
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 34, No. 1, April 2024, pp. 419~429

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v34.i1.pp419-429 419

Journal homepage: http://ijeecs.iaescore.com

Big data clustering based on spark chaotic improved particle

swarm optimization

Saida Ishak Boushaki1, Brahim Hadj Mahammed1, Omar Bendjeghaba2, Messaoud Mosbah1
1Department of Computer Science, University M’Hamed Bougara Boumerdes, Boumerdes, Algeria

2Department of Automation and Electrification, Faculty of Hydrocarbons and Chemistry, University M’Hamed Bougara Boumerdes,

Boumerdes, Algeria

Article Info ABSTRACT

Article history:

Received Nov 4, 2023

Revised Dec 30, 2023

Accepted Jan 3, 2024

 In recent years, the surge in continuously accelerating data generation has

given rise to the prominence of big data technology. The MapReduce

architecture, situated at the core of this technology, provides a robust parallel

environment. Spark, a leading framework in the big data landscape, extends

the capabilities of the traditional MapReduce model. Coping with big data,

especially in the realm of clustering, requires more efficient techniques.

Meta-heuristic-based clustering, known for offering global solutions within

reasonable time frames, emerges as a promising approach. This paper

introduces a parallel-distributed clustering algorithm for big data within the

Spark Framework, named Spark, chaotic improved PSO (S-CIPSO).

Centered on particle swarm optimization (PSO), the proposed algorithm is

enhanced with a chaotic map and an efficient procedure. Test results,

conducted on both real and artificial datasets, establish the superior

performance and quality of clustering results achieved by the proposed

approach. Additionally, the scalability and robustness of S-CIPSO are

validated, demonstrating its effectiveness in handling large-scale datasets.

Keywords:

Big data clustering

Chaotic map

MapReduce

Particle swarm optimization

Spark

This is an open access article under the CC BY-SA license.

Corresponding Author:

Saida Ishak Boushaki

Department of Computer Science, University M’Hamed Bougara Boumerdes

Boumerdes, Algeria

Email: s.boushaki@univ-boumerdes.dz

1. INTRODUCTION

Recently, more than two exabytes of data are generated world wide every day, leading to the

emergence of big data [1]−[7]. Consequently, the analysis of this data necessitates the development of more

efficient and appropriate software [3]−[7]. Clustering, a crucial machine learning method, is widely utilized

to extract meaningful information from vast volumes of data across various research areas. Its primary task is

to unsupervisedly group the data collection so that elements within the same group are highly similar and

homogeneous [8]−[12].

The principal challenge faced by big data clustering approaches is to scale up and speed up

clustering algorithms without compromising clustering quality. These approaches are categorized into two

classes: single-machine and multi-machine clustering. In the first class, sampling techniques are employed to

reduce the size of datasets. Additionally, projection, sub-space clustering, and co-clustering methods are

utilized to reduce the dimensionality of the datasets. While approaches in this class are valuable, they have

their own set of shortcomings. For instance, they are constrained by limited memory, their processing time is

time-consuming, they are sensitive to noise and outliers, and dimensionality reduction can impact the

effectiveness of clustering algorithms [8], [9], [13]−[15].

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 419-429

420

Multi-machine clustering approaches follow a common process: initially, the data is partitioned into

sub-groups and distributed across machines. Subsequently, each machine independently performs clustering

on its allocated data partition. These approaches can be broadly categorized into two main types: parallel and

MapReduce. Parallel algorithms, though potent for specific applications, may demand additional memory to

store intermediate results or facilitate communication between processes. In contrast, MapReduce is

particularly well-suited for processing extensive datasets distributed across a cluster. It gained popularity

during the big data era due to its scalability and fault-tolerant design, offering a high-level abstraction for

distributed computing [8], [9], [13]−[15].

The storage and processing of multi-machine clustering approaches have been executed using

various frameworks, such as Hadoop, Spark, Storm, Flink, and Samza [16]−[21]. Recent research indicates

the notable performance of the Spark Framework in enhancing the MapReduce model to support both

interactive and iterative queries. Moreover, to accelerate calculations, Spark incorporates robustly distributed

datasets for in-memory processing [22]−[24].

Multi-machine clustering algorithms constitute a thriving area of study, evolving conventional

clustering methods to address the challenges posed by big data. A notable subset of these algorithms focuses on

the well-known K-means approach. For example, Cui et al. [25] examined the challenges associated with

processing big data using K-means in the context of MapReduce. Alguliyev and others have presented a new

scalable K-means algorithm by splitting a dataset into batches [26]. Despite experimental tests on diverse

datasets demonstrating the practical applicability of big data clustering based on K-means, these approaches

contend with the primary drawback inherent to K-means being prone to getting trapped in local solutions.

In contrast, metaheuristic algorithms have demonstrated their efficiency in attaining global solutions

within a reasonable time frame for various optimization problems [27]−[29], including big data clustering.

For example, Benmounah et al. [30] proposed a scalable differential evolution (DE) algorithm based on the

MapReduce programming model. Hashemi et al. [31] described a new algorithm for clustering big data,

focusing on PSO. Nevertheless, a primary challenge associated with this class of algorithms is the issue of

slow convergence.

To address this challenge, algorithms within this class are often hybridized with the well-known

K-means algorithm. Sherar and Zulkernine [32] proposed a hybrid approach to big data clustering, combining

K-means and particle swarm optimization (KMPSO), and implemented it in the Apache Spark Framework.

