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ABSTRACT

The world was affected by a novel coronavirus in December 2019 that changed
human life. Several types of research have been done, substantial scientific
advances have been made, and millions of dollars have been spent on
bringing scholars and scientists to one platform to end this critical pandemic.
Ascertaining COVID-19 diagnoses in the initial stage of the pandemic was
critical, specifically for patients with no manifestations. In this case, artificial
intelligence-based systems were proposed to identify the virus at an earlier
phase. Thus, the present study suggests a machine vision scheme to identify
COVID-19 from chest X-ray images. Three machine learning approaches, such
as logistic regression (LR), decision tree (DT), and random forest (RF), were
implemented with more than 95% accuracy. The deep convolutional neural
network (CNN) architecture was also proposed and implemented with a 99.99%
detection rate. Therefore, the present work can effectively detect COVID-19
cases in the early stages.
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1. INTRODUCTION
In December 2019, the coronavirus hit the globe as the COVID-19 variant. The COVID-19 virus

was harmful to humans and severely impacted worldwide, starting from the Wuhan province of China. It is
highly infectious and contagious [1], [2]. The COVID-19 was formerly recognized as the SARS-CoV-2 variant
of the coronavirus family. The virus was known to spread by being in close contact with the infected person
[3]. In this case, significant methods of detecting COVID-19 cases were used, such as reverse transcription-
polymerase chain reaction (RT-PCR) or gene decoding for respiratory or blood samples [4]. However, scientists
have developed vaccines worldwide to help the body pick a fight against the variant virus. However, no adequate
medication or vaccine is still available for the COVID-19 disease that protects humans 100% against the virus
[5], [6]. COVID-19 has been known to attack the lungs and tissues of the infected person, like Pneumonia
[7]–[9]. The research shows that the manifestations of Pneumonia and the COVID-19 variant are highly related,
including cough with phlegm or pus, fever, colds, body pains, a headache, and hardship breathing, which can
be noticeable with chest X-ray or computed tomography (CT) imaging [10], [11]. However, differentiation
between the cause being COVID-19 or Pneumonia bacteria/virus needs to be identified early as the chances for
the COVID-19 virus to spread are severely high, which may lead to several deaths as well [12]–[14]. Thus,
chest X-ray images are essential to the verdict of the earlier control used globally as a first-line analytical

Journal homepage: http://ijeecs.iaescore.com



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 r 1787

mechanism [15]. The situation of the lungs can be noticed using radioscopy scans together with the various
phases of infection or retrieval [16]. Radiotherapists have documented anomalies seen in the chest scans of
COVID-19 patients.

In this regard, several studies have been conducted on detecting COVID-19 patients using chest
X-rays and lung CT scan image data with a machine or deep learning models with some limits. For instance,
Santosh [2] proposed artificial intelligence-driven tools to help identify COVID-19 outbreaks and diagnoses.
Therefore, Mukherjee et al. [1] used a deep neural network model that collectively utilizes CT scans and
chest X-ray images to interpret COVID-19 cases with a precision of 96.28%. Das et al. [3] reported that X-ray
imaging is more affordable than CT scan methods for detecting various diseases, including COVID-19.
Similarly, the study [17] used the CNN-enabled InceptionV3 model on chest X-ray images to detect COVID-19
cases with 96% accuracy. In addition, the research on COVID-19 classification has been done by Saeed and
Alwawi [18] using CNN modelling and chest X-ray images with only 92.29% testing accuracy. In the study,
Cahyani et al. [19] combined the Resnet50 and BiLSTM models in classifying COVID-19 cases using chest
X-ray images with 98.48% accuracy.

Similarly, the study [20] focused on hybrid CNN and RNN modelling with chest X-ray images with
97.8% accuracy in diagnosing COVID-19 cases. The earlier studies have used similar approaches like deep or
machine learning models on chest X-ray images with limited detection rates. Hamlili et al. [21] used Resnet-50
and transfer learning on chest X-ray images to detect COVID-19 cases and obtained 97.3% multiclass accuracy.
However, the study [21] also classified Pneumonia with COVID-19 as a regular class, which could be the reason
for the limited precision. Alwawi and Abood [22] have followed the histogram equalization method with CNN
for COVID-19 diagnosis on chest X-ray images. However, the results achieved in [22] are limited, i.e. 92.1%,
due to limited training samples. Furthermore, Masadeh et al. [23] applied the CNN model to the COVID-19
chest X-ray dataset and achieved 97.44% accuracy in identifying COVID-19 cases. CT scan images were
also used with the CNN model to detect COVID-19 [24]. However, various activation functions were used
to activate the CNN model, and the focus was on the wavelet activation function due to its high accuracy in
detecting COVID-19 [24].

