St + PSt

Ʇv (8) 

 

Thus, by (9) and the triangular inequality. 

 

max
i∈ω

|Hi
Trt| ≥ max

i∈ω\st
(|Hi

TPSt
ꞱHω\Stcω\St| − |Hi

TPSt
Ʇv|) (9) 

 
1

N
∑ |Hj

Trt|j∈W  ≤  
1

N
∑ |Hj

TPSt
ꞱHω\Stcω\St|j∈W +max

j∈W
|Hi

TPSt
Ʇv| (10) 

 

To find the lower bound onmax
i
ω|Hi

Trt|. A lower bound on max
i∈ω

|Hi
Trt|will be derived, requiring Q ≤ P. 

Thus, to show (10), it suffices to show: 

 

β1 > β2 (11) 

 

β1 = max
i∈ω\st

|Hi
TPSt

ꞱHω\Stcω\St| −
1

N
∑ |Hj

TPSt
ꞱHω\Stcω\St|j∈W  (12) 

 

β2 = max
i∈ω\st

|Hi
TPSt

Ʇv|+ max
j∈W

|Hj
TPSt

Ʇv | (13) 

 

max
i∈ω\st

|Hi
TPSt

Ʇv|= |Hi0
TPSt

Ʇv| (14) 

 

max
j∈W

|Hi
TPSt

Ʇv|+ max
j∈W

|Hj0
TPSt

Ʇv | (15) 

 

β2 = ‖Hi0∪j0
T PSt

Ʇv‖  

 

≤ √2‖Hi0∪j0
T PSt

Ʇv‖
2
  

 

≤ √2(1 + δQ(P+1)+|ω|−P)‖v‖2 (16) 
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Lower bound on 𝛽1 will be derived 0 ≤ t ≤ |ω ∩ St| = l ≤ |ω | − 1; 
 

β1 ≥ 
1− √

|ω|

Q
+1 δQ(P+1)+|ω|−l)‖xω\st‖2

√|ω|−l
 (17) 

 

‖xω\st‖2 ≥ √
|ω−l|  

P(1+δQ(P+1)+|ω|−P)
√MAVR. SNR‖v‖2 (18) 

 

‖xω\st‖2 ≥ √
|ω| − lmin

i∈ω
|xi| (19) 

 

=   √|ω| − l  (√MAVR‖x‖2/√K)  
 

≥ √
  |ω−l|

P(1+δQ(P+1)+|ω|−P)
√MAVR‖Hc‖2  

 

≥ √
|ω−l|  

P(1+δQ(P+1)+|ω|−P)
√MAVR. SNR‖v‖2  

 
‖Hc‖ =  ‖Hωcω‖2 (20) 

 

≤ √(1 + δQ(P+1)+|ω|−P)  

 

𝛽1 ≥  
1− √

|𝜔|

𝑄
+1 𝛿𝑄(𝑃+1)+|𝜔|−𝑃)√𝑀𝐴𝑉𝑅 .  𝑆𝑁𝑅‖𝑣‖2

√𝑃(1+𝛿𝑄(𝑃+1)+|𝜔|−𝑃)
 (21) 

 

(1− √
|𝜔|

𝑄
+1 𝛿𝑄(𝑃+1)+|𝜔|−𝑃)√𝑀𝐴𝑉𝑅.  𝑆𝑁𝑅‖𝑣‖2

√𝑃(1+𝛿𝑄(𝑃+1)+|𝜔|−𝑃)
> √2(1 + 𝛿𝑄(𝑃+1)+|𝜔|−𝑃)‖𝑣‖2 (22) 

 

min
𝑖∈𝑆
‖𝑐[𝑖]‖2 >

2𝜀

1−√
|𝜔|

𝑄
+1𝛿𝑄(𝑃+1)+|𝜔|−𝑃

 (23) 

 

By applying the Lemma 3 in the expression (23), will be given as: 

 

min
i∈P
‖c[i]‖2 >

2ε

1−√
|ω|

Q
+1 (Q|ω|)μ

 (24) 

 

Hence, the proof. From the (23), it has been proved that BGOMP can recover t0 block indices in t0 iterations, 

and 𝜇 ≤
1

1−√
|𝜔|

𝑄
+1 (𝑄|𝜔|)

 is the coherence-based sufficient condition. Table 1 explains the comparison of the 

proposed results with the state-of-the-art methods. 