Their work demonstrated the suitability of Apache Spark for handling large-scale datasets. Sinha and Jana

[33] presented a novel hybrid approach incorporating genetic algorithms (GA) and K-means++.

Alguliyev et al. [34] proposed a novel method for anomaly detection in big data, focusing on PSO and K-

means algorithms. In the same year, Moslah et al. [35] introduced a big data clustering algorithm based on an

adapted version of PSO combined with K-means, implemented under the Spark Framework (S-PSO).

Ravuri and Vasundra [36] presented a novel MapReduce approach based on moth-flame optimization, the

Bat algorithm, and sparse fuzzy C-means. Additionally, Bashabsheh et al. [37] presented a hybrid method

focusing on harris hawk’s optimizer (HHHO) and K-means clustering under the MapReduce framework.

Although these algorithms leverage the advantages of the combined approaches, they often require

significant computational resources and calculus due to their complexity.

Rather than advocating the combination of different algorithms, alternative methods leverage

novel ideas derived from contemporary theories, such as chaos theory, to enhance their efficacy in a

straightforward manner [38]−[40]. A promising approach to model systems heavily dependent on initial

conditions, such as meta-heuristics, is through the use of chaotic maps. Chaotic variables, known for their excellent

performance attributes, including ergodicity and non-repetition, replace random ones in this context [41].

The current study contributes to enhance the performance capabilities of existing big data clustering

algorithms. The proposed approach is grounded in the well-known metaheuristic PSO [42] and is executed

under the Spark Framework [43], [44]. In this context, the conventional PSO is improved by incorporating

the properties of chaotic maps, specifically ergodicity and non-repetition. Additionally, an efficient procedure

is implemented to accelerate the convergence speed of the search process. The results of the proposed

approach are found to be satisfactory, both in terms of scalability and robustness, as well as in the

performance and quality of clustering results. The structure of this paper is organized as: section 2 outlines

the details of the proposed approach and the theories related to the algorithm, section 3 provides details of

experimentation and results, and finally, conclusions and future work are summarized in the last section 4.

2. METHOD

In this study, the spark framework is chosen for its numerous advantages [20]−[24]. The proposed

approach is grounded in the renowned PSO meta-heuristic [42], [45], [46]. The research demonstrates that

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Big data clustering based on spark chaotic improved particle swarm optimization (Saida Ishak Boushaki)

421

this evolutionary technique is particularly well-suited for addressing distributed clustering problems. In this

work, the search procedure is improved by leveraging the ergodicity and non-repetition performance

properties of chaotic maps. Enhanced speed is achieved through the incorporation of the gravity center step.

The subsequent section will delve into the concepts associated with chaotic maps.

2.1. Chaotic maps

A mathematical function that exhibits chaotic behavior over time is referred to as a chaotic map [41].

A chaotic sequence is generated by the values produced by various chaotic functions. In a chaotic sequence,

the value at instant k+1 depends solely on the value at instant k. Various chaotic maps exist, including the

circular map, gaussian map, logistic map, sinusoidal map, and tent map. Table 1 provides definitions for

some well-known chaotic maps.

It’s noteworthy that many optimization algorithms involve the manipulation of at least one random

variable. However, chaotic optimization algorithms replace these random variables with chaotic variables to

leverage the robust properties of chaotic maps, such as non-repetition and ergodicity. This substitution allows

for the execution of global searches at rates faster than stochastic searches [41].

Table 1. Definition of chaotic maps
Chaotic map Definition

Circle map 𝑐𝑘+1 = 𝑐𝑘 + 𝑏 − (
𝑎

2𝜋
) sin(2𝜋𝑘) 𝑚𝑜𝑑(1), 𝑎 = 0.5 𝑒𝑡 𝑏 = 0.2

Logistic map 𝑐𝑘+1 = 𝑎𝑐𝑘(1 − 𝑐𝑘), 𝑎 = 4

Gauss map
𝑐𝑘+1 = {

 0 𝑖𝑓 𝑐𝑘 = 0

1/𝑐𝑘 𝑚𝑜𝑑(1)

Tent map
𝑐𝑘+1 = {

𝑐𝑘/0.7 𝑐𝑘 < 0.7
10/3 𝑐𝑘 ≥ 0.7

Sinusoidal map 𝑐𝑘+1 = 𝑎𝑐𝑘
2 sin(𝜋𝑐𝑘) , 𝑎 = 2.3

2.2. The steps of the proposed approach

The proposed algorithm, named Spark, chaotic improved PSO (S-CIPSO), involves four main steps:

the generation of the initial population using chaotic maps, the assignment of data points to the nearest

cluster, and the calculation of both fitness and the global best position. Additionally, it includes the

calculation of the gravity center of the best global best position. Finally, the centroids and particle speed are

updated using chaotic map. The pseudocode for S-CIPSO is presented in Figure 1.

Figure 1. Pseudo code of the proposed S-CIPSO

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 419-429

422

2.2.1. Phase 1: Generation of the initial population

Most conventional metaheuristic algorithms typically generate their initial population randomly

from the search space. However, in this study, the information for the initial population is created by

employing the chaotic map. It should be noted that the logistic chaotic map is chosen based on empirical

study. The positions of the particles represent the centroids of the initial clusters. The following formulas are

used to generate the initial centroids:

zij = Ub + (Ub − Lb) ∗ Cr(t) (1)

𝐶𝑟(𝑡 + 1) = 4 ∗ 𝐶𝑟(𝑡) ∗ (1 − 𝐶𝑟(𝑡)) (2)

where:

zij: is the j th centroid of the i th particle.

