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 The issue of driving behavior at night poses significant challenges due to 

reduced visibility and increased risk of accidents. Recent works have 

leveraged deep learning techniques to enhance night-time driving safety. 

However, the limited availability of high-quality training data and the lack of 

robustness in existing models present significant problems. In this work, we 

propose a novel approach to improve driving behavior recognition at night 

using ResNet50 with contrast limited adapted histogram equalization 

(CLAHE). We collected a new dataset and developed a more effective and 

robust model that can accurately recognize driving behaviors under low-

illumination conditions, thereby reducing the likelihood of collisions and 

improving overall road safety. The experimental results demonstrate 

significant improvements in the deep learning model’s performance compared 

to conventional methods. Notably, the ResNet50 model delivers the best 

performance with accuracy rates of 90.73% using NIGHT-VIS-CLAHE data, 

demonstrating a 16% improvement in accuracy. For benchmark purposes, the 

InceptionV3, GoogleNet, and MobileNetV2 models also show enhanced 

accuracy through CLAHE implementation. Furthermore, NIGHT-VIS-

CLAHE implementation in ResNet50 achieved 90.29% accuracy, surpassing 

the best NIGHT-IR InceptionV3 at 89.27%, highlighting the advantage of 

ResNet50 with CLAHE in low-light conditions even against infra-red sensor. 
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1. INTRODUCTION 

According to WHO’s 2018 global report, road traffic crashes cause about 1.35 million deaths 

annually, with 54% involving vulnerable road users. Although developing nations possess 60% of the world’s 

vehicles, over 90% of road fatalities occur in low and middle-income nations. Road accident is also a significant 

cause of death for 5 to 29-year-olds [1]. In Malaysia, there are growing numbers of cars on the roads because 

the population is rising where in 2020 there were 32.3 million cars, up by 1.2 million from the previous year. 

This is because more people are buying cars and learning to drive [2]. Similarly, in the US the statistic shows 

more accidents were caused by distracted driving. In 2021, 3,522 people were killed and an estimated 362,415 

people were injured in motor vehicle traffic accidents caused by distracted drivers [3]. The most common 

causes of recorded car accidents were asleep, texting, or talking on the phone while driving. 

Drowsy driving is a key accident contributor, and its impact is aggravated by severe consequences. 

Long journeys or night driving may cause drivers to be tired and sleepy. The urgency of the situation drives 
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the demand for sleepiness detection and warning technology, including acquisition, processing, and alarms. 

Drowsiness is detected using three basic approaches: vehicle, behavior, and physiology [4]. Face detection and 

recognition can assist in identifying driving drowsiness behavior. 

Additionally, face detection and recognition are critical in both research and practical applications of 

computer vision. Face recognition, which has been extensively researched and widely applied, provides 

exceptional versatility in this sector. However, recognizing faces within entire photos necessitates a significant 

amount of time. To solve this issue, many strategies for extracting facial regions during pre-processing have 

been investigated to reduce processing time. Haar classifiers have been heavily incorporated in the hardware 

implementation of face detection algorithms, effectively enhancing face classification efficiency by alleviating 

computing constraints. This complex interaction between face detection, leveraging haar cascade for 

computational efficiency, and the broader landscape of face recognition applications emphasizes the continued 

progress of computer vision technologies, which are poised to improve accuracy and speed in real-world 

scenarios [5]. Eye detection also plays an important role in driver sleepiness detection [6]. It is critical in 

effectively detecting and assessing distinct eye characteristics, which are important indicators of attention. 

While convolutional neural networks (CNNs) excel at object detection and recognition [7], [8], their computing 

requirements make real-time, cost-effective processing on devices such as central processing units (CPUs) 

difficult. Furthermore, eyes are unique among facial features, necessitating a particular treatment. As a result, 

Haar Cascade with three levels of eye detection has been adopted, maximizing both accuracy and efficiency. 

This synergy between the need for practical, low-cost, real-time eye detection and the uniqueness of eye 

features highlights the need for novel solutions in driver sleepiness detection, with eyes serving as the main 

markers of driver attentiveness and road safety [9]. 

A CNN represents a type of advanced learning system within the field of deep learning. Unlike 

traditional methods, a CNN can automatically grasp important aspects from input data without requiring human 

intervention to identify specific features. This innovative approach is especially effective when working with 

images. Think of it as an upgraded version of conventional networks. The CNN consists of layers that 

autonomously learn significant patterns from images. This ability makes it exceptionally useful for tasks such 

as recognizing objects in images, analyzing medical scans, dividing images into sections, and even 

understanding language. Additionally, CNNs incorporate techniques to avoid becoming overly specialized, 

preventing them from losing sight of the bigger context. Various versions of CNNs, such as visual geometry. 

group (VGG), AlexNet, Xception, Inception, and ResNet, are tailored to different applications based on their 

distinct learning abilities [10]. 

Chen et al. [11], an innovative hybrid framework is introduced for extracting distinctive features 

essential for recognizing driver distraction. The process commences with the resizing of training images to a 

standardized dimension, which then serves as input for three prominent models: InceptionV3, Xception, and 

MobileNet. Following this, a fine-tuning step is applied to these models, involving the selective freezing of 

specific network layers. The analysis of heat maps and feature visualizations for each individual model reveals 

the presence of unique feature regions associated with different network architectures. Building on these 

insights, a fresh deep feature fusion approach is devised to combine the features extracted from these three 

models. Experimental assessments conducted on the StateFarm database underscore that the proposed method 

delivers competitive recognition performance when benchmarked against other established methodologies in 

the domain. 

