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 In recent years, the surge in continuously accelerating data generation has 

given rise to the prominence of big data technology. The MapReduce 

architecture, situated at the core of this technology, provides a robust parallel 

environment. Spark, a leading framework in the big data landscape, extends 

the capabilities of the traditional MapReduce model. Coping with big data, 

especially in the realm of clustering, requires more efficient techniques. 

Meta-heuristic-based clustering, known for offering global solutions within 

reasonable time frames, emerges as a promising approach. This paper 

introduces a parallel-distributed clustering algorithm for big data within the 

Spark Framework, named Spark, chaotic improved PSO (S-CIPSO). 

Centered on particle swarm optimization (PSO), the proposed algorithm is 

enhanced with a chaotic map and an efficient procedure. Test results, 

conducted on both real and artificial datasets, establish the superior 

performance and quality of clustering results achieved by the proposed 

approach. Additionally, the scalability and robustness of S-CIPSO are 

validated, demonstrating its effectiveness in handling large-scale datasets. 
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1. INTRODUCTION 

Recently, more than two exabytes of data are generated world wide every day, leading to the 

emergence of big data [1]−[7]. Consequently, the analysis of this data necessitates the development of more 

efficient and appropriate software [3]−[7]. Clustering, a crucial machine learning method, is widely utilized 

to extract meaningful information from vast volumes of data across various research areas. Its primary task is 

to unsupervisedly group the data collection so that elements within the same group are highly similar and 

homogeneous [8]−[12]. 

The principal challenge faced by big data clustering approaches is to scale up and speed up 

clustering algorithms without compromising clustering quality. These approaches are categorized into two 

classes: single-machine and multi-machine clustering. In the first class, sampling techniques are employed to 

reduce the size of datasets. Additionally, projection, sub-space clustering, and co-clustering methods are 

utilized to reduce the dimensionality of the datasets. While approaches in this class are valuable, they have 

their own set of shortcomings. For instance, they are constrained by limited memory, their processing time is 

time-consuming, they are sensitive to noise and outliers, and dimensionality reduction can impact the 

effectiveness of clustering algorithms [8], [9], [13]−[15]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Multi-machine clustering approaches follow a common process: initially, the data is partitioned into 

sub-groups and distributed across machines. Subsequently, each machine independently performs clustering 

on its allocated data partition. These approaches can be broadly categorized into two main types: parallel and 

MapReduce. Parallel algorithms, though potent for specific applications, may demand additional memory to 

store intermediate results or facilitate communication between processes. In contrast, MapReduce is 

particularly well-suited for processing extensive datasets distributed across a cluster. It gained popularity 

during the big data era due to its scalability and fault-tolerant design, offering a high-level abstraction for 

distributed computing [8], [9], [13]−[15]. 

The storage and processing of multi-machine clustering approaches have been executed using 

various frameworks, such as Hadoop, Spark, Storm, Flink, and Samza [16]−[21]. Recent research indicates 

the notable performance of the Spark Framework in enhancing the MapReduce model to support both 

interactive and iterative queries. Moreover, to accelerate calculations, Spark incorporates robustly distributed 

datasets for in-memory processing [22]−[24]. 

Multi-machine clustering algorithms constitute a thriving area of study, evolving conventional 

clustering methods to address the challenges posed by big data. A notable subset of these algorithms focuses on 

the well-known K-means approach. For example, Cui et al. [25] examined the challenges associated with 

processing big data using K-means in the context of MapReduce. Alguliyev and others have presented a new 

scalable K-means algorithm by splitting a dataset into batches [26]. Despite experimental tests on diverse 

datasets demonstrating the practical applicability of big data clustering based on K-means, these approaches 

contend with the primary drawback inherent to K-means being prone to getting trapped in local solutions. 

In contrast, metaheuristic algorithms have demonstrated their efficiency in attaining global solutions 

within a reasonable time frame for various optimization problems [27]−[29], including big data clustering. 

For example, Benmounah et al. [30] proposed a scalable differential evolution (DE) algorithm based on the 

MapReduce programming model. Hashemi et al. [31] described a new algorithm for clustering big data, 

focusing on PSO. Nevertheless, a primary challenge associated with this class of algorithms is the issue of 

slow convergence. 

To address this challenge, algorithms within this class are often hybridized with the well-known  

K-means algorithm. Sherar and Zulkernine [32] proposed a hybrid approach to big data clustering, combining 

K-means and particle swarm optimization (KMPSO), and implemented it in the Apache Spark Framework. 