Lb: vector of lower limits, Ub: vector of upper limits, Cr: represents a logistic chaotic map.

2.2.2. Phase 2: Data assignment, fitness computation, and calculating the global best position

This phase is the most resource-intensive, as each particle requires a substantial amount of data to be

assigned to nearby clusters. However, object assignment can be performed concurrently since it is

independent of other objects. The dataset is initially divided into shards, with each shard receiving a mapping

function and swarm metadata. Subsequently, the nearest cluster is determined for each data point using the

mapping function. The mapping function then generates a key-value pair, where the key consists of the

particleID and centroidID pair, and the value represents the shortest distance between a data object and its

centroidID for the given particleID. It is important to note that the reduction function, referred to as the

fitness computation step, utilizes the reduceByKey() operation provided by the Spark Framework.

This operation combines the outputs of various mapping functions once all data has been assigned to the

closest cluster. The following formula, aimed at minimizing the average distance between data objects and

their centroids, is employed to determine the new fitness value:

𝐹𝑖𝑡𝑖 =
∑ (∑ 𝑚𝑖𝑗𝑑(𝐶𝑖,𝑂𝑗) 𝑛𝑖⁄𝑛

𝑗=1)𝑘
𝑖=1

𝑘
 (3)

where:

𝐹𝑖𝑡𝑖 denotes the fitness value of particle i, k indicates the number of clusters, n is the number of data objects,

𝑚𝑖𝑗 =1 if the jth object is in the ith cluster and 0 otherwise. 𝑑(𝐶𝑖 , 𝑂𝑗) is the Euclidean distance between the

data object 𝑂𝑗 and the centroid of the cluster 𝐶𝑖, 𝑛𝑖 is the number of objects that belong to the cluster number

i. Subsequently, the reduce function produces a key-value pair, where the updated fitness value serves as the

value, and the particleID serves as the key.

− Let O = {𝑂1... 𝑂𝑛} be the data objects and PI(t) = {𝑃𝐼1(𝑡), 𝑃𝐼2(𝑡)... 𝑃𝐼𝑙(𝑡)} the particle information set

at time t and l is the population size.

− 𝑃𝐼𝑖(𝑡) = {𝑧𝑖(𝑡), 𝑣𝑖(𝑡), 𝑝𝑏𝑒𝑠𝑡PI𝑖(𝑡), 𝑝𝑏𝑒𝑠𝑡𝐹𝑖(𝑡)} represents the information of particle i in iteration t

where 𝑧𝑖(𝑡) is its position, 𝑣𝑖(𝑡) is its speed, 𝑝𝑏𝑒𝑠𝑡𝑃𝑖(𝑡) is its best position, and 𝑝𝑏𝑒𝑠𝑡𝐹𝑖(𝑡) is its best

Fitness.

− Let 𝐹 = {𝐹1 … 𝐹𝑙} be the set of fitness values where 𝐹𝑖 is the Fitness value of particle 𝑖.
It should be noted that the calculated fitness of the new particles is automatically stored in a resilient

distributed dataset (RDD), from which it is later collected. Afterwards, each particle maintains its individual

best position. The particle with the best fitness value (the minimum average distance between data objects

and their centroids) is determined to be the gbest particle (gbest) for the update.

2.2.3. Phase 3: Calculation of the gravity center of the global best position

This stage involves two primary steps: data assignment and centroid updating. To allocate data

objects to the nearest cluster, the data assignment phase employs a mapping function that takes the data

fragment and centroids clusters from the preceding step as inputs. As a result, a list of key/value pairs is

generated, where the key represents the cluster index to which the data item is allocated, and the value

represents the output data vector. During the centroid calculation phase, the centroids of the clusters are updated

by computing the average value for each cluster and aggregating the outputs of various mapping functions.

2.2.4. Phase 4: Update of centroids and particle speed using chaotic map

This step commences with the distribution of particle information among various mapping functions

to facilitate the update of particle velocity and position, employing (4)-(6). It’s noteworthy that a logistic

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Big data clustering based on spark chaotic improved particle swarm optimization (Saida Ishak Boushaki)

423

chaotic map is employed to update the acceleration coefficients, c1 and c2, of the particles. This

incorporation ensures dynamic adjustments to the acceleration coefficients based on the characteristics of the

chaotic map.

Vi(t + 1) = w ∗ Vi(t) + c1 ∗ Cr(t) ∗ (pbestPi(t) − zi(t)) + c2 ∗ (1 − Cr) ∗ (pbestPi(t) − zi(t)) (4)

zi(t + 1) = zi(t + 1) + Vi(t) (5)

Cr(t + 1) = 4 ∗ Cr(t) ∗ (1 − Cr(t)) (6)

Where,

Vi(t) is the speed of particle i at time t, w denotes the inertia coefficient, 𝑧𝑖(𝑡) is the position of particle i at

time t, c1 and c2 are the two acceleration coefficients.

𝐶𝑟(𝑡) is represented the chaotic value at time 𝑡, 𝐶𝑟(𝑡 + 1) is represented the chaotic value at time (𝑡 + 1).