However, earlier studies have focused on various machine and deep learning methods with either chest
X-ray or lung CT scan images for detecting COVID-19 cases. Some studies also reported using chest X-ray
and CT scan images to notice COVID-19 and various other diseases with some limits. However, the earlier
results were limited to advanced machine or deep learning models and chest X-ray imageries. The detection
rate of machine learning models was also lower in prior investigations than in deep learning models. Moreover,
earlier proposed deep learning models could have improved the accuracy of detecting COVID-19 cases. Thus,
an accurate, effective, and lightweight system is needed to see the COVID-19 cases in the early stages with the
highest recognition rate.

Therefore, the present study focuses on chest X-ray images and cutting-edge machine and deep
learning methods to accurately determine and categorize COVID-19 patients with the highest results. In the
present study, we applied three machine learning models, such as logistic regression (LR), decision tree (DT),
and random forest (RF), with a deep convolutional neural network (CNN) model to distinguish COVID-19
diagnosis automatically. The machine learning methods were compared with a deep learning-based CNN
model. The proposed models require simple chest X-ray scans to replace the diagnosis and have an end-to-end
design. The present significant study focuses on the automatic analysis of COVID-19 by chest X-rays. The
significant contributions of the present study are to develop an efficient, lightweight, and automatic system
using chest X-ray and machine-deep learning-enabled models that detect COVID-19 cases at early stages. The
primary objectives are: i) to use chest X-ray scans to detect normal and COVID-19 patients; ii) to renovate the
raw image to extract the efficient features; iii) to develop and implement machine and deep learning models;
and iv) to evaluate and validate the obtained accuracy.

The paper is divided into four sections. This section outlines the problem with a detailed literature
study for finding the shortcomings in earlier studies. This section also focuses on the significant contributions
and objectives of the present study. Section two proposes a clear framework for data collection, pre-processing,
machine learning and deep learning-enabled model development, classification of COVID-19 cases, and its
evaluations. Results are examined in section three, comparing the outcome of the present study with standard
literature. The final section concludes the present study.
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2. MATERIALS AND METHODS
The offered framework is displayed in Figure 1. The framework as shown in Figure 1 focuses on

collection datasets, its pre-processing, dividing training and testing sets, resizing the image into
appropriate sizes, offering deep learning architecture and implementing the models for classifying the
normal and COVID-19 cases, calculating, validating, and evaluating the results achieved via proposed
approach. The details of our proposed framework are discussed in the next section.

Figure 1. The workflow of the offered framework used in the present study

2.1. Dataset and its pre-processing
The X-ray image dataset utilized for this analysis is downloaded from an open-source Kaggle and

GitHub repository [25]. We used 1,986 chest X-ray images for normal (1,056) and COVID-19 (930) cases.
The entire image dataset has been validated and clarified, and judgements on the X-ray images are included.
We employ two categories of publicly available datasets in the experimental analysis. These open-source
images are of different extents, though they are not flexible. The downloaded images are of various sizes
and qualities. In addition, these images had multiple orientations and were skewed and noisy. Therefore, we
pre-processed the images and reformatted each image to a similar size of 224×224 pixels. The final input to
the implemented techniques was a 224×224×3 image, and RGB reversion was required. The sample of chest
X-ray images is demonstrated in Figure 2, which contains normal cases as shown in Figures 2(a) and 2(b) and
COVID-19 cases as shown in Figures 2(c) and 2(d), respectively.

(a) (b)

(c) (d)

Figure 2. Samples of (a) normal, (b) normal, (c) COVID-19 images, (d) COVID-19 images
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2.2. Proposed implemented models
2.2.1. Convolutional neural network

A deep learning-based CNN approach is used in the present research to determine the relevance of
various image components. CNN has recognized COVID-19 patients in X-ray scans using multiple layers in
our instance. These different layers derive essential elements from the provided input data, which are later
given to the classification phase. We used three main steps in CNN: convolution, pooling, and dense (output)
layers. However, the convolution and pooling layers are multiple and are arranged in various ways. Different
features were detected from input data using several kernels [10]–[13] in the convolution layer. In the present
study, three convolution and pooling layers were operated. The convolution layers were 32, 64, and 128, with a
3×3 filter size. We have used the rectified linear unit (ReLU) activation function in the convolution layers. The
pooling window size was 2×2 with a max pooling function as shown in Figure 3. The outcome of the dropout
layer was passed via two dense layers, including the ReLU activation function. The outcome layer consists
of two-dimensional layers with SoftMax activation function. The implemented CNN model with its layers is
depicted in Figure 3.