 

 
Table 1. Comparison of proposed results with the state-of-the-art methods 

Parameter BOMP BCoSaMP [15] Proposed 

Method RIP based BOMP RIP based BCoSAMP Coherence based BGOMP 

Performance guarantee 𝛿𝑑(𝐾+1) <
1

√𝐾 + 1
 𝛿4𝑑𝐾 < 0.5 

𝜇 ≤
1

1 − √
|𝜔|
𝑄 + 1 (𝑄|𝜔|)

 

Maximum number of 

iterations 
Sparsity P Sparsity P Sparsity P 

Number of selection blocks 

per iteration 
1 2P 𝑄 ≤ (𝑚− 𝑑)/𝑃𝑑 
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Table 1 shows coherence based sufficient condition is within the polynomial time and it can select 

multiple active block index per iteration. BOMP, compressive sampling matching pursuit (CoSaMP) 

recovery guarantees are based on RIC. It is NP hard to find RIC to satisfy RIP that has been overcome by 

finding a sufficient condition based on coherence for BGOMP algorithm. BGOMP can able to recover at 

least ‘P’ number of support vectors in ‘P’ iterations implies that it is has more probable to recover all the 

support vectors in lesser iterations than the BOMP and CoSaMP. Though CoSaMP chooses '2P’ number 

elements in every iteration, there is a chance of choosing the same column indices chosen in the previous 

iterations. 

 

 

3. RESULTS AND DISCUSSION 

Simulation of an underdetermined system to detect the support vector index will be discussed: 

construct a m by n sensing matrix with elements derived from a Gaussian distribution with N (0, 1) as the 

range, and normalize each column to unity [30]. The observation vector can be computed using the equation 

b=A c, where m=50 and n=128 remain constant during the experiment. Block sparse signal c is generated, 

and the position of the non-zero elements is randomly chosen. Figures 4 and 5 shows the detection 

performance of greedy algorithm for different block length levels d=4, 8 for d=4 BGOMP outperforms the 

other greedy algorithms. BGOMP can able to exactly recover the support column indices even when it is 

equal to d=4. It is evident from the Figures 4 and 5, BGOMP can able to recover all the occupied bands for 

d=4 and K≤28. When the block length is increased from d=4 to d=8 algorithms like BCoSAMP, BOMP and 

BSP cannot able to recover successfully for K>14. 

Figure 6 shows the recovery performance of BGOMP algorithm for varying number of elements 

picked per iteration. As the number of selection element increases the detection perform got improved 

slightly. Next consider the computation time of BGOMP with other algorithms like BOMP, BSP, and 

BCoSaMP. Simulation has been carried out using Intel® Core™ i5-8265 2.3GHz with 8GB memory in 

Windows 10. 

 

 

 
 

Figure 4. Detection of support vectors of the unknown sparse signal where block length is 4 using different 

greedy algorithms 

 

 

BGOMP can able to select multiple active support column indices per iteration. When the block 

sparsity increases i.e., number of non-zero elements increase BGOMP computation time will be lesser than 

BOMP and BCoSaMP because BOMP can choose only one active element per iteration leads to higher 

computation time. In the case of BCoSaMP it can choose ‘2P’ elements in each iteration it will choose the 

same active index repetitively in the upcoming the iteration leads to a greater number of iterations to recover 

the support column indices. When the block sparsity is greater than 24, 64 BGOMP can able to recover 

successfully in lesser computation time than the BOMP, block subspace pursuit (BSP) and BCoSaMP. Table 2 

shows the average computation time of other algorithms. BGOMP is quicker than BOMP, BCoSaMP and 

BSP for different block length and block sparsity. 
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Figure 5. Detection of support vectors of unknown sparse signal where block length is 8 using different 

greedy algorithms 

 

 

 
 

Figure 6. Detection of support vectors by varying the number of elements selected per iteration Q for 

different sparsity values using BGOMP 

 

 

Table 2. Computation time versus block sparsity for state-of-the-art algorithms 
Block 

length(d) 

Block 

sparsity (K) 

BGOMP(s) 

proposed 

BOMP(s) 

[20] 

BSP(s) 

[20]  

BCOSaMP(s) 

[20]  

2 2 0.0008 0.0009 0.0009 0.0007 

2 24 0.0021 0.0043 0.0028 0.0024 

2 64 0.0221 0.0236 0.0034 0.0448 

4 2 0.0004 0.0005 0.0005 0.0003 

4 12 0.0015 0.0023 0.0019 0.0016 

4 32 0.0111 0.0122 0.0036 0.4455 

16 2 0.0004 0.0005 0.0006 0.0005 

16 3 0.0006 0.0008 0.0009 0.0007 

16 8 0.0032 0.0033 0.0041 0.0183 

 

 

4. CONCLUSION 

Coherence based sufficient condition to recover the unknown sparse vector using block generalized 

orthogonal matching pursuit has been derived. The coherence based condition for BGOMP is a novel 

condition to recover the unknown block sparse vector from an under determined system. Computation time 

for block sparsity>2 for BGOMP is lesser than BOMP in all the cases. BGOMP can able to exactly recover 
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the active sub band indices even when block length is equal to d=4. It is evident that BGOMP outperforms all 

the other greedy algorithms for different block length and block sparsity. BGOMP outperforms BOMP in all 

the cases of block sparsity ranges from 2, 12, 32, 64 because BGOMP can select multiple blocks per iteration 

to process leads to lesser number of iteration than BOMP. Coherence based sufficient condition for BGOMP 

has improved the detection performance for different block sparsity and block length. BGOMP computation 

time outperforms other state of the art algorithms like BOMP, BSP and BCoSaMP. 
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