The reduce function employs the reduceByKey() method to consolidate the output from each mapping

function into a unified RDD.

3. RESULTS AND DISCUSSION

3.1. Development environment

In this section, we introduce the development environment employed for implementing this

research. Firstly, the hardware configuration was executed on a virtual machine, and its specifications are

outlined in Table 2. Subsequently, the software configuration was undertaken utilizing the Apache Spark

framework (version 3.0.0), and the implementation was executed in the Python programming language

(version 3.7) within a Linux Ubuntu environment. To implement on Linux, the Spark Framework was

installed and configured through the following steps:

− Installation of the Java program.

− Downloading the chosen Spark version from the official Spark website and subsequent installation.

− Configuration of environment variables, including setting the JAVA_HOME variable to specify the Java

installation directory, specifying the SPARK_HOME variable, and configuring the PATH environment

variable to allow the operating system to locate the Spark executable.

Table 2. Hardware specification
Device Specification

Hard disk 100 GB

RAM 16 GB

System type 64-bit operating system
Processor Intel(R) Core (TM) i5-6200U CPU. (5 cores)

Frequency 2.30 GHz

Cloud service Azure synapse analytics

3.2. Datasets

The tests were conducted on both artificial and real datasets. Five series of large-scale artificial

datasets were generated with a mean of 350 and a sigma of 100 using the Gaussian distribution. These

datasets vary in size, ranging from 1 million to 5 million data points, with each data point represented by ten

variables. The simulated data collections are denoted as D1M, D2M, D3M, D4M, and D5M, corresponding

to 1,000,000; 2,000,000; 3,000,000; 4,000,000; and 5,000,000 data points, respectively. Additionally, three

real datasets obtained from the UCI machine learning repository were used:

− Magic: Captures outcomes from simulating high-energy gamma particles using an atmospheric

Cherenkov telescope on Earth. The dataset consists of 19,020 cases, each with 10 properties.

The clustering technique determines if the observed energy is gamma or not.

− KDD: Composed of regular connections and simulated attacks in a military network environment.

With approximately 5 million links, clustering is employed to identify different types of intrusions across

all connections. The KDD dataset comprises 33 characteristics for each example.

− Cover type: Indicates the type of cover in US forest cells with a size of 30 by 30 meters. The dataset

includes 58,012 entries, each with 54 properties. It predicts the type of tree among seven distinct types in

the dataset.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 419-429

424

3.3. Performance measures

The proposed approach is subject to a thorough evaluation, considering scalability, performance,

and clustering quality. Scalability assessment examines its adaptability to various data volumes, ensuring

robust functionality across different datasets. Performance metrics delve into computational efficiency and

speed, providing insights into the algorithm’s responsiveness. Clustering evaluation emphasizes the accuracy

in grouping similar data points, contributing to a comprehensive understanding of the proposed approach’s

effectiveness.

3.3.1. Scalability assessment

To evaluate scalability, measures of speed UP, scale UP, and size UP are employed, defined as

follows:

a) Speed up measurement

Speed UP is determined by setting the dataset’s size and increasing the CPU core count. Clustering

is first executed with a single calculation core and then with m CPU cores, resulting in execution times T1

and Tm, respectively [47]. The following presents the speed UP measurements:

𝑆𝑝𝑒𝑒𝑑𝑈𝑃 = 𝑇1/𝑇𝑚 (7)

Where T1 represents the execution time with a single core, and Tm is the execution time with m cores.

The optimal algorithm demonstrates speed close to linear scalability.

b) Scale UP measurement

The scale UP measure involves an increase in both the dataset size and the number of CPU cores.

Initially, clustering is performed with a single core on a dataset of size N, followed by execution with m

cores on a dataset of size m*N [47]. The scale UP value is calculated using the (8):

Scale UP = T1N/TmN (8)

Where T1N: represents the execution time of a dataset of size N on a single core, and TmN is the execution

time of a dataset of size N ∗ m on 𝑚 cores.

When T1N is close to TmN the method is considered scalable.

c) Size up measurement:

The size UP metric maintains the number of CPU cores constant while increasing the size of the

dataset m times. This metric signifies the algorithm’s capability to handle datasets that are m times larger

[47]. The size UP measure is calculated using the (9):

𝑆𝑖𝑧𝑒𝑈𝑃 = 𝑇𝑁/𝑇𝑚𝑁 (9)

TN the execution time of dataset of size N.

TmN: the execution time of dataset of size m ∗ N.

However, the quality of the clustering results is evaluated using the average distance between data objects

and their centroids, as defined by (3).

3.4. Comparisons and results

Artificial datasets play a pivotal role in assessing the scalability and robustness of the proposed

approach, while real datasets are instrumental in evaluating clustering performance. The effectiveness of the

approach is determined through a comparative analysis, which involves assessing S-CIPSO against standard

PSO (S-PSO) and S-CIPSO excluding the gravity center step (S-CPSO). This comparison serves as a

valuable tool for understanding the performance of the proposed approach in relation to various benchmarks,

providing a comprehensive perspective on its efficacy.

3.4.1. Related parameters

Conducting tests involves meticulous attention to specific parameters. The swarm, comprising 10

particles, operates under a fixed total of 10 iterations, ensuring consistency in the experimental setup.

