
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 34, No. 3, June 2024, pp. 2096~2106 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i3.pp2096-2106      2096 

 

Journal homepage: http://ijeecs.iaescore.com 

Efficient packaging defect detection: leveraging pre-trained 

vision models through transfer learning  
 

 

Wiwi Prastiwinarti1, Mera Kartika Delimayanti2, Hendra Kurniawan3,4, Yoga Putra Pratama1,  

Hanin Wendho1, Rizky Adi2 
1Department of Printing Engineering and Publishing, Politeknik Negeri Jakarta, Jakarta, Indonesia  

2Computer and Informatics Engineering, Politeknik Negeri Jakarta, Jakarta, Indonesia 
3Informatics Engineering, Universitas Maritim Raja Ali Haji, Tanjungpinang, Indonesia 

4Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan  

 

 

Article Info  ABSTRACT 

Article history: 

Received Oct 31, 2023 

Revised Feb 18, 2024 

Accepted Mar 16, 2024 

 

 The inspection of packaging defects is a crucial aspect of maintaining the 
quality of industrial production, especially in the case of boxed products. 

This study introduces a novel approach for detecting physical defects in 

product packaging boxes by integrating image processing with deep 

learning, specifically transfer learning with two images as an input. The 
proposed method utilizes both top view and side view images of the 

packaging to determine its condition, a significant departure from the 

conventional single image input. Our approach incorporates 16 pre-trained 

model variants from EfficientNetV2, MobileNetV3, and ResNetV2 for 
transfer learning as feature extractors. The experimental findings 

demonstrate that the best model that leverages EfficientNetV2 variant 

achieves 100% accuracy and F1 score in terms of classification performance. 

However, the most optimal model in terms of classification performance and 
inference speed was the one that leveraged ResNetV2 variant. This model 

scored 95% accuracy and 95.24% F1 score, with an inference speed of 91 

ms per prediction. 
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1. INTRODUCTION 

The inspection of package defects is a crucial aspect of maintaining the quality of industrial 

production, especially in the case of boxed products. Traditionally, this process has been carried out 

manually, a method that is not only inefficient but also prone to errors. With the advancement of technology, 

particularly in the field of computer vision, it has become possible to develop a system where machines can 

automatically detect defects on product packages, thereby replacing manual labor [1]. Manual inspection, on 

the other hand, presents several drawbacks such as slow speed, low detection efficiency, extensive man-

hours, and substantial consumption of material and site resources [2]. The repetitive nature of the task can 

lead to visual fatigue, impairing perception over time. This is due to the fact that different individuals, and 

even the same individual under varying conditions, tend to inspect the package differently, which makes it 

challenging to establish a unified standard of judgment [1]. Computer vision relies heavily on computational 

systems to emulate the human visual function, enabling extraction, processing, and analyzing information 

from tangible objects. A higher level of objectivity characterizes the outcomes, as they can promptly and 

precisely identify defects in the box packaging. Additionally, these outcomes provide a complete analysis of 
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the defect parameters, enabling the determination of whether the packaging material meets the required 

standards or is defective [3]. 

In recent years, both the software and hardware technologies of computer vision systems have been 

significantly improved with the growth of electronic technology. The subfield of machine learning, known as 

"deep learning", focuses on creating and applying methods that let neural networks learn from and make 

predictions about big, complex datasets. Multiple layers of nodes, also called neurons, are interconnected in 

deep learning [4]. In computer vision, deep learning has shown exceptional effectiveness in recent years. In 

contemporary times, deep learning has demonstrated notable efficacy in computer vision. The insensitivity of 

pattern identification in images has been proven concerning elements such as backdrop, lighting, colour, 

form, size, and intensity [5]–[8]. The design and operation of these networks are influenced by the physical 

and functional properties of neural networks in the human brain. The input data undergoes processing within 

these neural networks to autonomously extract and acquire knowledge of features-these traits' abstraction 

level increases as they traverse the network's tiers. Deep learning can be attributed to their capacity to 

effectively grasp intricate patterns and representations from unprocessed data [3]. This is especially desirable 

when it comes to detecting intricate surface faults in commercial or industrial environments. In addition, 

flaws must not only be identified, but also their precise dimensions and types ascertained before moving on 

to the next step of the process [9]. 

