
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 33, No. 3, March 2024, pp. 1641~1652 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i3.pp1641-1652      1641 

 

Journal homepage: http://ijeecs.iaescore.com 

AES-128 reduced-round permutation by replacing the 

MixColumns function 
 

 

Jerico S. Baladhay, Edjie M. De Los Reyes 
College of Computer Studies, Tarlac State University, Tarlac, Philippines 

 

 

Article Info  ABSTRACT  

Article history: 

Received Oct 24, 2023 

Revised Nov 27, 2023 

Accepted Dec 25, 2023 

 

 Ensuring the protection of digital data is of utmost importance in our current 

reliance on network operations. However, security measures such as data 

encryption often result in decreased performance speed. This paper enhanced 

the 128-bit version of the advanced encryption standard (AES) by 

substituting the MixColumns function with a permutation-based approach 

and decreasing the overall number of rounds. The evaluation results indicate 

a substantial enhancement in the speed of encryption and decryption, with a 

76.76% improvement in encryption time and a 55.46% improvement in 

decryption time. Furthermore, it is important to mention that the 

modifications implemented in the standard AES did not compromise its 

security in relation to the strict avalanche criterion. The avalanche effect of 

the modified AES is 52.92%, surpassing the minimum requirement of 50%. 

Finally, the modified AES demonstrated a 31.12% increase in throughput for 

encryption and a 25.50% increase for decryption when compared to the 

original AES, using the sample dataset. 

Keywords: 

Algorithm 

Avalanche effect 

Encryption 

Permutation 

Security 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Jerico S. Baladhay 

College of Computer Studies, Tarlac State University  

Tarlac, Philippines  

Email: j.baladhay0785@student.tsu.edu.ph 

 

 

1. INTRODUCTION  

In the era of technological progress, multimedia files have become an indispensable component of 

our daily existence [1], [2]. These files are generated, distributed, and utilized on a vast magnitude [3], 

emphasizing the utmost importance of security [4]. The growing dependence on computers and the rising 

need for effective communication between different locations have presented significant challenges in 

maintaining the security of digital data [5], [6]. During this progression, the enhanced communication 

channels resulted in significant challenges concerning privacy [7]. Encrypting digital files has become crucial 

in safeguarding sensitive content from unauthorized access and ensuring the privacy and integrity of digital 

assets [8], [9]. 

Encryption, a fundamental component of cryptography, guarantees data security by converting it 

into an incomprehensible format [10]. This process employs cryptographic algorithms and keys to encrypt 

information, rendering it accessible solely with the appropriate decryption key [11]. The advanced encryption 

standard (AES) algorithm is extensively employed as the standard cryptographic algorithm [12].  

The National Institute of Standards and Technology (NIST) introduced the successor to the data encryption 

standard (DES) in 1997 [13]. The AES encryption algorithm offers different key sizes, namely 128 bits, 192 

bits, and 256 bits, which ensure the appropriate level of security for data encryption [14]. 

Although the AES algorithm is widely recognized for its inherent simplicity [15], there is still room 

for enhancement [16], [17]. Due to the development of processing and execution concepts that could weaken 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1642 

the effectiveness of current cryptographic standards, there is an increasing agreement on the need to 

strengthen and make changes to cryptography [18]. The algorithm comprises four transformation functions: 

SubBytes, ShiftRows, MixColumns, and AddRoundKey [19].  

One of the key challenges lies in the computational complexity of the MixColumns operation in 

AES encryption [20], which combines multiplication and addition [21]. This complexity imposes  

a substantial computational burden on the encryption process, leading to slower execution times [22].  

To address this issue, a study tackled this challenge where the AES MixColumn function is replaced with a 

bit permutation to enhance the speed of the encryption process [23]. The approach involves the manipulation 

of bits within the states, rearranging their order, and altering their values [24], [25]. Therefore, it leads to a 

reduction in encryption time, lower memory requirement, and manageable implementation. Moreover, 

several studies have suggested enhancements to the AES algorithm, including revised round keys [26], reduced 

iterations, and the reduced-round modified AES algorithm (RRMA) [27]. These changes have been effective in 

increasing processing speed, particularly for smaller files. This paper presents the reduced-round 

permutation-based AES-128 (RRPBA) by highlighting two modifications in the AES, first is the replacement 

of the MixColumns transformation to bit permutation technique and second is reducing the number of 

iteration rounds from ten to six to improve the performance in securing large files in terms of encryption and 

decryption time and throughput while maintaining an acceptable level of security which is measured in terms of 

the avalanche effect. 

 

 

2. RESEARCH METHOD 

This section discusses modifications to the AES encryption algorithm. Including the reduction of 

iteration rounds and replacement of MixColumns with a bit permutation technique and the integration of a 

precomputed bit permutation process. These changes aim to optimize encryption for larger files. 