Bahari and Mazalan [4] aims to address the problem of recognizing distracted drivers who are not 

paying attention to the road by employing a deep learning-based categorization approach. The proposed method 

entails creating and running the ResNet 50 neural network in Jupyter Notebook and Python. the state farm 

dataset, which includes ten separate driving habits, is a major resource for the study. To evaluate the model’s 

performance thoroughly, several assessment measures such as confusion matrices, accuracy, precision, recall, 

and F1-score are used. The results are striking, with the algorithm obtaining an astounding accuracy rate of 

94% in spotting distracted drivers looking elsewhere. Importantly, the technology can recognize photos of 

inattentive drivers and send messages when such occurrences are spotted in video footage. 

While dealing with low-illumination images such as images taken at night, several researchers have 

shown good results with the contrast limited adapted histogram equalization (CLAHE). Chen et al. [11], 

focuses on road sign detection in various illumination circumstances, particularly at night, and is motivated by 

the success of CLAHE. The research entails significant data collection, including road driving across many 

Taiwanese cities to create a unique dataset of traffic signs in both day and evening circumstances. Using the 

YOLO model, the study compares image enhancement approaches such as contrast stretching (CS), histogram 

equalization (HE), and CLAHE, with CLAHE outperforming the others when integrated into the YOLOv5x 

model for nighttime traffic sign identification. This study recommends using CLAHE’s YOLOv5x model to 

improve road sign identification in low-light circumstances, leading to enhanced road safety and navigation. 

Yuan et al. [12], focuses on the critical issue of improving the lighting quality in unmanned aerial vehicle 

(UAV) images, particularly within the realm of power system operation and maintenance. Low-light conditions 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1974-1988 

1976 

often result in UAV images with reduced detail, leading to diminished accuracy in detecting objects in overhead 

power transmission systems. Yet, a notable research gap remains in enhancing low-light images, specifically 

for UAV-based power system applications. This study introduces an innovative method for enhancing low-

light images by utilizing the CLAHE technique. The approach involves separating the luminance and 

chrominance channels through color space conversion, allowing CLAHE to enhance luminance contrast while 

preserving chrominance. Furthermore, an optimized contrast limit parameter within CLAHE is adjusted to 

strike a balance between enhancing contrast and suppressing noise, resulting in a significant improvement in 

insulator detection accuracy from 58.0% to 82.0%, as confirmed by experimental findings. 

CLAHE algorithm improves image contrast by implementing a clip limit and divides the image into 

non-overlapping contextual sections known as tiles or blocks. These regions are handled independently and 

driven by two key factors: block size and clip limit. Adjusting the block size broadens the dynamic range, 

increasing image contrast. Modifying the clip limit, on the other hand, has an impact on image brightness and 

histogram distribution. CLAHE improves image quality through careful parameter management by increasing 

contrast and entropy distribution [13].  

In this work, we propose to combine ResNet50 with CLAHE to enhance the recognition of driving 

behavior at night. To do so, we have collected our own driving behavior dataset, which we used to train and 

validate our models. We also conducted experiments using infrared (IR) cameras to assess performance 

comparisons between them. In total, we assembled a dataset of 44 subjects to build our proposed model which 

is greater in numbers than work proposed in [14] where they used 26 subjects to prepare their proposed model. 

The proposed strategy offers the potential to improve overall driving behavior and reduce collision risks by 

addressing the difficulties of recognizing behaviors under lower visibility while driving at night.  

This paper is structured as follows: Section 2 provides an overview of related works in the study.  

In section 3 outlines the methodology used to develop the model. In section 4 presents the results and offers a 

comprehensive discussion. Finally, in section 5 presents our conclusions. 

 

 

2. PREVIOUS WORKS 

Previous research tried to find ways to recognise sleepy driving, but it was impossible to create a 

model that would function in every circumstance. This issue is resolved by the model proposed in [15], which 

predicts the outcomes without taking the driver’s identity into account and improves the accuracy and 

dependability of the outcomes. When observing a person’s physical changes or potential for distraction, an 

ECG is a useful and reasonably priced tool. ECG was used in a study involving 8 participants to determine 

whether or not the driver was distracted by talking to passengers or answering phone calls. The findings 

demonstrated how well wavelet packet transform and linear discriminant analysis performed together to 

determine whether or not the driver was distracted [16]. Researchers have previously investigated the impact 

of conversational distraction on driving performance. The effects of distractions on the driver’s brain were 

observed using EEG data, and the results were classified using a machine learning technique. The EEG data 

increased the accuracy of the results by 5% and offered helpful information concerning distracted driving. 

Understanding distracted driving behaviour is greatly influenced by cognitive considerations [17]. 

The ten most prevalent forms of distracted driving are highlighted using a method known as class 

activation mapping [18]. The authors employed a pre-trained model that makes use of ResNet50, Inception 

V3, and Xception to identify driving behaviour. This enhances the driving activity detecting system’s accuracy. 