Defect detection techniques powered by deep learning give the network the flexibility to find 

specific flaws based on the data set. In addition, the parameters of the network that are learned while working 

with one network can be applied to other networks that are comparable in order to produce high success rates 

for surface defect detection. Consequently, a number of studies have utilized a computer vision strategy to 

support in classification, defect detection, and quality inspection for fabric defect [3], [10], cylinder and glass 

bottle [4], [11], [12] and box packaging [1], [8]. For instance, Jeyaraj and Nadar [3] had proposed developing 

a quick and efficient classification system for fabric defects. The authors have employed a learning feature 

for defect classification and have achieved a satisfactory classification accuracy by employing a deep 

learning algorithm [3]. Moreover, Liu et al. [10] presented an approach for fabric defect detection based on 

generative adversarial networks (GAN). It has been demonstrated that this method assisted in fine-tuning the 

semantic segmentation network to detect defects in varying conditions more accurately.  

In another study, surface defect detection was conducted on a cylinder liner dataset. Due to the 

irregular shape, variety, and small size of the surface defects, cylinder liner defect detection based on 

machine vision is a challenging task. Gao et al. [4] used experiments to determine which model was the most 

effective. The dataset was then augmented using a modified augmentation technique incorporating the region 

of interest's automatic extraction technique with conventional augmentation techniques. The results indicate 

that the detection accuracies were superior to those of conventional methods [4], [11]. In addition, a Wavelet 

Transform Multiscale Filtering algorithm has been offered for the experiment of defect detection on glass 

bottles to reduce the influence of texture and increase the robustness to localization error [13]. The 

experimental findings demonstrate that the framework achieves the highest performance compared to various 

conventional approaches [12]. 

Furthermore, research has been conducted on the identification of defects in packaging boxes.  

Yang et al. [8] introduced support vector machine (SVM) with a radial basis function kernel as a model used 

for detecting defects in logistics packaging boxes and has successfully detected three types of defects.  

It satisfies manufacturers requirements regarding defect classification and recognition in machine vision 

detection systems. Therefore, this method is an effective solution for detecting defects in logistics packaging 

boxes [1], [8], [14]. Despite its effectiveness in its own scenario, the approach from the previous study has 

significant limitations. In response to these limitations, our study proposes a solution that utilizes both top 

view and side view images of the packaging as inputs to determine if the package is defective or not. 

However, the dataset we have is a small dataset [15]. To address this issue, we employed deep learning with 

transfer learning. This technique leverages a pre-trained model to transfer knowledge from one domain to 

another. It is faster and less time-consuming than training a model from random initialization [16], [17]. 

Moreover, it is particularly suitable for training with a limited dataset because pre-trained models have 

already been trained on large datasets, thus retaining knowledge from these extensive datasets [16]–[18]. 

 

 

2. METHOD 

2.1.  Dataset 

 In this study, we used an Industrial quality control of packages kaggle dataset that was open to the 

public [15]. This dataset consists of computer-generated images designed to resemble packages produced on 

an industrial production line. This dataset is composed of 400 RGB images from a ‘virtual’ production line. 

Each package consists of two images, one top-view image and one side-view image. This means there are 

only 200 package examples in this dataset. These packages are divided into two classes, ‘intact’ and 
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‘damaged’, indicating the condition of the package box. Specifically, 100 packages are intact and the other 

100 are damaged. The images contained in the dataset are presented in PNG format with a dimension of 

960×540 pixels. The dataset samples are illustrated in Figures 1 and 2.  

  Figure 1(a) and Figure 1(b) display a pair of images depicting a package in normal condition, 

without any defects. The package box appears to be in perfect shape, with no visible dents. Conversely, 

Figure 2 presents a pair of images showing a defective package. Figure 2(a) and Figure 2(b) showcase  

a package with a noticeable defect, which is a dent on the box. In the side-view image, the dent is located on 

the top of the box and is highlighted with a red line. Similarly, in the top-view image, the dent is on the side 

of the box and is also marked with a red line. 

 

 

  
(a) (b) 

 

Figure 1. Normal package sample (a) side-view and (b) top-view 

 

 

  
(a) (b) 

 

Figure 2. Defect package sample (a) side-view and (b) top-view 
 

 

  To accommodate the training and evaluation purposes, we split the dataset into three parts, which 

are training, validation, and test sets. The training and validation sets are utilized during the training phase. 