Figure 3. The proposed convolutional neural network architecture

2.2.2. Logistic regression
The statistical LR method is used for binary classification, which aims to indicate the probability

that an input belongs to a particular class. The process is based on a logistic function, which transforms a
linear combination of input features into a value between 0 and 1, representing the likelihood of the input
related to a specific type. In LR, the input elements are multiplied by their related weights, and the resultant
values are summed to construct a linear predictor. This predictor is given via the logistic function to create
the calculation. The sigmoid function having an S-shaped curve is used in the LR method. This function
calculates any real-time digit to a likelihood value between 0 and 1 [26]. Notably, the sigmoid function is
defined using (1).

σ(z) = 1 + e-z1 (1)

where z provides the linear predictor, and σ(z) gives the predicted probability.
Our study uses an X-ray dataset with regular and COVID-19 labelled samples and optimizes the

model’s weights to reduce the discrepancy between the expected likelihoods and the actual class. This is
usually done via maximum likelihood computation, which concerns discovering the weights that maximize the
probability of the experimental cases provided by the input elements [26]. This analysis used the LR model to
discriminate between the standard and COVID-19 patients.

2.2.3. Decision tree classifier
The DT is a supervised method used in the present study for classification that deals with multiple

rules. This widespread machine-learning technique builds a tree-like model of decisions and their probable
consequences based on the training data. The tree consists of nodes describing a decision or a component,
branches defining possible results, and leaves illustrating the output or the class label [27].

2.2.4. Random forest classifier
The RF is the most well-known supervised machine learning method. The RF is made on “learning

together”, which combines several variables to determine a complex case and improve a model’s performance.
That means a RF is, as the name implies, “a subset that contains several DTs in the different subsets of a given
database and carries actions to enhance the accuracy of that database”. High accuracy can be acquired, and
congestion is avoided in forests with many trees [28].
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2.3. Accuracy assessments
The correctness of the models was assessed through a 10-fold cross-validation method with evaluation

methods like correctness, precision, recall (sensitivity), and F1 score via (2) to (5) [1].

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall(Sensitivity) =
TP

TP + FN
(4)

F1− Sccore = 2 ∗ Precision ∗Recall
Precision+Recall

(5)

Where TP, FP, TN, and FN state to a true positive, false positive, true negative, and false negative,
correspondingly [1]. The class-specific results were best for RF and CNN models compared to LR and DTs.

3. RESULTS AND DISCUSSION
In the current research, we used LR [26], DTs [27], RFs [28], and deep CNN [10], [11] for detecting

COVID-19 via X-ray images. The experimentations were executed using Python programming language on the
Google Collaboratory platform through a GPU processor. The COVID-19 and normal images were trained and
tested with 1,612 and 374 images, respectively. However, among 374 tested X-ray scans, 140 were of COVID-
19 patients, and the remaining 234 were of normal patients. The nearest neighbour interpolation method [29]
was used to resize the dimensions of chest X-ray images with 224×224×3. Subsequently, these processed
images were given as input to the models. The best hyperparameters for the LR method were ’C’ -0.0001 and
’penalty’ 12.

Similarly, the best hyperparameters for the DT were full leaf nodes and minimum sample spilt with
five and two, respectively. In contrast, the best parameters for the RF methods were maximum depth (five),
maximum features (auto), estimators (500) and Gini criterion. The best hyperparameters were chosen for each
model through the grid search method and the ten-fold cross-validation method on the trained images. In the
case of CNN, the DenseNet-169 architecture was used with 46 epochs and 32 batch sizes. The resized images
were provided to the Dense Net architecture. Thus, the model automatically learned the features through the
input chest X-ray images. The model utilized 5,668,097 parameters for training purposes with 46 epochs. The
ten-fold cross-validation method [1], [29] was also operated to evaluate and produce more accurate and realistic
results. Lastly, the models were tested using the test images, confusion matrices as shown in Figures 4 and 5
were generated, and the results for all methods were validated. Figures 4(a) and 4(b) illustrate the confusion
matrices derived using LR and DT models, respectively. Figures 5(a) and 5(b) depict the confusion matrices
generated using the RF and CNN models. The overall accuracy was 81%, 82%, 86%, and 99% for the DT, LR,
RF, and CNN, respectively.