Their work demonstrated the suitability of Apache Spark for handling large-scale datasets. Sinha and Jana 

[33] presented a novel hybrid approach incorporating genetic algorithms (GA) and K-means++.  

Alguliyev et al. [34] proposed a novel method for anomaly detection in big data, focusing on PSO and K-

means algorithms. In the same year, Moslah et al. [35] introduced a big data clustering algorithm based on an 

adapted version of PSO combined with K-means, implemented under the Spark Framework (S-PSO).  

Ravuri and Vasundra [36] presented a novel MapReduce approach based on moth-flame optimization, the 

Bat algorithm, and sparse fuzzy C-means. Additionally, Bashabsheh et al. [37] presented a hybrid method 

focusing on harris hawk’s optimizer (HHHO) and K-means clustering under the MapReduce framework. 

Although these algorithms leverage the advantages of the combined approaches, they often require 

significant computational resources and calculus due to their complexity. 

Rather than advocating the combination of different algorithms, alternative methods leverage  

novel ideas derived from contemporary theories, such as chaos theory, to enhance their efficacy in a 

straightforward manner [38]−[40]. A promising approach to model systems heavily dependent on initial 

conditions, such as meta-heuristics, is through the use of chaotic maps. Chaotic variables, known for their excellent 

performance attributes, including ergodicity and non-repetition, replace random ones in this context [41]. 

The current study contributes to enhance the performance capabilities of existing big data clustering 

algorithms. The proposed approach is grounded in the well-known metaheuristic PSO [42] and is executed 

under the Spark Framework [43], [44]. In this context, the conventional PSO is improved by incorporating 

the properties of chaotic maps, specifically ergodicity and non-repetition. Additionally, an efficient procedure 

is implemented to accelerate the convergence speed of the search process. The results of the proposed 

approach are found to be satisfactory, both in terms of scalability and robustness, as well as in the 

performance and quality of clustering results. The structure of this paper is organized as: section 2 outlines 

the details of the proposed approach and the theories related to the algorithm, section 3 provides details of 

experimentation and results, and finally, conclusions and future work are summarized in the last section 4. 

 

 

2. METHOD 

In this study, the spark framework is chosen for its numerous advantages [20]−[24]. The proposed 

approach is grounded in the renowned PSO meta-heuristic [42], [45], [46]. The research demonstrates that 
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this evolutionary technique is particularly well-suited for addressing distributed clustering problems. In this 

work, the search procedure is improved by leveraging the ergodicity and non-repetition performance 

properties of chaotic maps. Enhanced speed is achieved through the incorporation of the gravity center step. 

The subsequent section will delve into the concepts associated with chaotic maps. 

 

2.1.  Chaotic maps 

A mathematical function that exhibits chaotic behavior over time is referred to as a chaotic map [41]. 

A chaotic sequence is generated by the values produced by various chaotic functions. In a chaotic sequence, 

the value at instant k+1 depends solely on the value at instant k. Various chaotic maps exist, including the 

circular map, gaussian map, logistic map, sinusoidal map, and tent map. Table 1 provides definitions for 

some well-known chaotic maps. 

It’s noteworthy that many optimization algorithms involve the manipulation of at least one random 

variable. However, chaotic optimization algorithms replace these random variables with chaotic variables to 

leverage the robust properties of chaotic maps, such as non-repetition and ergodicity. This substitution allows 

for the execution of global searches at rates faster than stochastic searches [41]. 

 

 

Table 1. Definition of chaotic maps 
Chaotic map Definition 

Circle map 𝑐𝑘+1 = 𝑐𝑘 + 𝑏 − (
𝑎

2𝜋
) sin(2𝜋𝑘) 𝑚𝑜𝑑(1), 𝑎 = 0.5 𝑒𝑡 𝑏 = 0.2 

Logistic map 𝑐𝑘+1 = 𝑎𝑐𝑘(1 − 𝑐𝑘), 𝑎 = 4 

Gauss map 
𝑐𝑘+1 = {

 0      𝑖𝑓           𝑐𝑘 = 0

1/𝑐𝑘 𝑚𝑜𝑑(1) 
 

Tent map 
𝑐𝑘+1 = {

𝑐𝑘/0.7        𝑐𝑘 < 0.7
10/3       𝑐𝑘 ≥ 0.7 

 

Sinusoidal map 𝑐𝑘+1 = 𝑎𝑐𝑘
2 sin(𝜋𝑐𝑘) , 𝑎 = 2.3 

 

 

2.2.  The steps of the proposed approach 

The proposed algorithm, named Spark, chaotic improved PSO (S-CIPSO), involves four main steps: 

the generation of the initial population using chaotic maps, the assignment of data points to the nearest 

cluster, and the calculation of both fitness and the global best position. Additionally, it includes the 

calculation of the gravity center of the best global best position. Finally, the centroids and particle speed are 

updated using chaotic map. The pseudocode for S-CIPSO is presented in Figure 1. 