 

2.1.  Reduced-round permutation-based AES algorithm 

There are two modifications to AES: Replacing MixColumns with the bit permutation technique and 

reducing the iterations of rounds from 10 to 6. The RRMA algorithm approach is adopted [27]. Whereas the 

algorithm has been modified to reduce the number of round iterations from 10 to 6 as shown Figure 1. 

 

 

 
 

Figure 1. Modified AES encryption and decryption process 

 

 

The diagram above illustrates the modified encryption process used in the reduced-round 

permutation-based AES. The process starts with an initial round key, followed by a loop with five encryption 

rounds. Each round consists of SubBytes, ShiftRows, BitPermutation, and AddRoundKey operation.  

After completing the five rounds, the process moves to the final sixth round, which includes SubBytes, 

ShiftRows, and a concluding AddRoundKey operation. Finally, the process ends with the ciphertext, which 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

AES-128 reduced-round permutation by replacing the MixColumns function (Jerico S. Baladhay) 

1643 

signifies the completion of the encryption operation. To decrypt the modified algorithm depicted in Figure 1, 

the encryption steps are reversed. The process starts with an initial round key and then proceeds to a loop of 

five decryption rounds. Each round consists of an inverse ShiftRows, inverse SubBytes, inverse 

BitPermutation, and an AddRoundKey operation. After completing the five rounds, the process moves to the 

final round, which involves inverse ShiftRows, inverse SubBytes, and an AddRoundKey. Following this 

process leads to the retrieval of the original plaintext and completes the decryption process. 

 

2.2.  Bit permutation 

It is based on the bit permutation of DES. The byte data is converted to its binary presentation and is 

treated as an array. Then implements the bit permutation where the binary presentation is shuffled but instead 

of the elements, the indices are shuffled. Each element is then mapped to the new position given by these 

shuffled indices, XORing the result of the bit permutation to the next byte of data to strengthen the 

encryption, which drastically changes all the results of the algorithm in a flip of a bit. Finally, it converts 

back the result to the hexadecimal form. To prevent misunderstanding, 128-bit data (i.e., 

2b7e151628aed2a6abf7158809cf4f3c) is called a block, the block divided into 4 is called a word (i.e., 

2b7e1516, 28aed2a6, abf71588, and 09cf4f3c) and the word divided into 4 is called a byte (i.e., 2b, 7e, 15, 

and 16). 

 

2.2.1. Permutation table 

As illustrated in Figure 2, the permutation table is a set of fixed tables consisting of four distinct 

index sequences out of 40,320 sequences. The following equation is used to get the total number of possible 

distinct sequences, !8 = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320 [28]. The total number of possible index 

sequences comes from the factorial of 8 since a byte is composed of 8 bits. Each sequence in the table 

represents the indices of the binary presentation then shifted to the left. It is noteworthy that ‘BP’ in this 

context refers to ‘bit permutation’.  

The purpose of these sequences is to permute every byte in a word, thereby ensuring the safety of 

transmitted data and preventing unauthorized access. This implies that the bit permutation 1 (BP_1) from the 

permutation table will be utilized to permute the first byte of a word, and so forth. To obtain the values from 

the bit permutation table, it starts with the original sequence [0, 1, 2, 3, 4, 5, 6, 7]. The process involves 

shifting the sequence to the left in each row resulting in a new sequence [1, 2, 3, 4, 5, 6, 7, 0], this is the same 

process with shift bytes for obtaining the desired values [29]. 

 

 

 
 

Figure 2. Permutation table 

 

 

2.2.2. Inverse permutation table 

To inverse the permutation table as illustrated in Figure 3, the following computation is executed to 

the bit permutation table to get its equivalent inverse permutation table. This will simply reverse the shuffled 

bits to its original position. Emphasizing the specific meanings of the variables, "n" is representative of a 

numerical value, "BP" indicates bit permutation, "BPI" denotes bit permutation Index, and "I_BP" represents 

inverse bit permutation, is crucial. Consider the following steps: 

a) Let n be a natural number from 0 to 7 

b) Let BP as the BP_# table 

c) Let BPI as BPn the value of the BP at index n 

d) I_BP be the inverse bit permutation table 

Hence, the basic operation is as follows: 

For each element from BP, n=0, 1,,,7 do: BPI = BPn , I_BPBPI=n 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1644 

 
 

Figure 3. Inverse permutation table 

 

 

2.3.  Matrix block 

The matrix illustrated in Figure 4 represents a block of data. Where in a(r, c): a- represents a byte, r-

represents the row index, c-represents the column index. This matrix block [23] is used in computing the 

result of encryption and decryption of a block of data. This is used in the following algorithms, bit 

permutation algorithm and inverse bit permutation algorithm. 