The hand gestures and patterns associated with driving without distraction can be recognised by the model.  

A dataset was utilised in [14] to investigate driving when preoccupied. Distractions were classified into eight 

categories, such as talking on the phone, texting, and looking behind captured from 26 people. Better results were 

obtained by analysing images and identifying the most distracting activities using a model named EfficientDet. 

This model was compared with other models, such as faster R-CNN and Yolo-V3 [14]. Meanwhile, earlier 

research in [19] uses a combination of conventional image analysis and heart rate variability (HRV) to identify 

driver fatigue and drowsiness. In the initial step, features from InceptionV3 are used to train a long short-term 

memory network (LSTM) to recognise sequences in video data. After combining the characteristics, the blood 

volume pulse vector (PBV) technique makes the conclusion after the LSTM removes static distortions to offer 

precise recognition. The method’s efficacy in identifying driver fatigue is assessed [19]. 

A deep-learning method was proposed by Tran et al. [20] to identify various distracted driving 

behaviours. A two-camera synchronised image recognition system was created. The driver’s facial and body 

movements are captured by the cameras. After that, two CNNs are fed the collected images concurrently to 

enhance classification performance. In order to create a driving experience that is almost realistic, the suggested 

distraction detection technique was tested in a lab-based assisted driving environment in this work [21]. Images 

of safe and distracted driving are included in the dataset utilised for the study. A voice-alert system was also 

created to warn inattentive drivers to pay attention to the road. For this method, several networks including  
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VGG-16, ResNet, and MobileNet-v2 were assessed. The two-camera system with VGG-16 networks 

demonstrated a 96.7% recognition accuracy at a calculation speed of 8 frames per second, according to the results. 

The goal of the study Wei et al. [22] is to monitor driving behaviour and pinpoint any potential 

distraction factors. Ten categories are used by the model to categorise distractions, including using the 

dashboard, reaching behind, chatting on the phone with either hand, and communicating with other passengers. 

Various CNN architectures, such as Inception-v3 and AlexNet, have demonstrated encouraging performance. 

A collection of dashboard photos that are used to monitor the driver for distractions make up the model’s input. 

Furthermore, Tran et al. [20] looks into the detection of driver distractions using ResNet50 neural networks. 

The ResNet50 network’s performance is examined, and its applicability in distraction detection is assessed. 

According to the study, the network performs better at categorising drivers who are distracted than it does at 

determining the exact kind of distraction. 

Rahman et al. [23] focuses on face recognition, a vital feature of biometric identification systems in 

which image quality is critical, particularly in challenging low-light circumstances. This paper introduces a 

specialized face recognition system designed to address the specific challenges posed by low-light conditions, 

based on prior research utilizing CLAHE techniques for enhancing image quality in low-light scenarios.  

The suggested method employs CLAHE to improve image contrast, resulting in higher image quality. Notably, 

experimental results show that this strategy is effective, with an amazing accuracy rate of 76.92% achieved 

even in extremely low-light settings with a brightness level as low as -80. Lashkon et al. [24], presents an 

innovative approach for enhancing nighttime image contrast to improve the detection of vehicles in low-light 

scenarios. The technique combines CLAHE with image dehazing to augment contrast in images without  

over-amplifying it. The practical application involves employing a camera-based internet of things (IoT) edge 

computing system for traffic and road surveillance, where the proposed method outperforms existing CLAHE-

based approaches across a range of image enhancement quality criteria. To address the challenges associated 

with detecting vehicles in low-light conditions, a deep neural network based on YOLOv5 is designed and 

trained using a custom dataset. 

Low-illumination images frequently offer difficulties when performing complicated tasks such as 

object detection and semantic segmentation. This complexity presents challenges for autonomous vehicles 

operating at night. As a result, the quality of these low-light photographs must be improved. Strategies for 

improving low-light images, like many other techniques in computer vision, can be divided into two types: 

traditional methods and ones that rely on deep learning. There are approaches that rely on histogram 

equalization within the scope of conventional procedures [25]. 

 

 

3. METHOD 

The following section discusses data collection, data processing, and data augmentation used in this 

work. Subsequently, the implementation of CLAHE and ResNet50 are also elaborated in detail. Then,  

we explain the experimental setup used in this work. Several sample images collected for this work are also 

illustrated in this section. 

 

3.1.  Data collection 

The data collection was conducted at the vehicle intelligence and telematics lab at UiTM Shah Alam. 

It involved 44 participants, where in total, 1,104,714 images were collected. Each participant is allocated 

approximately one hour, including a 15-minute briefing on the 12 tasks related to 6 behaviors namely normal 

behavior, and distracting behavior including yawning, nodding, talking, texting, and calling. Data were 

collected during a single nighttime session to capture these 6 driver behaviors. The task involved recording 12 

variations of 6 different behaviors, each lasting for 1 minute, with a preparation time of 25-30 seconds and a 

5-second countdown before recording commenced. The total duration of the recorded videos was 

approximately 19 minutes, and each participant completed a single low-illumination session referred to as the 

NIGHT-VIS session. We also recorded similar data for day driving under normal lighting conditions referred 

to as DAY-VIS. Additionally, we used an IR camera to record driving behavior in low illumination referred to 

as NIGHT-IR. Following the data collection process, the videos underwent processing to ensure 

synchronization and were then transformed into images. To model the 6 behaviors, we used ResNet50 and 

compared them against several CNN models such as InceptionV3, GoogleNet, and MobileNetV2. Figure 1 

illustrates the hardware utilized for collecting model data, which comprises a 55-inch TV mounted on a racing 

simulator rig stand, driving equipment, and 2 cameras (1 webcam and 1 infrared camera). 