 

 

 
 

Figure 1. Pseudo code of the proposed S-CIPSO 
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2.2.1. Phase 1: Generation of the initial population 

Most conventional metaheuristic algorithms typically generate their initial population randomly 

from the search space. However, in this study, the information for the initial population is created by 

employing the chaotic map. It should be noted that the logistic chaotic map is chosen based on empirical 

study. The positions of the particles represent the centroids of the initial clusters. The following formulas are 

used to generate the initial centroids: 
 

zij = Ub + (Ub − Lb) ∗ Cr(t) (1) 

 

𝐶𝑟(𝑡 + 1) = 4 ∗ 𝐶𝑟(𝑡) ∗ (1 − 𝐶𝑟(𝑡))  (2) 
 

where:  

zij: is the j th centroid of the i th particle. 

Lb: vector of lower limits, Ub: vector of upper limits, Cr: represents a logistic chaotic map. 

 

2.2.2. Phase 2: Data assignment, fitness computation, and calculating the global best position 

This phase is the most resource-intensive, as each particle requires a substantial amount of data to be 

assigned to nearby clusters. However, object assignment can be performed concurrently since it is 

independent of other objects. The dataset is initially divided into shards, with each shard receiving a mapping 

function and swarm metadata. Subsequently, the nearest cluster is determined for each data point using the 

mapping function. The mapping function then generates a key-value pair, where the key consists of the 

particleID and centroidID pair, and the value represents the shortest distance between a data object and its 

centroidID for the given particleID. It is important to note that the reduction function, referred to as the 

fitness computation step, utilizes the reduceByKey() operation provided by the Spark Framework.  

This operation combines the outputs of various mapping functions once all data has been assigned to the 

closest cluster. The following formula, aimed at minimizing the average distance between data objects and 

their centroids, is employed to determine the new fitness value: 
 

𝐹𝑖𝑡𝑖 =
∑ (∑ 𝑚𝑖𝑗𝑑(𝐶𝑖,𝑂𝑗) 𝑛𝑖⁄𝑛

𝑗=1 )𝑘
𝑖=1

𝑘
 (3) 

 

where: 

𝐹𝑖𝑡𝑖 denotes the fitness value of particle i, k indicates the number of clusters, n is the number of data objects, 

𝑚𝑖𝑗 =1 if the jth object is in the ith cluster and 0 otherwise. 𝑑(𝐶𝑖 , 𝑂𝑗) is the Euclidean distance between the 

data object 𝑂𝑗 and the centroid of the cluster 𝐶𝑖, 𝑛𝑖 is the number of objects that belong to the cluster number 

i. Subsequently, the reduce function produces a key-value pair, where the updated fitness value serves as the 

value, and the particleID serves as the key. 

− Let O = {𝑂1... 𝑂𝑛} be the data objects and PI(t) = {𝑃𝐼1(𝑡), 𝑃𝐼2(𝑡)... 𝑃𝐼𝑙(𝑡)} the particle information set 

at time t and l is the population size. 

− 𝑃𝐼𝑖(𝑡) = {𝑧𝑖(𝑡), 𝑣𝑖(𝑡), 𝑝𝑏𝑒𝑠𝑡PI𝑖(𝑡), 𝑝𝑏𝑒𝑠𝑡𝐹𝑖(𝑡)} represents the information of particle i in iteration t 

where 𝑧𝑖(𝑡) is its position, 𝑣𝑖(𝑡) is its speed, 𝑝𝑏𝑒𝑠𝑡𝑃𝑖(𝑡) is its best position, and 𝑝𝑏𝑒𝑠𝑡𝐹𝑖(𝑡) is its best 

Fitness.  

− Let 𝐹 = {𝐹1 … 𝐹𝑙} be the set of fitness values where  𝐹𝑖 is the Fitness value of particle 𝑖. 
It should be noted that the calculated fitness of the new particles is automatically stored in a resilient 

distributed dataset (RDD), from which it is later collected. Afterwards, each particle maintains its individual 

best position. The particle with the best fitness value (the minimum average distance between data objects 

and their centroids) is determined to be the gbest particle (gbest) for the update. 