 

 

 
 

Figure 4. Block of data a(r, c) 

 

 

2.4.  Bit permutation algorithm 

Bit Permutation – is the process of XORing the current byte to the next byte and then shuffling bits 

of the resulting byte based on bit permutation tables. The process of bit permutation is to shuffle the values of 

a byte based on the bit permutation table. To understand the process, it is important to know the following,  

i) arrays - list of data,  ii) index - the location or order of the data from the array (represented by a number), 
and iii) elements - the data in an array. A byte is an array of binary data where the elements can only have 1’s 

and 0’s. To permute the byte, the bit permutation table must be used. The data in the table is a sequence of 

indices where the byte data should be shuffled. Consider a byte that has the following binary data: 10011001. 

The original index sequence is always: 01234567 where the element in index 0 from the binary data has a 

value of 1, the element in index 1 has a value of 0, the element in index 2 has a value of 0 and the value of 

index 3 is 1, and so forth. 

To permutate the byte by byte data of each word in a block, follow this process: convert byte data to 

binary then implement byte permutation as shown in Figure 5, Figure 5(a) which has a bit permutation result 

12345670, Figure 5(b) has 23456701, Figure 5(c) 34567012, and Figure 5(d) which result is 45670123, 

indicating that the bit permutation implementation rearranges elements in the specified sequence, as 

exemplified in Figures 5(a) to (d), to facilitate a comprehensive word-level analysis of the block. It is crucial 

to note that the variables “BP”, "R", and "FR" hold distinct and specific meanings. The variable “BP” stands 

for the bit permutation, "R" stands for the result, while "FR" represents the final result. These variables have 

been assigned specific meanings and cannot be used interchangeably. Let R1, R2, R3, and R4 as the result of 

XORed bytes. Let FR1, FR2, FR3, and FR4 be the final Bit Permuted results. 

a) XOR the byte(r,0) to the next byte(r,1), doing the same process to the next bytes except for the last one, 

where the last result is byte(r,3) XORed to R1. 

 Formula: 

R1 = byte(r, 0) ⊕ byte(r, 1) 

R2 = byte(r, 1) ⊕ byte(r, 2) 

R3 = byte(r, 2) ⊕ byte(r, 3) 

R4 = byte(r, 3) ⊕ R1 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

AES-128 reduced-round permutation by replacing the MixColumns function (Jerico S. Baladhay) 

1645 

b) Convert the results to binary. 

c) Apply the bit permutation table to the binary.  

 Formula: 

FR1 = BP_1(R1) 

FR2 = BP_2(R2) 

FR3 = BP_3(R3) 

FR4 = BP_4(R4) 

d) Convert back to its hex form. 
 

 

  
(a) (b) 

 

  
(c) 

 
(d) 

 

Figure 5. Example of bit permutation implementations: (a) bit permutation 1, (b) bit permutation 2,  

(c) bit permutation 3, and (d) bit permutation 4 
 

 

2.5.  Inverse bit permutation algorithm 

Inverse bit permutation – it is the process of shuffling bits of a byte to their original positions based 

on inverse bit permutation tables that are equivalent to the bit permutation table used to permute the byte and 

then XORing it to the next byte or result byte. By computing the word-by-word of the block in a reversed 

order, one can derive insights into their significance and context. It is of utmost importance to acknowledge 

that the variables “I_BP”, “R”, and “FR” possess unique and precise connotations. “I_BP” denotes inverse bit 

permutation, "R" denotes the outcome, and "FR" denotes the ultimate result. Each variable has been 

designated a specific meaning and cannot be substituted for one another. 

To permutate the byte by byte data of each word in a block, follow this process: convert byte data to 

binary then implement byte permutation as shown in Figure 6, with inverse bit permutation implementation 

examples using the original sequence 01234567. Figure 6(a) which has an inverse bit permutation result 

70123456, Figure 6(b) has 67012345, Figure 6(c) 56701234, and Figure 6(d) which result is 45670123, 

indicating that the inverse bit permutation implementation restores the original order of bits, as illustrated in 

Figures 6(a) to 6(d), by inversely applying the bit permutation table to the binary results, emphasizing the 

crucial role of the given variables stated above in decoding and analyzing the block. Let FR1, FR2, FR3, and 

FR4 result from XORed bytes. Let R1, R2, R3, and R4 as the final result of bit permuted results: 

a) Convert the results to binary. 

b) Apply the inverse bit permutation table to the binary.  

 Formula: 

R4 = I_BP_4(byte(r, 3)) 

R3 = I_BP_3(byte(r, 2)) 

R2 = I_BP_2(byte(r, 1)) 

R1 = I_BP_1(byte(r, 0)) 

c)  XOR R4 to byte(r, 0), for the next bytes, will be XORed with the result of the previous XORed byte. 

 Formula: 

FR4 = R4 ⊕ byte(r, 0) 

FR3 = R3 ⊕ FR4 

FR2 = R2 ⊕ FR3 

FR1 = R1 ⊕ FR2 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1646 

d) Convert back to its hex form. 