Specifically, the training data is used to train the model, while the validation set is used for hyperparameters 

tuning. The test set, on the other hand, is used to evaluate the performance of the trained model. We split the 

dataset with a ratio of 80:10:10 randomly. We partitioned the dataset using an 80:10:10 ratio due to the small 

size of our dataset. By using an 80:10:10 split, we can maximize the data available for training. The detailed 

distribution of the dataset is depicted in Table 1, which presents the total amount of data for each split set 

along with its corresponding package class. 
 

 

Table 1. Dataset distribution 

Split Set 

Intact package images  Damaged package images  

Side-view Top-view  Side-view Top-view Total images 

Training 80 80  80 80 320 

Validation 10 10  10 10 40 

Test 10 10  10 10 40 

 

 

2.2.  Preprocessing 

The preprocessing stage is the stage where the raw images from dataset are transformed into  

a format that can be used for training models effectively [19]. In our study, we opted for a simple 

preprocessing approach, which involves reading the raw images as pixel numbers, resizing them, and then 

normalizing. An example of this can be seen in Figure 3, where the images may appear squished after 

resizing. Despite this, we chose to retain the images in this state, opting for resizing over cropping. This 
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decision was influenced by the variable positioning of the package box within each image. It is not always 

centrally located, and cropping could potentially result in the package box being omitted.  

In our study, we also explored two distinct image color spaces to understand their effect on the 

detection of defects in package box shapes. The first dataset maintained the original RGB color scheme of 

the images, shown in Figure 3, while the second was transformed into grayscale, illustrated in Figure 4. This 

approach was designed to assess the influence of color information on defect detection. By converting to 

grayscale, we could concentrate exclusively on the shape characteristics of the package boxes, thereby 

eliminating any potential interference from color variations. This experiment aimed to determine whether 

grayscale images would be sufficient for accurate defect detection, potentially simplifying the model input 

and reducing computational requirements. However, with resizing, we can ensure the package box’s 

consistent presence in the image. As for the final size of the resizing, it follows the default input size of each 

pre-trained model stated in Table 2. 

 

 

 
 

Figure 3. Resized RGB image 

 
 

Figure 4. Resized grayscale image 

 

 

2.3.  Transfer learning 

Technique knows as transfer learning was utilized in our research. This method leverages a pre-

trained model to transfer knowledge from one domain to another, providing a more efficient and less time-

consuming alternative to training a model from random initialization [16], [17]. By leveraging the knowledge 

from the pre-trained model, transfer learning proved to be beneficial when working with small dataset like 

our dataset [16]–[18]. In our implementation, we employed the pre-trained model as the feature extraction 

layer of our models and only train the rest of the network [20], [21], given its prior training on large datasets, 

making it an suitable approach for our small datasets. Consequently, transfer learning enables us to harness 

the capabilities of pre-existing models, thereby reducing computational time and resources, while still 

ensuring robust performance. The pre-trained model utilized used for transfer learning in our study are 

EfficientNetV2 [22], MobileNetV3 [23], and ResNetV2 [24] variants which trained using ImageNet dataset [25]. 

These models were selected due to their classification as lightweight to medium models [26], which are ideal 

for a possible real-world scenarios such as fast-paced production line. The advantage of using a lightweight 

model is the minimal inference time, which is crucial for accommodating the possibility of rapid pace of a 

production line. Detailed information about each pre-trained model used in this research is provided in Table 2. 

 

 

Table 2. Pre-trained models used in this study 
Pre-trained model Variant Default input image size Parameters without top layer (million) 

EfficientNetV2 [22] EfficientNetV2-21k-S 384×384 20.33 

 
EfficientNetV2-21k-M 480×480 53.15 

 EfficientNetV2-21k-L 480×480 117.75 

 EfficientNetV2-1k-S 384×384 20.33 

 EfficientNetV2-1k-M 480×480 53.15 

 EfficientNetV2-1k-L 480×480 117.75 

 EfficientNetV2-21k-ft1k-S 384×384 20.33 

 EfficientNetV2-21k-ft1k-M 480×480 53.15 

 EfficientNetV2-21k-ft1k-L 480×480 117.75 

MobileNetV3 [23]  MobileNetV3-dm1.00-S 224×224 1.53 

 MobileNetV3-dm0.75-S 224×224 1.03 

 MobileNetV3-dm1.00-L 224×224 4.23 

 MobileNetV3-dm0.75-L 224×224 2.73 

ResNetV2 [24] ResNetV2-50 224×224 23.56 

 ResNetV2-101 224×224 42.63 

 ResNetV2-152 224×224 58.33 
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Table 2 presents detailed information about each pre-trained model, its variant, default input image 