The following are the standard protocols for the driving behavior simulation: during the usual driving 

session, participants were asked to position their left hand on the steering wheel at 11 o’clock and their right 

hand at 2 o’clock. 
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Figure 1. Driving simulator 

 

 

Yawning was defined by either covering the mouth with the left or right hand or not covering it at all. 

There were four types of nodding-off behavior: nodding to the left, centre, right, or behind. Normal driving, 

yawning, and nodding-off were also conducted when subjects wore sunglasses. Texting on a phone was carried 

out with the phone at the same level as the driving wheel and near the chest. Participants were also asked to 

use their left hand for the left ear and their right hand for the right ear when making a phone conversation. 

Furthermore, conversing with the left or right passenger required participants to look to the left or right while 

they were talking to accurately mimic the anticipated actions. The total duration of the videos including the 

preparation time is 20 minutes and 45 seconds. Finally, the recorded videos are processed, synced, labelled, 

and extracted into still images, and they are organized based on the participant’s identity and behaviors. 

In summary, we implemented different modes of capturing and processing visual information in the 

context of driving scenarios. The resulting dataset consists of four variants of data namely DAY-VIS, NIGHT-

VIS, NIGHT-IR, and NIGHT-VIS-CLAHE. DAY-VIS represents daytime driving conditions, where a 

standard visual camera is used to capture images and videos of the road and surroundings. NIGHT-VIS, on the 

other hand, pertains to nighttime driving using a visual camera, which can be challenging due to low light 

conditions. NIGHT-IR involves nighttime driving but with the use of an IR camera, which is sensitive to heat 

radiation and can capture images even in total darkness. Our proposed data variant, NIGHT-VIS-CLAHE 

denotes nighttime driving using a visual camera but with an added image enhancement technique called 

CLAHE to improve visibility and contrast in low-light situations. These terms help categorize and understand 

the specific visual conditions under which driving scenarios are observed and monitored, each with its own set 

of challenges and technological solutions. 

Figures 2-4 shows the images from the driving behaviors captured in DAY-VIS conditions, which 

include normal driving as well as behaviors like yawning, nodding, talking, texting, and calling. The variants 

of data collected in this work are shown in Figures 2(a) to 2(f), Figures 3(a) to 3(f), and Figures 4(a) to 4(f) 

respectively. Similarly, Figure 3 illustrates these behaviors but under NIGHT-VIS conditions, providing 

insights into how they manifest in low-illumination settings. Figure 4, on the other hand, showcases the same 

behaviors but in NIGHT-IR conditions, where infrared imaging is used. The comparison of these behaviors 

across different lighting conditions and imaging techniques suggests that night driving poses more challenges, 

as indicated by the need for specialized techniques to enhance visibility before the behavior can be accurately 

recognized. Additionally, this highlights the prevalence of risky behaviors like yawning, nodding, and phone 

usage during both daytime and night-time driving, underscoring the importance of understanding these 

behaviors for road safety initiatives. 

 
 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 2. Example of driving behaviors for DAY-VIS images which includes: (a) normal, (b) yawning, 

(c) nodding, (d) talking, (e) texting, and (f) calling 
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(a) (b) (c) (d) (e) (f) 

 

Figure 3. Example of driving behaviors for NIGHT-VIS images which includes: (a) normal, (b) yawning,  

(c) nodding, (d) talking, (e) texting, and (f) calling 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 4. Example of driving behaviors for NIGHT-IR images which include: (a) normal, (b) yawning,  

(c) nodding, (d) talking, (e) texting, and (f) calling 

 

 

3.2.  Data augmentation 

We also employ data augmentation to ensure the training data are balanced across all classes.  

Data augmentation is a vital technique used to enhance the performance of machine learning models by 

artificially expanding the size and diversity of the training dataset [26]. Here data augmentation is used to 

stabilize accuracy and mitigate bias caused by imbalanced data. This process involves generating additional 

training samples from the existing ones, introducing variations such as flipping, zooming, and other 

transformations to diversify the dataset. For instance, yawning behavior was augmented to a total of  

10,000 samples as shown in Figure 5, Figures 5(a) to 5(c), nodding behavior is augmented to 11,000 samples 

as shown in Figure 6, Figures 6(a) to 6(c), and talking behavior is augmented to 10,000 samples in Figure 7, 

Figures 7(a) to 7(c). 

 

 

   
(a) (b) (c) 

 

Figure 5. Example of image augmentation for yawning behavior which includes: (a) original image,  

(b) flipped image, and (c) zoomed image 

 

 

   
(a) (b) (c) 

 

Figure 6. Example of image augmentation for nodding behavior which includes: (a) original image,  

(b) flipped image, and (c) zoomed image 
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(a) (b) (c) 

 

Figure 7. Example of image augmentation for talking behavior which includes: (a) original image,  

(b) flipped image, and (c) zoomed image 

 

 

During training, an additional stage of imageaugmentation is also applied to reduce overfitting, a 

common concern in machine learning. This step ensured that the model encounters a broader range of data 

variations during training. By doing so, the image augmentation helps guard against overfitting, ensuring that 

the model learns meaningful patterns in the data. Table 1 provides a comparison of the distribution of training 

data by behavior class before and after data augmentation in a classification task related to behavior detection. 