 

 

  
(a) 

 

(b) 
 

   
(c) (d) 

 

Figure 6. Example of inverse bit permutation implementations: (a) inverse bit permutation 1, (b) inverse bit 

permutation 2, (c) inverse bit permutation 3, and (d) inverse bit permutation 4 

 

 

2.6.  Precomputed tables 

Employing precomputed bit permutation is an effective optimization technique, eliminating the 

necessity for converting data to binary and performing permutations while keeping the overall process 

unchanged [30]. To grasp the concept of precomputed tables, consider the multiplication table a prime 

example. When multiplying two numbers, express 2x5 instead of carrying out the computation 2+2+2+2+2 = 

10, using a precomputed table m2[5] = 10, where the table is m2 = [0,2,4,6,8,10]. This approach allows to 

skip the computation altogether. Precomputed bit permutation skips 2 steps from the process which are the 

binary conversion and implementation of the bit permutation. Getting the precomputed bit permutation is 

done using the following: 

All possible inputs are from 0 to 255 -> 0 is the lowest in hex and 255 is the max. It's crucial to 

recognize that the variables "BP", "FR", and "BPF" carry distinct and exact implications. "BP" represents bit 

permutation, "FR" represents the Final Result, and "BPF" represents the bit permutation function. Each 

variable has been assigned a specific definition and cannot be interchanged with one another. 

a) Let BPF as the bit permutation function that converts numbers to binary and then implements the bit 

permutation.  

b) Let BP as the table for the precomputed bit permutation values. 

c) Precompute the bit permutation table BP = [BPF(0), BPF(1),,,,BPF(255)]. 

To utilize the precomputed bit permutation table, opt for array access rather than employing a function. 

Instead of FR1 = BP_1(R1), use FR1 = BP_1[R1]. 

 

2.7.  Metrics 

A viable cryptographic algorithm’s effectiveness is assessed by its diffusion and confusion 

properties [31]. Diffusion signifies that even a minor alteration in either the input text or the secret key will 

significantly change the ciphertext, as gauged by the avalanche effect. Meanwhile, confusion guarantees that 

the ciphertext provides no insight into the plaintext, and the property is evaluated by examining the 

randomness of the ciphertext [32]. The cryptographic transformation’s effectiveness is assessed by analyzing 

metrics, time, and throughput. The enumerated provides various tests that were used to evaluate reduced-

round permutation-based algorithm: 

a) Avalanche effect 

 Avalanche effect – assessed the impact of a minor alteration in either the input text or the cipher key on 

the ciphertext is determined by computing the ratio of the altered bits to the total number of bits present 

within the ciphertext [33]. 

 

Avalanche Effect = Number_of_changed_bit_in_ciphertext / Number_of_bits_in_ciphertext 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

AES-128 reduced-round permutation by replacing the MixColumns function (Jerico S. Baladhay) 

1647 

 Flipping Single Bit – Examining the avalanche effect involved altering a single bit in the plaintext. The aim 

was to attain a higher percentage with the modified AES compared to the traditional version. Employing the 

sample plaintext “This letter will change,” a single letter was modified to observe the resulting ciphertext. 

The substantial alteration in the ciphertext value served to gauge the extent of the avalanche effect. 

b) Speed test 

This section evaluated a set of files through ten (10) encryption and decryption trials. To calculate 

the average, first find the difference, divide, and multiply it by 100. This process helps to derive a reliable 

and accurate average result. 

 Encryption Duration – The time required for the transformation process is quantified in milliseconds. 

The duration of encryption is determined by getting the current timestamp before the encryption 

starts and then getting the difference between that and the current timestamp after the encryption. 

 Decryption Duration – The time required to restore the original transformation process is quantified in 

milliseconds. 

To measure the duration of decryption, it is determined by getting the current timestamp and the 

current timestamp after the decryption. The method used in modified AES is performance.now() in 

javascript. This returns the current high-resolution millisecond timestamp, where 0 represents the start of the 

current node process. 

c) Throughput 

An evaluation was conducted in this section to analyze the throughput with respect to file size and 

the average time taken for encryption or decryption. The primary objective of this experiment was to gain 

insights into the performance of the encryption and decryption processes operating under different file size 

conditions. 

 Encryption Throughput – Termed as the encryption speed, is calculated by multiplying the file size by 

1,000 and then dividing it by the encryption time in milliseconds.  

 

Throughput = File size / Encryption (ms). 

 

 Decryption Throughput – The file size and the decryption time determine the computed decryption 

speed.  

 

Throughput = File size / Encryption (ms) 

 

2.8.  Research approach 

During the experiments, the secret keys employed are “2b7e151628aed2a6abf7158809cf4f3c” and 

“2e7e151628aed2a6abf7158809cf4f3c”, and text was utilized as indicated in Table 1. The hardware used for 

the experiment includes a Dual-Core Intel Core i5 CPU operating at 1.8 GHz with 8 GB of RAM. To gauge 

the avalanche effect and various performance metrics, each test file is encrypted using two distinct cipher 

keys, and the results are carefully analyzed. The application is built on JavaScript NodeJS, with the CryptoJS 

library employed for the conventional AES and JavaScript used for the modified AES. 