size, and parameters without the top layer. Each model listed in the table has multiple variants, but we only 

utilized the ones specified. In total we trained and evaluated 16 model variants in our experiments. Consisting 

of three distinct mode architectures, EfficientNetV2 [22], MobileNetV3 [23], and ResNetV2 [24]. 

Our study incorporated nine variants of EfficientNetV2. The suffixes S, M, and L in a variant name 

represent the architecture type: ‘Small’, ‘Medium’, or ‘Large’, respectively. We also employed four variants 

of MobileNetV3, with the suffixes S and L indicating ‘Small’ and ‘Large’ architectures, respectively. The 

labels dm1.00 and dm0.75 signify depth multipliers of 1.00 and 0.75 [23]. Furthermore, we utilized three 

variants of ResNetV2, with the numbers 50, 101, and 152 at the end of the variant names representing the 

number of layers in the model [24], [27]. The default input image size for both MobileNetV3 and ResNetV2 

is 224×224. However, EfficientNetV2 differs, with a size of 384×384 for the ‘Small’ architecture and 

480×480 for the ‘Medium’ and ‘Large’ architectures [22]–[24], [27]. The parameters listed in Table 2 

exclude the top layer, as we used the pre-trained models solely for feature extraction. By looking on Table 2 

it reveals that MobileNetV2 has the fewest average parameters, followed by ResNetV2, while 

EfficientNetV2 boasts the highest average parameters. 

 

2.4.  Model architecture 

In our experiments, we employed a custom-made model architecture, diverging from the 

conventional approach of using purely pre-trained models. This decision was chosen because of the unique 

structure of our dataset, which includes two images as input, while pre-trained models typically support only 

a single image input. Even though we used a custom-made model architecture; we still utilize pre-trained 

models as the image feature extractor. The illustration of our custom-made model can be found in Figure 5. 

 

 

 
 

Figure 5. Custom made model architecture 

 

 

The custom model architecture depicted in Figure 5 is designed to accept two images as input and 

yield a predicted class output, indicating whether the package is defective or normal. The process begins with 

the model receiving two image inputs, each of which is fed into separate instances of pre-trained models. 

These pre-trained models serve as image input feature extractors. The features extracted from each pre-

trained model are then concatenated and flattened. These flattened features are subsequently fed into  

a network of fully connected layers, comprising multiple dropouts and dense/linear layers, finished by 

sigmoid activation function. The sigmoid function was chosen due to its ability to map the input to a value 

between 0 and 1 [28], making it suitable for our classification task. The output of the sigmoid function 

represents the final output of our model, which is the predicted image class. The hyperparameters setting 

used during the training phase of this model architecture are detailed in Table 3. 

 

 

Table 3. Hyperparameters setting 
Hyperparameter Value 

Optimizer Adam 

Loss function BinaryCrossEntropy 

Learning rate 1e-3, 1e-4, 1e-5 

Batch size 8, 16, 32 

Dropout 0.2 

Maximum epoch 200 

Early stopping monitor Validation Accuracy 

Early stopping mode Max 

Early stopping patience 10 

Early stopping min delta 0.00 
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As detailed in Table 3, we experimented with three distinct values for both the learning rate and 

batch size. For the learning rate, we conducted three separate experiments for each model variant, utilizing all 

the presented learning rates to identify the optimal model. In contrast, for the batch size, we selected a single 

value for each model variant. The chosen batch size was the largest that could be accommodated within the 

GPU VRAM capacity. Table 3 also outlines the early stopping settings implemented in our experiments. This 

feature was utilized to conserve computing power in the absence of any improvement. With early stopping 

enabled, the training process is automatically stopped if no improvement is observed based on the provided 

settings. 

 

2.5.  Evaluation 

The performance of our image-based classification model was evaluated by using recall, precision, 

F1 score, accuracy, and inference speed metrics. Recall measures the proportion of actual positives that are 

correctly identified. Precision quantifies the number of true positive instances among the predicted positives. 