Throughout the testing process, the inertia weight (w) remains constant at 0.72, providing stability to the

algorithm’s performance. Additionally, the acceleration coefficients (c1, c2) are steadfastly set at 1.49,

contributing to the controlled environment of the experiments. Across all datasets, a uniform total number of

clusters (k) is systematically configured at 5, with exceptions noted for the “magic” dataset, where it is

constrained to 2, and the “cover type” dataset, where a specific configuration of 7 clusters is implemented.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Big data clustering based on spark chaotic improved particle swarm optimization (Saida Ishak Boushaki)

425

3.4.2. Clustering quality results

Table 3 presents the results of the clustering quality obtained by our approaches in comparison to

other algorithms. The findings indicate that our algorithms outperform others in terms of clustering quality.

This improvement is attributed to the enhancements introduced into the standard PSO, enabling S-CPSO and

S-CIPSO to effectively explore the search space. Notably, S-PSO maintains a comparable quality to PSO.

Additionally, it is observed from the table that S-CIPSO significantly enhances the clustering quality

compared to S-CPSO. Hence, the implementation of the step that calculates the center of gravity of the best

global position emerges as a crucial choice to enhance the quality of clustering.

Table 3. Comparison of the fitness value
Datasets PSO S-PSO S-CPSO S-CIPSO
Magic 67.016035 82.160078 40.938492 40.930279

KDD 252558.92351 19412.91393 20023.16916 14066.84059
Cover type 989.718507 1169.723182 464.810866 464.370944

3.4.3. Performance results

Table 4 presents the performance results of the proposed approaches in comparison to other

algorithms. According to this table, all algorithms implemented under the Spark environment (S-PSO, S-

CPSO, and S-CIPSO) demonstrate superior performance compared to the standard PSO on all datasets,

except for the “magic” dataset. This discrepancy is explained by considering that “magic” is relatively small

compared to the other datasets, rendering parallel processing less advantageous. In such cases, parallel

processing becomes more resource-intensive and time-consuming. It is evident from the results that S-CPSO

outperforms S-PSO across all datasets. This improvement is attributed to the utilization of the logistic map,

enhancing the search mechanism without adding complexity to the algorithm. Furthermore, the table

illustrates that the difference in execution time between S-PSO and S-CIPSO diminishes as the dataset size

increases.

Table 4. Running time in seconds (s)
Datasets PSO S-PSO S-CPSO S-CIPSO
Magic 3.939328 35.031629 28.455660 41.740645

KDD 2346.306556 1307.707522 1005.495059 1328.462582

Cover type 477.549305 321.658103 286.035391 362.224696

3.4.4. Evaluation of the S-CIPSO scalability and robustness

The running time of the suggested approach on all the used artificial datasets is shown in Figure 2.

From Figure 2, it is clear that increasing the number of cores reduces the execution time for all datasets.

For example, the running time of D5M with 1 core is 4,935 seconds, and with 5 cores, it is 1,104 seconds,

which means it has decreased more than 4 times.

To assess the speed UP of the proposed method, the dataset size is held constant while the number

of cores is increased from 1 to 5. Figure 3 illustrates the speed results of the tested datasets. The outcomes

demonstrate that the suggested approach has good speed UP. In fact, for all datasets, when the number of

cores varies from 1 to 3, the speed UP results are nearly linear, making them a very strong speed UP.

However, the performance of the suggested approach starts to deteriorate, and the speed UP deviates from

linearity when the number of cores is higher than 4. This is interpreted by the longer communication times

needed to handle the increased core count.

To assess the scale UP of the presented method, both the dataset size and the number of cores is

increased. The examination of scale UP utilizes all tested artificial datasets with cores set to 1, 2, 3, 4, and 5,

respectively. The results are depicted in Figure 4. As previously mentioned, the ideal algorithm exhibits Scale

UP values extremely close to or equal to 1. In our case, the suggested method demonstrates a very good Scale

UP, indicating that S-CIPSO adapts well to scale UP values between 1 and 0.90.

Figure 5 illustrates the results obtained by S-CIPSO for 1, 2, 3, 4, and 5 cores, respectively.

The outcomes depict a favorable size UP for the proposed method. For instance, on a single core, the size UP

results exhibit nearly linear improvement.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 419-429

426

Figure 2. Execution time of S-CIPSO on the different artificial datasets

Figure 3. Speed up results of S-CIPSO on the different artificial datasets

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Big data clustering based on spark chaotic improved particle swarm optimization (Saida Ishak Boushaki)

427

Figure 4. Scale up results of S-CIPSO

Figure 5. Size up results of S-CIPSO

4. CONCLUSION

This study introduces a novel algorithm, S-CIPSO, designed for the clustering of big data within the

Spark Framework. Initially, the conventional PSO algorithm is enhanced by incorporating a chaotic map

(S-CPSO). Subsequently, an additional step is introduced where the gravity center of the best position is

calculated, leading to the development of S-CIPSO. The implementation is carried out using the Python

language. To evaluate clustering results, two types of datasets real and artificial are employed. Real datasets

are utilized to assess clustering quality and performance, while artificial datasets are reserved for evaluating

the scalability and robustness of S-CIPSO. The test results reveal that S-CPSO outperforms all other

algorithms, demonstrating superior clustering quality compared to both S-PSO and the standard PSO.

This improvement is attributed to the stochastic searches of the logistic map, effectively exploring the search

area with features like non-repetition and ergodicity without adding complexity to the algorithm.