The performance scores for all evaluation methods shown in Figures 6 and 7 for COVID-19 and
regular patients were computed. The experiment outcomes indicate that the accuracy was 99.99%, 98.28%, and
97.16% for both classes using CNN and RF methods, respectively. The DT and LR methods have produced
94.28% and 72.85% accuracy for the COVID-19 class. In contrast, 93.5% and 79.05% accuracy was achieved
for the normal course with the DT and LR methods, respectively. The average precision for the CNN and the RF
was 99% and 98% for both classes. However, the LR method produced an average 83% precision score, which
is also satisfactory. We obtained the highest recall and F1 score as shown in Figures 6 and 7 for CNN (99%),
RF (98%), and DT (95%). The results demonstrate that the chest X-ray images are appropriately classified and
predicted as COVID-19 and regular patients.
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(a) (b)

Figure 4. Confusion matrix generated using (a) logistic regression and (b) decision tree

(a) (b)

Figure 5. Confusion matrix generated using (a) random forest and (b) CNN

Figure 6. Performance metrics for LR, decision tree, random forest, and CNN methods for COVID-19 class
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Figure 7. Performance metrics for LR, decision tree, random forest, and CNN methods for normal class

3.1. Comparison of results
The outcomes obtained via the proposed techniques are compared with the earlier research to show

the novelty of the present study. Several researchers used machine and deep learning approaches to detect
COVID-19 cases with some limited accuracy. Table 1 compares the outcomes of the current studies with those
of earlier studies. Earlier studies have primarily used machine and deep learning algorithms on chest X-ray
datasets to diagnose COVID-19. However, there are still several challenges in detecting COVID-19 cases in
early research, and the results could be better. Thus, the proposed study used a freely available dataset and
achieved the highest accuracy using LR, DT, RF and deep CNNs. The results of the present study are pretty
promising compared to the earlier reported results. For instance, the accuracies in previous studies [17]–[23]
are lesser than the present study using the deep learning-enabled models on chest x-ray images. In addition,
the results achieved using deep neural network, DenseNet-169 architecture, and VGG-19 in studies [1], [29],
[30] have provided 96.28%, 96.37%, and 93.48% accuracies, respectively. Some studies [31] used deep and
machine learning methods with 95.38% accuracy. In our case, we focused on three machines and the CNN
method with more than 99% accuracy, which is better than earlier studies [1], [17]–[23], [29]–[33]. It was
noticed from the earlier research that chest X-ray images are the key datasets in detecting COVID-19 cases
with other diseases like Pneumonia. In addition, some studies revealed the use of non-freely available CT scan
images with a limited success rate. Therefore, the present research is more accurate, effective, and significant
than the previous studies using the freely available chest X-ray dataset and proposed models.

Table 1. Comparative results on chest X-ray by machine and deep learning algorithms
Images Classification models Accuracy (%) References

Chest X-ray and CT scan Deep neural network 96.28 [1]
Chest X-ray InceptionV3 96 [17]
Chest X-ray CNN 92.29 [18]
Chest X-ray Resnet50 and BiLSTM 98.48 [19]
Chest X-ray CNN and RNN 97.80 [20]
Chest X-ray Resnet-50 and transfer learning 97.30 [21]
Chest X-ray CNN 92.10 [22]
Chest X-ray CNN 97.44 [23]
Chest X-Ray DenseNet-169 96.37 [29]
Chest X-ray VGG-19 93.48 [30]
Chest X-ray ResNet-50 + SVM 95.38 [31]
Chest X-ray COVID-Net 92.40 [32]
Chest X-ray ResNet-50 98 [33]
Chest X-ray LR, DT, RF, and CNN 99.99 This study
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4. CONCLUSION
In the present paper, we implemented a methodology using machine and deep learning models to

detect COVID-19 and regular patients through chest X-ray images. The raw chest X-ray images were
pre-processed through the nearest neighbour interpolation method and then given training and testing to the
models. We used LR, DTs, and RF models with satisfactory performances. However, the deep CNN model has
provided the best accuracy, i.e., 99.99%. It is concluded that the proposed lightweight CNN-based DenseNet-
169 model has achieved the highest detection rate in detecting COVID-19-positive and regular patients. Further,
we obtained coherent results using machine learning models to identify and classify COVID-19 cases. The
experimental results were confirmed and validated through accuracy, precision, recall and F1 score. In the
future, we will use more datasets with explainable artificial intelligence-enabled models to detect COVID-19
cases early with 100% accuracy. The present work has several limitations, such as a limited dataset, imbalanced
data, lack of interpretability, generalization of data, and ethical concerns of AI. Addressing these limitations
requires dataset curation, healthcare expert feedback and validation of different datasets.
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