 

 

3. RESULTS AND DISCUSSION 

Three experiments were conducted: avalanche effect, speed test, and throughput. The research 

findings show that the modified AES algorithm outperforms the original AES. In terms of performance and 

strength. 

 

3.1.  Sample ciphertext result 

This aspect of the study yields valuable insights into the encryption process regarding strength. As 

shown in Table 1 presents crucial findings highlighting a significant aspect of the modified AES encryption 

algorithm. Specifically, the analysis demonstrates that the modified AES exhibits an avalanche effect of 

52.92%, which surpasses both the expected 50% and the performance of the original AES, which achieved 

48.71%, according to the sample dataset. This variance in avalanche effect has implications for data security, 

implying that the modified AES may provide improved protection against cryptographic attacks and 

unauthorized access. Consequently, the modified AES represents a more robust encryption option, mainly 

when data security is a vital concern. 

 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1648 

Table 1. Results from sample CipherText of AES vs. modified AES 
 KEY 1: 

2b7e151628aed2a6a
bf7158809cf4f3c 

 

KEY 2: 

2e7e151628aed2a6abf7158809cf
4f3c 

 

KEY 1: 

2b7e151628aed2a6abf71
58809cf4f3c 

 

KEY 2: 

2e7e151628aed2a6abf7158809cf
4f3c 

 

 AES AES % Modified AES Modified AES % 

1 d8a2e05ebb63e58ab

d3f37bcffdce9eae7b

52f5bf0937474d659
a6625b543970 

 

064ac0c8f5260766553

e7f54b555b4bc63e760

b3579c2f7ef1a9c5df71
147f9b 

 

46.09

% 

e457055100d5e09374d9

ec73c01b2df4ef6044fd0

390da3d2aecc90302ef79
a8 

 

cae930f12c5d7d19150

341081a650605c1cb9

7632d2647d16d3db9c
a8aa1f1a9 

 

50.78

% 

2 f60e46d030c350461
b5b9b536ffdf1e17f1

3b11f80b4bc0a91e9

2197e3e4e6d4 
 

4b9aeda8cdd3acaa6d4
4b65ad4289c711a1bf7

bfd286c0d1edf8df262

32966e5 
 

49.60
% 

981c4a3717c1edc7e7d3
2c8e06f26c6e39cda0f21

1931e4a59c26ca70c2c25

5a 
 

81e67776d0e0565d2d
6fa5477ba9f30520755

f3d7c2f15f0cb731d6c

d7fe5d8d 
 

57.03
% 

3 621d2828f6cc67ebd

b6f2056f94e509ed3
de409792bb21cb3d1

a6be0df7d4180 

 

0497ccc38b5347b10a6

76cf577c619f9066c03
4149cb93e862993f088

0671226 

 

49.21

% 

e12578fb4a2833c59fd39

15e807e3063e38d331c0f
3740a37887405d33fc61

e9 

 

9fb0428c2690c60263c

b5adff025fb3b61c7c2
5598e154fa449a1b42e

396800b 

 

51.56

% 

4 e2b004d1a0b3951a1

ed18ffd909f3a59f81

6b71f3aea8fe18db2
75371567ca0c 

 

d295239beb47e77699

d43d337a345233dcd6

5deb1e536bfdffd3fb9a
e9b71490 

 

48.43

% 

64f829593126ec7a8947

9965b7e16cedd5badbffa

08725c1eb854ce66023d
2eb 

 

338640be26d0b35611

53a4245dd863a8d38e

7d3489ceb92f1220d73
765c801f6 

 

52.34

% 

5 2c3bb96570f2733ef
6831fc7bdbaf6ccd8

d2581aff8790af305c

bee9f8504a4d 
 

d0b9d69157198e743d
c1c7e6104f55ac30081

a588e23f55330613009

b5abed17 
 

51.17
% 

e2eccf909cf146bc6b85b
dbeaa283c0a8c16d3538

16159d0c9a474323ecdfe

20 
 

000571442e8504c41cc
4311cd22b89f99dbe08

75ec86f07f0b5843856

78b0c9e 
 

53.51
% 

6 1defb3d831ddfdfc3c

fbbd49f1894d6df57
28b5dd1245a4f6758

5b2b52c1e463

  

 

05c86a1ace49f18c35d

47db304facd33ad1cf2
3bbcdd5378415ffa88f

0ebddf0  

51.17

% 

fd34756a15320b82b11a

12d0d33cc43e04e61f4d6
d47bde0c2c0b2d8e06ce

60d 

8bca22325c613ed41b6

18cd8fdab30e27ff8a7d
0482f59358d0ee11297

0534d0 

 

51.56

% 

7 5fcbb26ffddd585d5

94ce4fe6580bddc0c
509ad25259f01d906

a585409a3c776 

 

46450c899102df22ba3

474bb4d8bb7a6d832d
6ecefc0448e056a8252

7f3c8f53 

 