Furthermore, S-CIPSO significantly enhances the clustering quality of S-CPSO, emphasizing the importance

of determining the gravity center of the best global position to increase clustering quality. Experimental

results affirm the scalability of S-CIPSO, showcasing its suitability for big data clustering. In our future

endeavors, we plan to extend the application of the proposed approach to image segmentation.

REFERENCES
[1] W. Inoubli, S. Aridhi, H. Mezni, M. Maddouri, and E. M. Nguifo, “An experimental survey on big data frameworks,”

Future Generations Computer Systems: FGCS, vol. 86, pp. 546–564, 2018, doi: 10.1016/j.future.2018.04.032.
[2] M. Chen, S. Mao, and Y. Liu, “Big data: a survey,” Mobile Networks and Applications, vol. 19, no. 2, pp. 171–209, 2014,

doi: 10.1007/s11036-013-0489-0.

[3] M. H. Iqbal and T. R. Soomro, “Big data analysis: Apache Storm perspective,” International Journal of Computer Trends and
Technology, vol. 19, pp. 9–14, 2015, doi: 10.14445/22312803/IJCTT-V19P103.

[4] N. Khan et al., “Big data: survey, technologies, opportunities, and challenges,” The Scientific World Journal, vol. 2014, pp. 1–18,

2014, doi: 10.1155/2014/712826.
[5] J. Nereu, A. Almeida, and J. Bernardino, “Big data analytics: a preliminary study of open source platforms,” Proceedings of the

12th International Conference on Software Technologies, vol. 1, pp. 435–444, 2017, doi: 10.5220/0006470104350440.
[6] A. Oussous, F. Z. Benjelloun, A. Ait-Lahcen, and S. Belfkih, “Big data technologies: a survey,” Journal of King Saud University-

Computer and Information Sciences, vol. 30, no. 4, pp. 431–448, 2018, doi: 10.1016/j.jksuci.2017.06.001.

[7] S. Sagiroglu and D. Sinanc, “Big data: A review,” in IEEE 2013 International Conference on Collaboration Technologies and
Systems (CTS), 2013, doi: 10.1109/CTS.2013.6567202.

[8] M. A. Mahdi and K. M. Hosny, “Scalable clustering algorithms for big data: a review,” IEEE Access: Practical Innovations,

Open Solutions, vol. 9, pp. 80 015–80 027, 2021, doi: 10.1109/ACCESS.2021.3084057.
[9] S. A. S. Shirkhorshidi, T. T. Y. Wah, and B. Herawan, “Big data clustering: a review,” ICCSA, 2014, doi: 10.1007/978-3-319-

09156-3_49.

[10] S. I. Boushaki, N. Kamel, and O. Bendjeghaba, “A new quantum chaotic cuckoo search algorithm for data clustering,” Expert
Systems With Applications, vol. 96, pp. 358–372, Apr. 2018, doi: 10.1016/j.eswa.2017.12.001.

[11] S. I. Boushaki, N. Kamel, and O. Bendjeghaba, “High-dimensional text datasets clustering algorithm based on cuckoo search and

latent semantic indexing,” Journal of Information and Knowledge Management, vol. 17, 2018, doi: 10.1142/s0219649218500338.
[12] S. I. Boushaki, N. Kamel, O. Bendjeghaba, “Biomedical document clustering based on accelerated symbiotic organisms search

algorithm,” International Journal of Swarm Intelligence Research, vol. 12, no. 4, pp. 169-185, 2021,

doi: 10.4018/IJSIR.2021100109.
[13] A. Fahad et al., “A survey of clustering algorithms for big data: Taxonomy and empirical analysis,” IEEE Transactions on

Emerging Topics in Computing, vol. 2, no. 3, pp. 267–279, 2014, doi: 10.1109/TETC.2014.2330519.

[14] M. Hai, S. Zhang, L. Zhu, and Y. Wang, “A survey of distributed clustering algorithms,” International Conference on Industrial
Control and Electronics Engineering, 2012, doi: 10.1109/ICICEE.2012.303.

[15] T. Hanghang and U. Kang, “Big data clustering,” Data Clustering, pp. 259–276, 2018, doi: 10.1201/9781315373515-11.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 34, No. 1, April 2024: 419-429

428

[16] M. Khalid and M. M. Yousaf, “A comparative analysis of big data frameworks: an adoption perspective,” Applied Sciences,

vol. 11, no. 22, 2021, doi: 10.3390/app112211033.
[17] A. Siddiqa, A. Karim, and A. Gani, “Big data storage technologies: a survey,” Frontiers of Information Technology and

Electronic Engineering, vol. 18, pp. 1040–1070, 2017, doi: 10.1631/FITEE.1500441.

[18] D. Singh and C. Reddy, “A survey on platforms for big data analytics,” Journal of Big Data, vol. 2, no. 1, pp. 1–20, 2015,
doi: 10.1186/s40537-014-0008-6.

[19] C. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, “Big data analytics: a survey,” Journal of Big Data, no. 1, pp. 1–32, 2015,

doi: 10.1186/s40537-015-0030-3.
[20] J. Wang, Y. Yang, T. Wang, R. Sherratt, and J. Zhang, “Big data service architecture: a survey,” Journal of Internet Technology,

vol. 21, no. 2, pp. 393–405, 2020, doi: 10.3966/16079264202003210200.