Table 1 is divided into two sections, before data augmentation and after data augmentation.  

Each section shows the number of data samples for different behaviors, categorized as normal, yawning, 

nodding, talking, texting, and calling, along with the respective ratios within each class. Before data 

augmentation, there are imbalanced class ratios, with varying numbers of samples for each behavior.  

For example, the yawning class goes from being underrepresented before data augmentation to having a more 

balanced ratio after augmentation, as indicated in Table 1. 

 

 

Table 1. The ratio of training data by behavior class before and after data balancing 
 Before data balancing After data balancing 

Behavior DAY-VIS 
(Ratio) 

NIGHT-VIS, NIGHT-
VIS-CLAHE (Ratio) 

NIGHT-IR 
(Ratio) 

DAY-VIS 
(Ratio) 

NIGHT-VIS, NIGHT-
VIS-CLAHE (Ratio) 

NIGHT-IR 
(Ratio) 

Normal 12,279 

(0.248) 

11,149 

(0.229) 

10,492 

(0.266) 

12,279 

(0.156) 

11,149 

(0.138) 

10,492 

(0.149) 

Yawning 2,496 
(0.049) 

2,637 
(0.542) 

1,877 
(0.048) 

10,496 
(0.134) 

11,637 
(0.144) 

11,877 
(0.168) 

Nodding 919 

(0.017) 

1,042 

(0.021) 

901 

(0.023) 

9,919 

(0.075) 

11,042 

(0.137) 

11,901 

(0.169) 
Talking 2,350 

(0.047) 

2,407 

(0.049) 

2,261 

(0.057) 

10,350 

(0.132) 

11,407 

(0.141) 

12,261 

(0.174) 

Texting 12,214 
(0.246) 

12,28 
(0.252) 

12,276 
(0.311) 

12,214 
(0.155) 

12,287 
(0.152) 

12,276 
(0.174) 

Calling 11,891 
(0.239) 

11,846 
(0.243) 

11,703 
(0.296) 

11,891 
(0.151) 

11,846 
(0.146) 

11,703 
(0.166) 

 

 

3.3.  CLAHE 

The CLAHE technique was employed for image preprocessing and enhancement to improve the  

low-illuminated images collected. CLAHE is a well-established method in computer vision and image 

processing that enhances image contrast while mitigating issues such as noise amplification. A CLAHE object 

was configured using the OpenCV library with specific parameters. The ‘clipLimit’ parameter was set to 3.0 

to control the extent of contrast enhancement, with higher values resulting in more enhancement but requiring 

careful adjustment to prevent over-amplification. Additionally, a ‘tileGridSize’ of (8,8) was defined, dividing 

the image into 8×8 blocks for localized adaptive contrast adjustment. This division enabled CLAHE to 

adaptively equalize the histogram within each block, effectively enhancing visibility in regions with diverse 

lighting conditions. These parameter settings in CLAHE were crucial for improving image quality, facilitating 

robust feature extraction, and supporting subsequent analysis in the research. It is adapted using (1) [13]. 

 

𝑓(𝑥) = 𝑐1𝑒
−𝜆1𝑥 + 𝑐2𝑒

−𝜆2𝑥 (1) 

 

3.4.  Proposed ResNet50 model 

The ResNet50 architecture [27] as shown in Table 2 is a deep CNN architecture renowned for its 

exceptional performance in image classification tasks. It comprises of 50 layers, making it considerably deep, 

and is characterized by a unique residual learning approach. This architecture introduces skip connections or 
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shortcuts that enable the network to skip over a certain number of layers during training. These skip connections 

facilitate the flow of gradient information, mitigating the vanishing gradient problem associated with training 

very deep networks. ResNet50 consists of five convolutional stages, each containing a varying number of 

residual blocks. These blocks contain multiple convolutional layers with batch normalization and rectified 

linear unit (ReLU) activations. Additionally, ResNet50 incorporates global average pooling and a fully 

connected layer at the end to produce classification predictions. Its architectural design, with skip connections 

and residual blocks, allows it to achieve remarkable accuracy in image recognition tasks while effectively 

addressing the challenges of deep network training. ResNet50’s design enables it to learn meaningful features 

from input data and achieve cutting-edge accuracy on numerous benchmark datasets [28]. 

For benchmarking purposes, several pre-trained CNN models are used to benchmark the performance 

of our proposed model. The benchmarked models include MobileNetV2, InceptionV3, ResNet50, and 

GoogleNet. The pre-trained models are fine-tuned to learn new classes of driving behaviors from our dataset. 

Fine-tuning is the process of adapting a previously trained machine-learning model to a new task or dataset. 