The F1 score is the harmonic mean of precision and recall, providing a balance between these two metrics [29]. 

Accuracy, on the other hand, gives us a holistic view of the overall correctness of the model.  

The terms TP, TN, FP, and FN used in (1), (2), and (4) stands for True Positive, True Negative, 

False Positive, and False Negative. These terms describe the condition of between predicted and actual label. 

While the term ti used in (5) is the time the model takes for each inference process. The definition of TP, TN, 

FR, and FN are shown in Table 4. 

 

 

Table 4. TP, TN, FP, FN definition 
Predicted Actual Definition 

Defect Defect True positive (TP) 

Defect Non-defect False positive (FP) 

Non-defect Defect False negative (FN) 

Non-defect Non-defect True negative (TN) 

 

 

3. RESULTS AND DISCUSSION 

The classification performance of the proposed approach has been evaluated using the test dataset. 

The findings were presented as tables. The utilization of transfer learning for two image input models shows 

a promising result presented in Tables 5-7. We conducted the experiments multiple times with different 

learning rates and image color space. The results of best model variants we got using the RGB image dataset 

detailed in Table 5. 

 

 

Table 5. Test results (RGB image dataset) 

Pre-trained model variant 
Optimal 

learning rate 
Accuracy (%) F1 Score (%) Precision (%) Recall (%) 

Inference 

Speed (ms) 

EfficientNetV2-21k-S 1e-3 100 100 100 100 131 

EfficientNetV2-21k-M 1e-3 80 77.78 87.5 70 177 

EfficientNetV2-21k-L 1e-5 85 84.21 88.89 80 247 

EfficientNetV2-1k-S 1e-3 80 81.82 75 90 131 

EfficientNetV2-1k-M 1e-3 90 88.89 100 80 182 

EfficientNetV2-1k-L 1e-5 80 80 80 80 250 

EfficientNetV2-21k-ft1k-S 1e-5 85 85.71 81.82 90 130 

EfficientNetV2-21k-ft1k-M 1e-3 85 82.35 100 70 182 

EfficientNetV2-21k-ft1k-L 1e-4 80 81.82 75 90 260 

MobileNetV3-dm1.00-S 1e-3 65 69.57 61.54 80 81 

MobileNetV3-dm0.75-S 1e-3 75 73.68 77.78 70 80 

MobileNetV3-dm1.00-L 1e-4 80 77.78 87.5 70 86 

MobileNetV3-dm0.75-L 1e-3 80 77.78 87.5 70 84 

ResNetV2-50 1e-3 95 95.24 90.91 100 91 

ResNetV2-101 1e-3 70 70 70 70 138 

ResNetV2-152 1e-3 80 77.78 87.5 70 131 

 

 

As presented in Table 5, the best model for RGB image input was the EfficientNetV2 on the 21k-S 

variant, which achieved a perfect accuracy and F1 score of 100%. However, when considering inference 

speed, the MobileNetV3-dm0.75-S model outperformed others, averaging 80 ms per prediction, or 12.5 

predictions per second. Despite its speed, the performance of MobileNetV3-dm0.75-S was inferior compared 

to other models. Therefore, the optimal balance between performance and inference speed was found in the 

ResNetV2-50 model, which demonstrated an accuracy of 95% and an F1 score of 95.24%, while maintaining 
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a reasonable average prediction speed of 91 ms. The information presented in Table 5 is the performance of 

the model from the RGB image, as for the grayscale image input is presented in Table 6. 

 

 

Table 6. Test results (grayscale image dataset) 

Pre-trained model variant 
Optimal 

learning rate 
Accuracy (%) F1 Score (%) Precision (%) Recall (%) 

Inference 

speed (ms) 