[21] X. Zhang and F. Xu, “Survey of research on big data storage,” 12th International Symposium on Distributed Computing and
Applications to Business, 2013, doi: 10.1109/DCABES.2013.21.

[22] N. Ahmed, A. L. C. Barczak, T. Susnjak, and M. Rashid, “A comprehensive performance analysis of apache hadoop and apache spark

for large scale data sets using HiBench,” Journal of Big Data, vol. 7, no. 1, pp. 1–20, 2020, doi: 10.1186/s40537-020-00388-5.
[23] D. K. Sharmila, D. S. Kamalakkannan, R. Devi, and D. C. Shanthi, “Big data analysis using apache hadoop and spark,”

International Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 167–170, 2019, doi: 10.35940/ijrte.A2128.078219.

[24] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A survey on spark ecosystem: Big data processing infrastructure, machine learning, and
applications,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–21, 2020, doi: 10.1109/TKDE.2020.2975652.

[25] X. Cui, P. Zhu, X. Yang, C. Li, and Ji, “Optimized big data K-means clustering using MapReduce,” The Journal of

Supercomputing, vol. 70, pp. 1249–1259, 2014, doi: 10.1007/s11227-014-1225-7.
[26] R. Alguliyev, R. M. Alıguliyev, and L. Sukhostat, “Efficient algorithm for big data clustering on single machine,” CAAI

Transactions on Intelligence Technology, vol. 5, no. 1, pp. 9–14, Jan. 2020, doi: 10.1049/trit.2019.0048.

[27] P. P. Prajapati, A. J. Kshatriya, D. N. Patel, S. K. Gonsai, H. B. Tank, and K. R. Sheth, “Comparative analysis of meta heuristics
algorithm for differential amplifier design,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 12, no. 6, pp. 3395–

3401, 2023, doi: 10.1007/978-3-031-29857-8_71.
[28] H. S. Maharana and S. K. Dash, “Quantum behaved artificial bee colony based conventional controller for optimum dispatch,”

International Journal of Electrical and Computer Engineering, vol. 13, no. 2, p. 1260, 2023, doi: 10.11591/ijece.v13i2.pp1260-1271.

[29] O. M. Neda, “A new hybrid algorithm for solving distribution network reconfiguration under different load conditions,”
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, no. 3, p. 1118, 2020,

doi: 10.11591/ijeecs.v20.i3.pp1118-1127.

[30] Z. Benmounah, S. Meshoul, and M. Batouche, “Scalable differential evolutionary clustering algorithm for big data using map-reduce
paradigm,” International Journal of Applied Metaheuristic Computing, vol. 8, no. 1, pp. 45–60, 2017, doi: 10.4018/IJAMC.2017010103.

[31] S. E. Hashemi, M. Tavana, and M. Bakhshi, “A new particle swarm optimization algorithm for optimizing big data clustering,”

SN Computer Science, vol. 3, no. 4, 2022, doi: 10.1007/s42979-022-01208-8.
[32] M. Sherar and F. Zulkernine, “Particle swarm optimization for large- scale clustering on apache spark,” in IEEE Symposium

Series on Computational Intelligence (SSCI), 2017, pp. 1–8, doi: 10.1109/SSCI.2017.8285208.

[33] A. Sinha and P. K. Jana, “A hybrid MapReduce-based k-means clustering using genetic algorithm for distributed datasets,”
The Journal of Supercomputing, vol. 74, 2018, doi: 10.1007/s11227-017-2182-8.

[34] R. M. Alguliyev, R. M. Aliguliyev, and F. J. Abdullayeva, “PSO+K- means algorithm for anomaly detection in big data,”

Statistics Opti- mization and Information Computing, vol. 7, no. 2, pp. 348–359, 2019, doi: 10.19139/soic.v7i2.623.
[35] M. Moslah, M. A. B. Hajkacem, and N. Essoussi, “Spark-based design of clustering using particle swarm optimization,”

Clustering Methods for Big Data Analytics, pp. 91–113, 2019, doi: 10.1007/978-3-319-97864-2_5.

[36] V. Ravuri and S. Vasundra, “Moth-flame optimization-bat optimization: Map-reduce framework for big data clustering using the
moth-flame bat optimization and sparse fuzzy C-means,” Big Data, vol. 8, no. 3, pp. 203–217, 2020, doi: 10.1089/big.2019.0125.

[37] M. Q. Bashabsheh, L. Abualigah, and M. Alshinwan, “Big data analysis using hybrid meta-heuristic optimization algorithm and

MapReduce framework,” in Studies in Computational Intelligence, Cham: Springer International Publishing, 2022, pp. 181–223,
doi: 10.1007/978-3-030-99079-4_8.

[38] N. Q. Ann, D. Pebrianti, M. F. Abas, and L. Bayuaji, “Automated-tuned hyper-parameter deep neural network by using arithmetic

optimization algorithm for Lorenz chaotic system,” International Journal of Electrical and Computer Engineering (IJECE),
vol. 13, no. 2, p. 2167, 2023, doi: 10.11591/ijece.v13i2.pp2167-2176.

[39] S. H. Shri and A. F. Mijbas, “Chaotic theory incorporated with PSO algorithm for solving optimal reactive power dispatch

problem of power system,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 22, no. 3,
p. 1739, 2021, doi: 10.11591/ijeecs.v22.i3.pp1739-1747.