The pre-trained models were trained on a large, broad dataset, but fine-tuning allows it to learn specific features 

from a smaller, specialized dataset. This is accomplished by allowing some layers of the model to be retrained 

using the fresh data. The purpose of fine-tuning is to make the model better at the new task by applying what 

it learned from the prior assignment. MobileNetV2 is a CNN architecture designed specifically for mobile 

devices. It learns features from images using a variety of approaches such as residual connections, lightweight 

depth-wise convolutions, and batch normalization [29]. The InceptionV3 model has 42 layers, including 

numerous inception modules. To extract features at various scales, these modules employ a combination of 

filters of diverse sizes and pooling layers. The features are then concatenated and input into a succession of 

fully connected layers to create the final prediction [30]. GoogleNet, also known as InceptionV1, was 

introduced in 2014 as a collaborative effort between Google and various universities. It achieved remarkable 

success by winning the ILSVRC 2014 image classification challenge, outperforming previous champions like 

AlexNet and ZF-Net. GoogleNet’s key innovation lies in its efficient architecture, featuring 22 layers designed 

for optimal computational performance even on devices with limited resources. This architecture incorporates 

techniques like 1×1 convolutions and global average pooling. Notably, it includes two auxiliary classifier layers 

connected to specific Inception layers, enhancing its classification capabilities. These auxiliary classifiers 

employ techniques like average pooling, dimension reduction via 1×1 convolutions, ReLU activation, dropout 

regularization, and a Softmax classifier with 1,000 output classes, similar to the main Softmax classifier. 

 

 

Table 2. ResNet50 architecture [27] 
Layer 

name 

Output 

size 

18-layer 34-layer 50-layer 101-layer 152-layer 

Conv1 112×112 7×7, 64, stride 2 

Conv2_x 56×56 3×3 max pool, stride 2 

[
3 × 3, 64
3 × 3, 64

] ×2 [
3 × 3, 64
3 × 3, 64

] ×3 
[
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 

Conv3_x 28×112 [
3 × 3, 128
3 × 3, 128

] ×2 [
3 × 3, 128
3 × 3, 128

] ×4 
[
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 8 

Conv4_x 112×112 [
3 × 3, 256
3 × 3, 256

] ×2 [
3 × 3, 256
3 × 3, 256

] ×6 
[
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6 [
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 23 [
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 36 

Conv5_x 112×112 
[
3 × 3, 512
3 × 3, 512

] ×2 [
3 × 3, 512
3 × 3, 512

] ×3 
[
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3 [
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3 [
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3 

 1×1 Average pool, 1,000-d fc, softmax 

FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109 

 

 

3.4.  Experimental setup 

The datasets were divided based on driver identity, utilizing 35 drivers for the training set and 9 drivers 

for the testing set. The selection of test datasets considered factors such as ethnicity, skin color, hijab-wearing, 

and participant age. To train the model, transfer learning was employed by replacing the existing CNN model 

with new trainable layers. This adaptation was necessary because the original network had been trained on the 

ImageNet dataset, which had 1,000 output categories. Table 3 provides details on the training hyperparameters. 

Following training, the CNN models were saved with the updated layers, facilitating validation testing on the 

test dataset. Additionally, each model’s performance was assessed by its behavior detection capability and the 

confusion matrix of behaviors, offering insights into behavior distribution, and aiding in the selection of the 

CNN model with the highest accuracy and minimal prediction errors for each behavior. 
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Figure 8 summarizes this work which aims to enhance the detection and understanding of driving 

behavior, particularly in low-light conditions, with a specific emphasis on night-time situations.  

The methodology utilized involves applying CLAHE to improve the quality of visual data captured during dark 

conditions. Then, the performance gained by the enhanced data is compared with data from infra-red cameras 

(NIGHT-IR), which are often used for better visuals at night. By applying CLAHE to the visual data, this work 

contributes to the enhancement of the visual data and creates the NIGHT-VIS-CLAHE dataset. In order to 

detect a range of driving behaviors, including but not limited to normal driving, yawning, nodding off, talking, 

messaging, and calling, this work suggests the implementation of ResNet 50 models at night. The comparative 

analysis of these datasets and the performance evaluation of the ResNet 50 models are presumably depicted in 

Figure 8. This provides valuable insights into the methodology’s effectiveness in enhancing the precision of 

driving behavior identification in low-light conditions. 

 

 

Table 3. Training hyperparameters 
Batch size Learning rate Epoch Pixel range augmentation Scale range augmentation 

100 0.0003 10 -30 to 30 -1.1 

 

 

 
 

Figure 8. Comprehensive NIGHT-VIS, NIGHT-VIS-CLAHE, and NIGHT-IR analysis: using ResNet 50 for 

nighttime driving behavior recognition 

 

 

4. RESULT AND DISCUSSIONS 

The following section outlines the results of CLAHE implementation on the collected dataset and the 

recognition performance of ResNet50 and the benchmarked deep networks. In this section we show that 

ResNet50 with CLAHE delivered the best performance for night driving behavior recognition, surpassing other 

benchmarked networks. ResNet50 with CLAHE also gave better performance than the behvaior recognition 

from infra-red images. 