EfficientNetV2-21k-S 1e-4 85 82.35 100 70 128 

EfficientNetV2-21k-M 1e-3 90 90 90 90 183 

EfficientNetV2-21k-L 1e-5 80 81.82 75 90 252 

EfficientNetV2-1k-S 1e-3 90 88.89 100 80 130 

EfficientNetV2-1k-M 1e-4 65 58.82 71.43 50 181 

EfficientNetV2-1k-L 1e-4 75 73.68 77.78 70 246 

EfficientNetV2-21k-ft1k-S 1e-3 95 94.74 100 90 132 

EfficientNetV2-21k-ft1k-M 1e-3 90 90 90 90 184 

EfficientNetV2-21k-ft1k-L 1e-4 90 88.89 100 80 250 

MobileNetV3-dm1.00-S 1e-3 80 75 100 60 81 

MobileNetV3-dm0.75-S 1e-3 60 69.23 56.25 90 81 

MobileNetV3-dm1.00-L 1e-3 85 82.35 100 70 84 

MobileNetV3-dm0.75-L 1e-3 75 76.19 72.73 80 84 

ResNetV2-50 1e-4 80 81.82 75 90 92 

ResNetV2-101 1e-5 75 78.26 69.23 90 144 

ResNetV2-152 1e-3 80 80 80 80 128 

 

 

Table 6 presents the best model variants resulting from grayscale image input, and contrary to the 

previous table, none of these models achieved a perfect 100% performance score. The top performing model 

is now EfficientNetV2-21k-ft1k-S, which scored 95% in accuracy and 94.74% in F1 score. In terms of 

inference speed, EfficientNetV2 still lags other models, with MobileNetV3 being the fastest on dm1.00-S and 

dm0.75-S variants, clocking in at 81 ms per prediction. However, speed does not necessarily equate to 

superiority. The model with the best performance in terms of inference speed is EfficientNetV2-21k-ft1k-S, 

the best model for grayscale image input, with an inference speed of 132 ms per prediction. To better 

understand how the color space of image input affects model performance, Table 7 is presented with an 

information of performance difference between models using RGB image input and grayscale image input in 

terms of accuracy and F1 score. 

 

 

Table 7. RGB and grayscale image input performance differences 
 RGB image input  Grayscale image input  Performance difference 

Pre-trained model variant 
Accuracy 

(%) 

F1 Score 

(%)  

Accuracy 

(%) 

F1 Score 

(%)  

Accuracy 

(%) 

F1 Score 

(%) 

EfficientNetV2-21k-S 100 100  85 82.35  -15 -17.65 

EfficientNetV2-21k-M 80 77.78  90 90  12.5 15.71 

EfficientNetV2-21k-L 85 84.21  80 81.82  -5.88 -2.84 

EfficientNetV2-1k-S 80 81.82  90 88.89  12.5 8.64 

EfficientNetV2-1k-M 90 88.89  65 58.82  -27.78 -33.83 

EfficientNetV2-1k-L 80 80  75 73.68  -6.25 -7.9 

EfficientNetV2-21k-ft1k-S 85 85.71  95 94.74  11.76 10.54 

EfficientNetV2-21k-ft1k-M 85 82.35  90 90  5.88 9.29 

EfficientNetV2-21k-ft1k-L 80 81.82  90 88.89  12.5 8.64 

MobileNetV3-dm1.00-S 65 69.57  80 75  23.08 7.81 

MobileNetV3-dm0.75-S 75 73.68  60 69.23  -20 -6.04 

MobileNetV3-dm1.00-L 80 77.78  85 82.35  6.25 5.88 

MobileNetV3-dm0.75-L 80 77.78  75 76.19  -6.25 -2.04 

ResNetV2-50 95 95.24  80 81.82  -15.79 -14.09 

ResNetV2-101 70 70  75 78.26  7.14 11.8 

ResNetV2-152 80 77.78  80 80  0 2.85 

 

 

As depicted in Table 7, not all model variants benefit from using grayscale images instead of RGB. 

Out of 16 model variants, only 9 show a positive impact when using grayscale images as model input. The 

most significant improvement is seen in MobileNetV3-dm1.00-S, with an increase of 23.08% in accuracy 

and 7.81% in F1 score. Conversely, the worst impact is observed in EfficientNetV2-1k-M, with a 

performance deterioration of -27.78% in accuracy and -33.83% in F1 score. This suggests that using 

grayscale input for our custom-made model architecture does not guarantee an improvement in model 

performance. It is evident that each model variant has its best version, whether using RGB image input or 
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grayscale image input. The combination of the best model test results for each model variant is detailed in 

Table 8. 