49.21

% 

c1d4d48738cf773f5ee7a

e6f5933ab9e5fbc753a49
91a025cbaccbd887d4bf0

a 

 

b1700fa3727adc30885

ccb1203b955d386059
28e2d240b58e2a5896

1975201ef 

 

53.12

% 

8 61b665345e479d00e

3883ccc8f3e20ec0d

5ad51ff8fce183ae3b
8b9063f51f5b 

 

81c7739e799178e3f4e

a4ac0aff40b5712530e

977715f0f0ca6bd7017
2f0707a 

 

46.09

% 

45cf7a7220e562cd55168

87ccb7f1e6cd13e0050a5

4344f558d65b05b4fc8b9
d 

 

e20bd6ed0cba165a972

b6e84dbe5a0852930d

2e7e311720dd81eaec6
77f6f453 

 

52.73

% 

9 e72a992676003a3ac
f04b8c94dcf30ef7a7

a490f3e5a705e68a1
a2176f9c347d 

 

e7df95c7564a7ee6897
ee30a9b78264119e0c4

d3284a48f202b5df69f
a57d88b 

 

48.82
% 

a0e4c0d58d5161502215
6bdcda68d578a8aa96f8d

05af0a7f88ecfff762b7f4f 
 

a83e21684ca24fd3bb6
85d5b43740cb3fe67c7

a888bc4f0b1b0b6cd1a
1d1a336 

 

53.90
% 

10 7bc2fdfc723e708dfb
8f1473979de37e8b3

2bbef30484853a846

760bd6b64bd7 
 

daeb630320a29f2f30a
cf2321394c807d70c93

3381531d669b422a31

95e6aedb 
 

47.26
% 

8d5278a6fd9f33b295f3b
3580ce759d6f9ce94fc02

cd4aded9a6389d342836

70 
 

75fe7ecc87398125a34
411660343b3e0aada2f

256456dee1242efb5f5

7bad0c5 
 

52.73
% 

 

 

3.2.  Flipping single bit 

In the avalanche effect test as shown in Table 2, a single-bit flip in a different plaintext file revealed 

that the modified AES algorithm achieved a 53.125% avalanche effect, surpassing the original AES's 

46.484375%. This improvement signifies superior bit diffusion capabilities, holding promising implications 

for bolstering security in various applications. It contributes to advancing cryptographic methods, particularly 

in ensuring robust encryption and effective propagation of changes in ciphertext, essential for future data 

protection. In the broader context, this elevated avalanche effect underscores the algorithm’s adaptability to 

evolving security challenges, positioning it as a proactive solution in the ever-changing landscape of 

cybersecurity. Moreover, the algorithm’s consistent performance across various test scenarios reinforces its 

reliability a suitability for applications demanding robust encryption and resilience against potential attacks. 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

AES-128 reduced-round permutation by replacing the MixColumns function (Jerico S. Baladhay) 

1649 

Table 2. Findings from the avalanche effect test after flipping a single bit in the PlainText 
AES PlainText Cipher text (Hex) Avalanche effect 

Original AES This letter will change 
 

 

This letteq will change 

cd65ec5dff615c0d795e3d7e41f07f41 
9ecae0f2ea73737e50a7172d16fd3e83 

0.46484375 
(46.484375%) 

fd75e6a5d8d637c5ea82a832d4754e68 

d6c81a6647e80c59646f1098c7e01909 
Secret Key: 2b7e151628aed2a6abf7158809cf4f3c  
Modified 

AES 

This letter will change 

 
 

This letteq will change 

14e609315e77c0aeadc8c39a40e9e44a 

92cc5cedfd3156f43c80f99b15287617 

0.53125 

(53.125%) 
239454dd043d9d22c77c32a7ec8764fc 

7a0a6290a64fd036cb793e00586d6213 

 

 

3.3.  Avalanche effect 

As shown in Figure 7 of the avalanche effect graph, the modified algorithm, reduced-round 

permutation-based algorithm, all of its result is 50% and higher than strict avalanche criterion (SAC) based 

on the dataset, and the conventional AES, on the other hand, has a lower avalanche result. On the other hand, 

the conventional AES shows lower avalanche results. The modified algorithm has the potential to serve as a 

stronger encryption technique, especially in situations where data security is of utmost importance, according to 

these results. The chart illustrates the percentage results of the ciphertext on the x-axis, with two distinct rows. 

The upper row showcases outcomes from the modified algorithm, while the lower row displays results from the 

original algorithm. Meanwhile, the y-axis represents a specific rage of values, determining the position of the 

line graph, which is contingent on the generated outcome. 