 

2.2.3. Phase 3: Calculation of the gravity center of the global best position 

This stage involves two primary steps: data assignment and centroid updating. To allocate data 

objects to the nearest cluster, the data assignment phase employs a mapping function that takes the data 

fragment and centroids clusters from the preceding step as inputs. As a result, a list of key/value pairs is 

generated, where the key represents the cluster index to which the data item is allocated, and the value 

represents the output data vector. During the centroid calculation phase, the centroids of the clusters are updated 

by computing the average value for each cluster and aggregating the outputs of various mapping functions. 

 

2.2.4. Phase 4: Update of centroids and particle speed using chaotic map 

This step commences with the distribution of particle information among various mapping functions 

to facilitate the update of particle velocity and position, employing (4)-(6). It’s noteworthy that a logistic 
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chaotic map is employed to update the acceleration coefficients, c1 and c2, of the particles. This 

incorporation ensures dynamic adjustments to the acceleration coefficients based on the characteristics of the 

chaotic map. 

 

Vi(t + 1) = w ∗ Vi(t) + c1 ∗ Cr(t) ∗ (pbestPi(t) − zi(t)) + c2 ∗ (1 − Cr) ∗ (pbestPi(t) − zi(t)) (4) 

 

zi(t + 1) = zi(t + 1) + Vi(t) (5) 

 

Cr(t + 1) = 4 ∗ Cr(t) ∗ (1 − Cr(t)) (6) 

 

Where,  

Vi(t) is the speed of particle i at time t, w denotes the inertia coefficient, 𝑧𝑖(𝑡) is the position of particle i at 

time t, c1 and c2 are the two acceleration coefficients.  

𝐶𝑟(𝑡) is represented the chaotic value at time 𝑡, 𝐶𝑟(𝑡 + 1) is represented the chaotic value at time (𝑡 + 1).  

The reduce function employs the reduceByKey() method to consolidate the output from each mapping 

function into a unified RDD. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Development environment 

In this section, we introduce the development environment employed for implementing this 

research. Firstly, the hardware configuration was executed on a virtual machine, and its specifications are 

outlined in Table 2. Subsequently, the software configuration was undertaken utilizing the Apache Spark 

framework (version 3.0.0), and the implementation was executed in the Python programming language 

(version 3.7) within a Linux Ubuntu environment. To implement on Linux, the Spark Framework was 

installed and configured through the following steps: 

− Installation of the Java program. 

− Downloading the chosen Spark version from the official Spark website and subsequent installation. 

− Configuration of environment variables, including setting the JAVA_HOME variable to specify the Java 

installation directory, specifying the SPARK_HOME variable, and configuring the PATH environment 

variable to allow the operating system to locate the Spark executable. 

 

 

Table 2. Hardware specification 
Device Specification 

Hard disk 100 GB 

RAM 16 GB 

System type 64-bit operating system 
Processor Intel(R) Core (TM) i5-6200U CPU. (5 cores) 

Frequency 2.30 GHz 

Cloud service Azure synapse analytics  

 

 

3.2.  Datasets 

The tests were conducted on both artificial and real datasets. Five series of large-scale artificial 

datasets were generated with a mean of 350 and a sigma of 100 using the Gaussian distribution. These 

datasets vary in size, ranging from 1 million to 5 million data points, with each data point represented by ten 

variables. The simulated data collections are denoted as D1M, D2M, D3M, D4M, and D5M, corresponding 

to 1,000,000; 2,000,000; 3,000,000; 4,000,000; and 5,000,000 data points, respectively. Additionally, three 

real datasets obtained from the UCI machine learning repository were used: 

− Magic: Captures outcomes from simulating high-energy gamma particles using an atmospheric 

Cherenkov telescope on Earth. The dataset consists of 19,020 cases, each with 10 properties.  

The clustering technique determines if the observed energy is gamma or not. 

− KDD: Composed of regular connections and simulated attacks in a military network environment.  

With approximately 5 million links, clustering is employed to identify different types of intrusions across 

all connections. The KDD dataset comprises 33 characteristics for each example. 