[40] W. A. Wali, “Application of particle swarm optimization with ANFIS model for double scroll chaotic system,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, p. 328, 2021, doi: 10.11591/ijece.v11i1.pp328-335.
[41] Z. M. Gao, J. Zhao, and Y. J. Zhang, “Review of chaotic mapping enabled nature-inspired algorithms,” Mathematical Biosciences

and En- gineering: MBE, vol. 19, no. 8, pp. 8215–8258, 2022, doi: 10.3934/mbe.2022383.

[42] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization: An overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57,
2007, doi: 10.1007/s11721-007-0002-0.

[43] M. M. Saeed, M. M, Z. Aghbariand, and M. Alsharidah, “Big data clustering techniques based on spark: a literature review,”

PeerJ Computer Science, vol. 6, no. e321, pp. 2020–2020, doi: https://doi.org/10.7717/peerj-cs.321.
[44] G, D. Fatta, and S. A. Ghamdi, “Efficient clustering techniques on Hadoop and spark,” International Journal of Big Data

Intelligence, vol. 6, no. 1, 2019, doi: 10.1504/IJBDI.2019.100898.

[45] N. Belbachir, M. Zellagui, A. Lasmari, C. Z. El-Bayeh, and B. Bekkouche, “Optimal integration of photovoltaic distributed
generation in electrical distribution network using hybrid modified PSO algorithms,” Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 24, no. 1, p. 50, 2021, doi: 10.11591/ijeecs.v24.i1.pp50-60.

[46] M. Z. M. Tumari, A. F. Z.Abidin, A. S. R. A. Subki, A. W. A. Aziz, M. S. Saealal, and M. A. Ahmad, “Liquid slosh control by
implementing model-free PID controller with derivative filter based on PSO,” Indonesian Journal of Electrical Engineering and

Computer Science (IJEECS), vol. 18, no. 2, p. 750, 2020, doi: 10.11591/ijeecs.v18.i2.pp750-758.

[47] X. Xu, J. Jäger, and H. P. Kriegel, “A fast-parallel clustering algorithm for large spatial databases,” Data Mining Discovery,
vol. 3, pp. 263–290, 1999, doi: 10.1023/A:1009884809343.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Big data clustering based on spark chaotic improved particle swarm optimization (Saida Ishak Boushaki)

429

BIOGRAPHIES OF AUTHORS

Saida Ishak Boushaki is an Associate Professor in the Department of

Computer Science at the University M’hammed Bouguera of Boumerdes, Algeria.

She earned her Magister and engineering degrees in Computer Science from the same

university in 2003 and 2007, respectively. Since 2011, she has been a member of the

Laboratory of Research in Artificial Intelligence (LRIA) at the University of Science and

Technology Houari Boumediene (USTHB). She undertook an 18-month internship at ETS

(École de technologie supérieure), Montreal, Canada, starting in October 2014. In 2018,

she obtained her Ph.D. degree in Computer Science from USTHB. Her primary interests

include data mining, big data clustering, information retrieval, formal methods modeling, and

the application of evolutionary computation to solve optimization problems. She can be

contacted via email at: s.boushaki@univ-boumerdes.dz.

Brahim Hadj Mahammed is a Software Engineer with expertise in web

development, datamining, and big data. With 3 years of experience as a freelance web

developer, he has delivered numerous successful projects. Brahim holds a Master’s degree

in Software Engineering and Data Processing, equipping him with a solid educational

background. He excels in programming languages such as HTML, CSS, JavaScript, and

Python, and has a deep understanding of datamining techniques and big data technologies.

His ability to extract valuable insights from complex datasets makes him a valuable asset in

leveraging data for informed decision-making. Combining his web development skills with

datamining expertise, Brahim delivers innovative solutions that maximize the potential of

data-driven applications. He can be contacted at email: brahimhm98@gmail.com.

Omar Bendjeghaba was born in Algeria. He Hold Magister Degree (Master of

Engineering with dissertation) from The FHC Formally INHC. He received his Ph.D.

degree from the University of M’hamed Bougarra Boumerdes in 2010. He is currently

member at the research laboratory (LREEI). His research activities include control,

planning and operations of power systems, as well as evolutionary computation theory and

applications in power systems. He can be contacted at email: bendjeghaba@univ-

boumerdes.

Messaoud Mosbah is a Software Engineer with a Master’s degree in the field.

He has been working as a software developer for some time and has a passion for machine

learning and big data. He is constantly striving to improve his skills and stay up-to-date

with the latest advancements in this field. He can be contacted at email:

m.mesd16@gmail.com.

mailto:s.boushaki@univ-boumerdes.dz
https://orcid.org/0000-0003-3082-2884
https://scholar.google.fr/citations?user=UP4rNpgAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=57199398579
https://orcid.org/0009-0003-7847-5997
https://scholar.google.com/citations?hl=fr&user=ZHgCSBMAAAAJ
https://orcid.org/0000-0003-3717-3039
https://scholar.google.fr/citations?user=zXh-yR4AAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=26422836900
https://orcid.org/0009-0002-7104-7730
https://scholar.google.com/citations?hl=fr&user=tPG0mCoAAAAJ&view_op=list_works&gmla=AH70aAUuldbfdYsdYpeEhqtYeLCZ08E8O_gcqhK9_JYJKXTP5cKT_9uJfYu7J5MuS5hNg7oxosY8ieu6Ja6b2CcirgpTugudTWTorE8TCLlRCV4S9w