 

 

 
 

Figure 7. Modified AES and AES avalanche effect graph 

 

 

3.4.  Original AES vs. modified AES time consumption 

Comprehensive evaluations, indicate a substantial improvement in the duration of the encryption 

and decryption process when employing Reduced-Round Permutation-Based Algorithm. Specifically, the 

modified algorithm demonstrated a remarkable 76.76% improvement in the time of encryption and a 

significant 55.46% improvement in decryption time, as shown in Table 3. These findings emphasize the 

speed improvements resulting from the modifications, presenting a noteworthy advantage over the original 

AES algorithm regarding computational speed. The application of the modified encryption algorithm results 

in a substantial increase in the time taken for encryption and decryption processes, as shown in 

comprehensive evaluations. These results highlight the speed improvements brought about by the changes, 

indicating a significant edge over the original AES algorithm in terms of computational speed. Therefore, the 

observed acceleration in encrypting and decrypting files of varying sizes highlights the effectiveness of the 

modified algorithm, showcasing a significant speed advantage over the original AES algorithm. 

 

3.5.  Throughput 

The data presented in the graph of Figure 8 indicates that the modified algorithm achieves a throughput 

of 31.12% for encryption and 25.50% for decryption, whereas the original or conventional AES records 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1650 

7.18% for encryption and 11.32% for decryption. These findings illustrate that the modified algorithm 

surpasses the original regarding effectiveness and performance. The modified algorithm boasts considerably 

faster speeds for encryption and decryption, surpassing those of the original AES. This discovery has 

significant implications for forthcoming applications, especially in situations where computational processes 

is crucial. The chart depicts two primary operations along the x-axis: encryption and decryption. On the y-

axis, each bar signifies numerical values, reflecting the degree of increase or decrease for each respective 

operation. This visual representation facilitates a clear comparison of throughput metrics between the 

encryption and decryption processes, providing insight into their respective performance levels. 

 

 

Table 3. Time consumption comparison: Original AES vs. modified AES 
   Encryption time Decryption time 

File Size Resolution AES (ms) Modified AES (ms) AES (ms) Modified AES (ms) 

.MP4 8.8 MB 480p 1154.70 320.91 799.83 351.27 
.WMV 15.8 MB 720p 2221.26 499.85 1433.32 567.59 

.AVI 25.8 MB 720p 3587.69 767.23 2221.93 1010.06 

.MOV 30 MB 1080p 4146.56 935.44 2518.75 1183.43 

.MKV 38.2 MB 1080p 5638.35 1236.54 3446.85 1610.51 

 

 

 
 

Figure 8. Modified AES and original AES throughput graph 

 

 

4. CONCLUSION 

This paper introduces a modified version of the AES that uses a permutation-based approach with 

fewer rounds. The purpose of this modification is to encrypt video files. The findings illustrate its efficacy in 

encrypting and decrypting substantial files. The modification exhibits superior cryptographic strength 

compared to the original AES, as demonstrated by the avalanche effect results. So far, by reducing the 

number of rounds and replacing MixColumn with precomputed bit permutation, the applied modifications 

have enhanced the security in relation to the strict avalanche criterion (SAC). In future development, to 

optimize the encryption speed and efficiency, the researchers could explore a parallel processing approach 

that leverages multi-core processors or GPU-based parallelism. This would meet the growing demand for 

real-time data protection. Additionally, advanced iterations of AES, such as 192 and 256, will be 

incorporated to support audio and other file formats. 

 

 

REFERENCES 

[1] F. M. Amin and H. Sundari, “EFL students’ preferences on digital platforms during emergency remote teaching: Video 

Conference, LMS, or messenger application?,” Studies in English Language and Education, vol. 7, no. 2, pp. 362–378, Sep. 2020, 

doi: 10.24815/siele.v7i2.16929. 
[2] M. Napal, A. M. Mendióroz-Lacambra, and A. Peñalva, “Sustainability teaching tools in the digital age,” Sustainability, vol. 12, 

no. 8, p. 3366, Apr. 2020, doi: 10.3390/su12083366. 
[3] K. Ishii, M. M. Lyons, and S. A. Carr, “Revisiting media richness theory for today and future,” Human Behavior and Emerging 

Technologies, vol. 1, no. 2, pp. 124–131, Apr. 2019, doi: 10.1002/hbe2.138. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

AES-128 reduced-round permutation by replacing the MixColumns function (Jerico S. Baladhay) 

1651 

[4] S. Sharma, T. Kumar, R. Dhaundiyal, A. K. Mishra, N. Duklan, and A. Maithani, “Improved method for image security based on 
chaotic-shuffle and chaotic-diffusion algorithms,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, 

no. 1, p. 273, Feb. 2019, doi: 10.11591/ijece.v9i1.pp273-280. 

[5] I. Kuntadi et al., “Towards digital TVET: A comparative study on students’ readiness in the industry digital demands in Indonesia 
and Malaysia,” Journal of Technical Education and Training, vol. 14, no. 3, Dec. 2022, doi: 10.30880/jtet.2022.14.03.008. 

[6] C. Katrakazas, A. Theofilatos, G. Papastefanatos, J. Härri, and C. Antoniou, “Cyber security and its impact on CAV safety: 

Overview, policy needs and challenges,” in Advances in Transport Policy and Planning, vol. 5, Elsevier, 2020, pp. 73–94, doi: 
10.1016/bs.atpp.2020.05.001. 