 

4.1.  CLAHE implementation 

CLAHE is a technique used to improve the contrast and visibility of details within an image while 

preventing over-amplification of noise. This method divides the image into small, non-overlapping tiles and 

equalizes the histogram of each tile separately. The key parameters in CLAHE are the clip limit and the tile 

grid size. In the experiment, as depicted in Figure 9, Figures 9(a) to 9(e), different clip limits (1, 2, 3, 4, and 5) 

were tested to determine the most suitable one. Ultimately, a clip limit of 3 was chosen, which means that the 

histogram equalization process is limited to prevent excessive amplification of local contrast. In Figure 10, 

Figures 10(a) to 10(e), a similar experiment was conducted to select the optimal tile grid size (3x3, 5x5, 8x8, 

10x10, and 15x15), and a grid size of 8x8 was found to be the most effective. These parameter selections are 

crucial in achieving the desired balance between enhancing image contrast and avoiding unwanted artifacts in 

the final enhanced image. Figure 11, Figures 11(a) to 11(f) finally presents these driving behaviors in NIGHT-

VIS CLAHE conditions using the proposed parameters, which involve contrast-enhanced low-illumination 

images. 
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(a) (b) (c) (d) (e) 

 

Figure 9. The effect of different CLAHE clip limits on the images with the values of clip limit is set to:  

(a) clip limit = 1, (b) clip limit = 2, (c) clip limit = 3, (d) clip limit = 4, and (e) clip limit = 5 

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 10. The effect of different CLAHE tile grid sizes on the images with the values of tile grid size is set 

to: (a) grid size = 3x3, (b) grid size = 5x5, (c) grid size = 8x8, (d) grid size = 10x10, and (e) grid size = 15x15 

 

 

      
(a) (b) (c) (d) (e) (f) 

 

Figure 11. Example of driving behaviors for NIGHT-VIS CLAHE images which includes several examples 

showing: (a) normal, (b) yawning, (c) nodding, (d) talking, (e) texting, and (f) calling behaviors. 

 

 

4.2.  CNN model recognition performance 

The experiments were conducted on a computer equipped with an AMD EPYC 24 Core CPU and an 

NVIDIA RTX A5000 GPU, with TensorFlow as the core framework. During training, various key parameters 

were set to optimize the model’s performance. The batch size was configured at 64, and the Adam optimizer 

utilized a learning rate of 0.001. Input images were then resized to 100x100 pixels. To enhance diversity and 

prevent overfitting, data augmentation techniques were applied to the training dataset. These techniques 

included rotation (up to 5 degrees), zooming (up to 10%), horizontal shifting (up to 20% of the image width), 

vertical shifting (up to 5% of the image height), shearing (up to 10 degrees), and horizontal flipping. These 

augmentations improved the model’s robustness and generalization capabilities by exposing it to a wider range 

of variations in the training data. This comprehensive methodology ensured the effective training of the 

ResNet50 model for behavior detection. 

Table 4 provides a comprehensive overview of the performance of ResNet50 and several 

benchmarked CNN models on different data variations. In this context, the models include InceptionV3, 

MobileNetV2, and GoogleNet, while the data types consist of DAY-VIS, NIGHT-VIS, NIGHT-IR, and 

NIGHT-VIS-CLAHE. The percentages represent the accuracy of these models in classifying or processing the 

respective data types. According to Table 4, InceptionV3 performs well on DAY-VIS and NIGHT-IR variant, 

with accuracies of 87.99% and 89.27%, respectively. Meanwhile, ResNet50 excels in NIGHT-VIS-CLAHE 

variant with an accuracy of 90.29%. Compared to NIGHT-IR images, the results suggest that generally the IR 

images give better accuracy, which will be discussed in detail in the next section. Besides, NIGHT-VIS-

CLAHE gives higher accuracy, suggesting its suitability for the given task. Consequently, it is recommended 

to use the ResNet50 model with NIGHT-VIS-CLAHE data for the most reliable results in the analyzed context. 
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4.3.  Behavior recognition performance of CLAHE implementation for low-illumination images 

Figure 12 shows the performance of ResNet50, benchmarked against three models, InceptionV3, 

MobileNetV2, and ResNet50, in two separate sessions, NIGHT-VIS and NIGHT-VIS-CLAHE. In the NIGHT-

VIS session, InceptionV3 scored highest with 85.47%, followed by ResNet50 with 74.68%, and GoogleNet 

with 71.4%. MobileNetV2 clearly struggled with low-illumination images and scored worst with 35.06%. 

According to Figure 12, all models improved in accuracy under NIGHT-VIS-CLAHE session. The highest 

improvement was observed in MobileNetV2 with 30% increase, and 16% accuracy improvement was observed 

in ResNet50, with 16% increase. Both GoogleNet and InceptionV3 were just slightly improved. Overall, the 

best performance was obtained by ResNet50 with 90.3% recognition accuracy on NIGHT-VIS-CLAHE.  

Even when compared to DAY-VIS, ResNet50 NIGHT-VIS-CLAHE still outperformed the best DAY-VIS 

performance by InceptionV3 which is at 87.99%. These findings illustrate the positive influence of CLAHE 

on model correctness, which is especially obvious for MobileNetV2 and ResNet50. 