− Cover type: Indicates the type of cover in US forest cells with a size of 30 by 30 meters. The dataset 

includes 58,012 entries, each with 54 properties. It predicts the type of tree among seven distinct types in 

the dataset. 
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3.3.  Performance measures 

The proposed approach is subject to a thorough evaluation, considering scalability, performance, 

and clustering quality. Scalability assessment examines its adaptability to various data volumes, ensuring 

robust functionality across different datasets. Performance metrics delve into computational efficiency and 

speed, providing insights into the algorithm’s responsiveness. Clustering evaluation emphasizes the accuracy 

in grouping similar data points, contributing to a comprehensive understanding of the proposed approach’s 

effectiveness. 

 

3.3.1. Scalability assessment 

To evaluate scalability, measures of speed UP, scale UP, and size UP are employed, defined as 

follows: 

a) Speed up measurement 

Speed UP is determined by setting the dataset’s size and increasing the CPU core count. Clustering 

is first executed with a single calculation core and then with m CPU cores, resulting in execution times T1 

and Tm, respectively [47]. The following presents the speed UP measurements: 

 

𝑆𝑝𝑒𝑒𝑑𝑈𝑃 = 𝑇1/𝑇𝑚 (7) 

 

Where T1 represents the execution time with a single core, and Tm is the execution time with m cores.  

The optimal algorithm demonstrates speed close to linear scalability. 

b) Scale UP measurement 

The scale UP measure involves an increase in both the dataset size and the number of CPU cores. 

Initially, clustering is performed with a single core on a dataset of size N, followed by execution with m 

cores on a dataset of size m*N [47]. The scale UP value is calculated using the (8):  

 

Scale UP = T1N/TmN (8) 

 

Where T1N: represents the execution time of a dataset of size N on a single core, and TmN is the execution 

time of a dataset of size N ∗ m on 𝑚 cores. 

When T1N is close to TmN the method is considered scalable.  

c) Size up measurement: 

The size UP metric maintains the number of CPU cores constant while increasing the size of the 

dataset m times. This metric signifies the algorithm’s capability to handle datasets that are m times larger 

[47]. The size UP measure is calculated using the (9): 

 

𝑆𝑖𝑧𝑒𝑈𝑃 = 𝑇𝑁/𝑇𝑚𝑁 (9) 

 

TN the execution time of dataset of size N. 

TmN: the execution time of dataset of size m ∗ N.  

However, the quality of the clustering results is evaluated using the average distance between data objects 

and their centroids, as defined by (3). 

 

3.4.  Comparisons and results  

Artificial datasets play a pivotal role in assessing the scalability and robustness of the proposed 

approach, while real datasets are instrumental in evaluating clustering performance. The effectiveness of the 

approach is determined through a comparative analysis, which involves assessing S-CIPSO against standard 

PSO (S-PSO) and S-CIPSO excluding the gravity center step (S-CPSO). This comparison serves as a 

valuable tool for understanding the performance of the proposed approach in relation to various benchmarks, 

providing a comprehensive perspective on its efficacy. 

 

3.4.1. Related parameters 

Conducting tests involves meticulous attention to specific parameters. The swarm, comprising 10 

particles, operates under a fixed total of 10 iterations, ensuring consistency in the experimental setup. 

Throughout the testing process, the inertia weight (w) remains constant at 0.72, providing stability to the 

algorithm’s performance. Additionally, the acceleration coefficients (c1, c2) are steadfastly set at 1.49, 

contributing to the controlled environment of the experiments. Across all datasets, a uniform total number of 

clusters (k) is systematically configured at 5, with exceptions noted for the “magic” dataset, where it is 

constrained to 2, and the “cover type” dataset, where a specific configuration of 7 clusters is implemented. 
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3.4.2. Clustering quality results 

Table 3 presents the results of the clustering quality obtained by our approaches in comparison to 

other algorithms. The findings indicate that our algorithms outperform others in terms of clustering quality. 

This improvement is attributed to the enhancements introduced into the standard PSO, enabling S-CPSO and 

S-CIPSO to effectively explore the search space. Notably, S-PSO maintains a comparable quality to PSO. 

Additionally, it is observed from the table that S-CIPSO significantly enhances the clustering quality 

compared to S-CPSO. Hence, the implementation of the step that calculates the center of gravity of the best 

global position emerges as a crucial choice to enhance the quality of clustering. 