 

 

Table 8. Best test results 

Pre-trained model variant 
Image input 

color space 
Accuracy (%) F1 Score (%) Precision (%) Recall (%) 

Inference 

speed (ms) 

EfficientNetV2-21k-S RGB 100 100 100 100 131 

EfficientNetV2-21k-M Grayscale 90 90 90 90 183 

EfficientNetV2-21k-L RGB 85 84.21 88.89 80 247 

EfficientNetV2-1k-S Grayscale 90 88.89 100 80 130 

EfficientNetV2-1k-M RGB 90 88.89 100 80 182 

EfficientNetV2-1k-L RGB 80 80 80 80 250 

EfficientNetV2-21k-ft1k-S Grayscale 95 94.74 100 90 132 

EfficientNetV2-21k-ft1k-M Grayscale 90 90 90 90 184 

EfficientNetV2-21k-ft1k-L Grayscale 90 88.89 100 80 250 

MobileNetV3-dm1.00-S Grayscale 80 75 100 60 81 

MobileNetV3-dm0.75-S RGB 75 73.68 77.78 70 80 

MobileNetV3-dm1.00-L Grayscale 85 82.35 100 70 84 

MobileNetV3-dm0.75-L RGB 80 77.78 87.5 70 84 

ResNetV2-50 RGB 95 95.24 90.91 100 91 

ResNetV2-101 Grayscale 75 78.26 69.23 90 144 

ResNetV2-152 Grayscale 80 80 80 80 111 

 

 

Presented in Table 8 that models produced by EfficientNetV2 architecture are the top amongst two 

other model architecture in terms of average performance, but it suffers from the slow inference speed 

compared to two other models’ architecture. On the other hand, MobileNetV3 architecture produces the 

fastest models, but has subpar performance on average. The most optimal pre-trained model architecture in 

our experiments was ResNetV2, it has a promising performance average, while maintaining a notably fast 

inference speed, albeit not as fast as MobileNetV3. Meaning that each pre-trained architecture is suitable for 

different use cases. If classification performance is the most important, then EfficientNetV2 is the correct 

choice. If inference speed is the only one that matters, then MobileNetV3 is the perfect choice. Lastly, if 

classification performance and inference speed are equally important then ResNetV2 is the optimal choice. 

Table 8 shows the best model we got was a model with the pre-trained EfficientNetV2 as the feature 

extractor on the 21k-S variants with a perfect score of 100% accuracy and F1 score, which use RGB image as 

the input. Despite the perfect performance score, it ranked second if we include the inference speed in the 

calculation. The model that demonstrated the best balance between classification performance and inference 

speed is model with a pre-trained ResNetV2-50 variant as the feature extractor with a score of 95% accuracy 

and 95.24% F1 score, and 91 ms inference speed, which also use RGB image as the input. Although the 

results are promising, please keep in mind that this performance was gained using a small computer-

generated dataset, which may differ from a big real-world dataset. However, if the real-world image datasets 

are similar with the dataset we used on our experiments, it may have comparable results with our 

experiments.  

 

 

4. CONCLUSION  

This study introduces a novel approach for detecting physical defects in product packaging boxes by 

integrating image processing with deep learning, specifically transfer learning with two images as an input. 

The proposed method utilizes both top and side view images of the packaging to determine its condition,  

a significant departure from the conventional single-image input. Our approach incorporates 16 pre-trained 

model variants from EfficientNetV2, MobileNetV3, and ResNetV2 for transfer learning as feature extractors. 

We also experimented with multiple image input color spaces, namely RGB and grayscale. Our experiments 

yielded promising results. The best model, which leverages EfficientNetV2-21k-S as a feature extractor, 

achieved a perfect 100% accuracy and F1 score in terms of classification performance. However, the most 

optimal model in terms of classification performance and inference speed was the one that leveraged 

ResNetV2-50 as a feature extractor. This model scored 95% accuracy and 95.24% F1 score, with an 

inference speed of 91 ms. Both models used RGB images as input. Interestingly, we found that using 

grayscale images as input does not necessarily improve model performance. For future research, it may be 

worthwhile to conduct experiments with real-world datasets instead of computer-generated ones. Exploring 

real-time model approaches such as YOLO could also be beneficial. While our findings show promising 

results, they were obtained using a small computer-generated dataset. Therefore, the performance may differ 

when using real-world datasets. However, if the real-world dataset is similar to the one used in our 
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experiments, our approach and models could implement effectively to identify defects in package boxes with 

good results. 
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