 

 

Table 4. Behavior recognition performance for ResNet50 compared against other CNN models using 

different image data 
Image session Accuracy (%) 

MobileNetV2 GoogleNet InceptionV3 ResNet50 

DAY-VIS 67.57 60.92 87.99 86.01 

NIGHT-VIS 35.06 71.38 85.47 74.68 
NIGHT-IR 85.97 88.86 89.27 80.88 

NIGHT-VIS-CLAHE 65.41 76.97 86.3 90.29 

 

 

 
 

Figure 12. Performance of behavior recognition based on CLAHE implementation for night driving 

 

 

4.3.1. Performance comparison between NIGHT-IR and NIGHT-VIS-CLAHE 

Figure 13 provides a comparative analysis of the performance of ResNet50, InceptionV3, 

MobileNetV2, and GoogleNet, across two specific sessions: NIGHT-IR and NIGHT-VIS-CLAHE.  

The objective of this comparison is to analyze the performance difference between using normal camera sensor 

with CLAHE implementation vs. using infrared sensors. According to Figure 13, in the NIGHT-IR session, 

InceptionV3 achieved the highest accuracy of 89.27%, followed by GoogleNet with 88.9%, MobileNetV2 with 

86% and ResNet50 with 80.9%. For MobileNetV2, GoogleNet, and InceptionV3, NIGHT-IR captured with an 

infra-red sensor showed better performance compared to NIGHT-VIS-CLAHE. MobileNetV2 showed about a 

20% recognition performance difference between normal and infra-red sensors, whereas GoogleNet and 

InceptionV3 were 11% and 3% better respectively when using infra-red images. However, for both NIGHT-

IR and NIGHT-VIS-CLAHE sessions, ResNet50 emerges as the top performer with an accuracy of 90.29%. 

The results could serve as a valuable reference for selecting the most suitable CNN model depending on the 

specific dataset or session, highlighting the variations in their performance across different scenarios.  

For example, InceptionV3 is the best-performing model if the system were to use infrared sensors to capture 

driving behaviors at night. 
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4.4.  Class recognition performance for ResNet50 NIGHT-VIS-CLAHE implementation 

Here we used a confusion matrix to analyze the class performance for our proposed ResNet50 NIGHT-

VIS-CLAHE method. A confusion matrix is a critical tool in the evaluation of a classification model’s 

performance. It presents a comprehensive breakdown of how the model’s predictions compare to the actual 

labels across different classes. In confusion matrix, each row represents the actual class, while each column 

represents the predicted class. 

 

 

 
 

Figure 13. Performance comparison between NIGHT-IR and NIGHT-VIS-CLAHE 

 

 

For instance, according to Table 5, in the row labelled calling, the model correctly predicted 3073 

instances as calling, while it incorrectly predicted 25 instances of calling as yawning. Similarly, in the nodding 

row, there were 54 instances of nodding that were correctly predicted as such, but 122 instances of nodding were 

incorrectly classified as texting. From the confusion matrix, we can derive the precision and recall performance 

for each class. Precision values provide insights into the accuracy of the model’s positive predictions for each 

class. For calling, the precision is 99.19%, indicating that when the model predicts calling, it is correct about 

99.19% of the time. Recall values, on the other hand, reveal how well the model captures all the instances of each 

class. In the calling class, the recall is 98.40%, indicating that the model correctly identifies 98.40% of all the 

actual instances of calling. Overall, calling behavior has the highest precision, followed by talking, normal, and 

yawning. Nodding has the lowest precision with 17.09% indicating that the model struggles to correctly recognize 

this behavior. Most of the times, nodding was misclassified as normal or texting. 

 

 

Table 5. Confusion matrix of NIGHT-VIS-CLAHE ResNet50 
Calling 3073 0 0 0 0 25 99.19% 

Nodding 3 54 94 35 122 8 17.09% 

Normal 6 0 2390 2 220 59 89.28% 
Talking 3 0 5 362 15 0 94.03% 

Texting 20 52 183 6 2793 1 91.42 

Yawning 18 0 58 10 7 649 87.47% 
 Calling Nodding Normal Talking Texting Yawning  

 98.40% 50.94% 87.55% 87.22% 88.47% 87.47  

 

 

5. CONCLUSION 

In conclusion, this work addresses the challenges of night-time driving behavior under low-

illumination condition by proposing an innovative approach using ResNet50 with CLAHE implementation. 

The integration of CLAHE into the model’s training process enhances its robustness, allowing accurate 

recognition of distracted driving behaviors in low-light conditions. We also showed the performance of 

behavior recognition using images captured by infra-red sensors and compared against CLAHE. Experimental 

results demonstrated significant improvements in model performance for NIGHT-VIS-CLAHE. Notably, the 

ResNet50 model delivered the best accuracy rates of 90.73% when tested with NIGHT-VIS-CLAHE with a 
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16% improvement over NIGHT-VIS images. The InceptionV3, GoogleNet, and MobileNetV2 models also 

show improved recognition accuracy through CLAHE. Additionally, MobileNetV2 showed about 20% better 

performance using infra-red sensors for low-illumination conditions, whereas GoogleNet and InceptionV3 

were 11% and 3% better respectively. ResNet50 NIGHT-VIS-CLAHE still performs better compared to the 

best performance of day-driving conditions by InceptionV3 at 87.99% accuracy. In summary, the study’s 

findings emphasize the potential of deep learning and CLAHE in improving night-time driving behavior 

recognition and advancing road safety, with implications for integration into advanced driver assistance 

systems and autonomous vehicles. 
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