 

 

Table 3. Comparison of the fitness value 
Datasets PSO S-PSO S-CPSO S-CIPSO 
Magic 67.016035 82.160078 40.938492 40.930279 

KDD 252558.92351 19412.91393 20023.16916 14066.84059 
Cover type 989.718507 1169.723182 464.810866 464.370944 

 

 

3.4.3. Performance results 

Table 4 presents the performance results of the proposed approaches in comparison to other 

algorithms. According to this table, all algorithms implemented under the Spark environment (S-PSO, S-

CPSO, and S-CIPSO) demonstrate superior performance compared to the standard PSO on all datasets, 

except for the “magic” dataset. This discrepancy is explained by considering that “magic” is relatively small 

compared to the other datasets, rendering parallel processing less advantageous. In such cases, parallel 

processing becomes more resource-intensive and time-consuming. It is evident from the results that S-CPSO 

outperforms S-PSO across all datasets. This improvement is attributed to the utilization of the logistic map, 

enhancing the search mechanism without adding complexity to the algorithm. Furthermore, the table 

illustrates that the difference in execution time between S-PSO and S-CIPSO diminishes as the dataset size 

increases. 

 

 

Table 4. Running time in seconds (s) 
Datasets PSO S-PSO S-CPSO S-CIPSO 
Magic 3.939328 35.031629 28.455660 41.740645 

KDD 2346.306556 1307.707522 1005.495059 1328.462582 

Cover type 477.549305 321.658103 286.035391 362.224696 

 

 

3.4.4. Evaluation of the S-CIPSO scalability and robustness 

The running time of the suggested approach on all the used artificial datasets is shown in Figure 2. 

From Figure 2, it is clear that increasing the number of cores reduces the execution time for all datasets.  

For example, the running time of D5M with 1 core is 4,935 seconds, and with 5 cores, it is 1,104 seconds, 

which means it has decreased more than 4 times. 

To assess the speed UP of the proposed method, the dataset size is held constant while the number 

of cores is increased from 1 to 5. Figure 3 illustrates the speed results of the tested datasets. The outcomes 

demonstrate that the suggested approach has good speed UP. In fact, for all datasets, when the number of 

cores varies from 1 to 3, the speed UP results are nearly linear, making them a very strong speed UP. 

However, the performance of the suggested approach starts to deteriorate, and the speed UP deviates from 

linearity when the number of cores is higher than 4. This is interpreted by the longer communication times 

needed to handle the increased core count. 

To assess the scale UP of the presented method, both the dataset size and the number of cores is 

increased. The examination of scale UP utilizes all tested artificial datasets with cores set to 1, 2, 3, 4, and 5, 

respectively. The results are depicted in Figure 4. As previously mentioned, the ideal algorithm exhibits Scale 

UP values extremely close to or equal to 1. In our case, the suggested method demonstrates a very good Scale 

UP, indicating that S-CIPSO adapts well to scale UP values between 1 and 0.90. 

Figure 5 illustrates the results obtained by S-CIPSO for 1, 2, 3, 4, and 5 cores, respectively.  

The outcomes depict a favorable size UP for the proposed method. For instance, on a single core, the size UP 

results exhibit nearly linear improvement. 
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Figure 2. Execution time of S-CIPSO on the different artificial datasets 

 

 

  

  

 
 

Figure 3. Speed up results of S-CIPSO on the different artificial datasets 
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Figure 4. Scale up results of S-CIPSO 

 
 

Figure 5. Size up results of S-CIPSO 

 

 
4. CONCLUSION 

This study introduces a novel algorithm, S-CIPSO, designed for the clustering of big data within the 

Spark Framework. Initially, the conventional PSO algorithm is enhanced by incorporating a chaotic map  

(S-CPSO). Subsequently, an additional step is introduced where the gravity center of the best position is 

calculated, leading to the development of S-CIPSO. The implementation is carried out using the Python 

language. To evaluate clustering results, two types of datasets real and artificial are employed. Real datasets 

are utilized to assess clustering quality and performance, while artificial datasets are reserved for evaluating 

the scalability and robustness of S-CIPSO. The test results reveal that S-CPSO outperforms all other 

algorithms, demonstrating superior clustering quality compared to both S-PSO and the standard PSO.  

This improvement is attributed to the stochastic searches of the logistic map, effectively exploring the search 

area with features like non-repetition and ergodicity without adding complexity to the algorithm. 

Furthermore, S-CIPSO significantly enhances the clustering quality of S-CPSO, emphasizing the importance 

of determining the gravity center of the best global position to increase clustering quality. Experimental 

results affirm the scalability of S-CIPSO, showcasing its suitability for big data clustering. In our future 

endeavors, we plan to extend the application of the proposed approach to image segmentation.  
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