[7] J. Li et al., “Searchable symmetric encryption with forward search privacy,” IEEE Transactions on Dependable and Secure 

Computing, vol. 18, no. 1, pp. 460–474, Jan. 2021, doi: 10.1109/TDSC.2019.2894411. 
[8] F. Wiesböck and T. Hess, “Digital innovations: Embedding in organizations,” Electron Mark, vol. 30, no. 1, pp. 75–86, Mar. 2020, 

doi: 10.1007/s12525-019-00364-9. 

[9] X. Cao and L. Liu, “Use of smart devices: a survey, some research issues, and challenges,” in 2020 International Conference on 
Culture-oriented Science and Technology (ICCST), Beijing, China: IEEE, Oct. 2020, pp. 378–382, doi: 

10.1109/ICCST50977.2020.00079. 

[10] A. M. Qadir and N. Varol, “A review paper on cryptography,” in 2019 7th International Symposium on Digital Forensics and 
Security (ISDFS), Barcelos, Portugal: IEEE, Jun. 2019, pp. 1–6, doi: 10.1109/ISDFS.2019.8757514. 

[11] M. A. Al-Shabi, “A survey on symmetric and asymmetric cryptography algorithms in information security,” International Journal 

of Scientific and Research Publications (IJSRP), vol. 9, no. 3, p. p8779, Mar. 2019, doi: 10.29322/IJSRP.9.03.2019.p8779. 
[12] K. Muttaqin and J. Rahmadoni, “Analysis and design of file security system advanced encryption standard (AES) cryptography 

based,” Journal of Applied Engineering and Technological Science (JAETS), vol. 1, no. 2, pp. 113–123, May 2020, doi: 

10.37385/jaets.v1i2.78. 
[13] S. Devi and H. D. Kotha, “AES encryption and decryption standards,” Journal of Physics: Conference Series, vol. 1228, no. 1, p. 

012006, May 2019, doi: 10.1088/1742-6596/1228/1/012006. 

[14] U. Arnaut, M. Tair, and M. Veinović, “Comparison of the efficiency of aes implementations on major web platforms,” in 
Proceedings of the International Scientific Conference - Sinteza 2021, Beograd, Serbia: Singidunum University, 2021, pp. 153–

157, doi: 10.15308/Sinteza-2021-153-157. 

[15] M. M. Abu-Faraj and Z. A. Alqadi, “Improving the efficiency and scalability of standard methods for data cryptography,” 
International Journal of Computer Science and Network Security, vol. 21, no. 12, pp. 451–458, Dec. 2021, doi: 

10.22937/IJCSNS.2021.21.12.61. 

[16] J. Kaur, S. Lamba, and P. Saini, “Advanced encryption standard: attacks and current research trends,” in 2021 International 
Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India: IEEE, Mar. 

2021, pp. 112–116, doi: 10.1109/ICACITE51222.2021.9404716. 

[17] A. I. Salih, A. M. Alabaichi, and A. Y. Tuama, “Enhancing advance encryption standard security based on dual dynamic XOR 
table and MixColumns transformation,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 19, 

no. 3, p. 1574, Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1574-1581. 

[18] S. A. Busafi and B. Kumar, “Review and analysis of cryptography techniques,” in 2020 9th International Conference System 
Modeling and Advancement in Research Trends (SMART), Moradabad, India: IEEE, Dec. 2020, pp. 323–327, doi: 

10.1109/SMART50582.2020.9336792. 

[19] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O. Akande, and E. O. Asani, “Modified advanced encryption standard algorithm 
for information security,” Symmetry, vol. 11, no. 12, p. 1484, Dec. 2019, doi: 10.3390/sym11121484. 

[20] F. Hazzaa, A. M. Shabut, N. H. M. Ali, and M. Cirstea, “Security scheme enhancement for voice over wireless networks,” Journal 

of Information Security and Applications, vol. 58, p. 102798, May 2021, doi: 10.1016/j.jisa.2021.102798. 
[21] A. Barrera, C.-W. Cheng, and S. Kumar, “Improved mix column computation of cryptographic AES,” in 2019 2nd International 

Conference on Data Intelligence and Security (ICDIS), South Padre Island, TX, USA: IEEE, Jun. 2019, pp. 229–232, doi: 

10.1109/ICDIS.2019.00042. 
[22] N. M. S. Surameery, “Modified advanced encryption standard for boost image encryption,” UHD Journal of Science and 

Technology, vol. 6, no. 1, pp. 52–59, Apr. 2022, doi: 10.21928/uhdjst.v6n1y2022.pp52-59. 
[23] H. V. Gamido, A. M. Sison, and R. P. Medina, “Modified AES for text and image encryption,” Indonesian Journal of Electrical 

Engineering and Computer Science (IJEECS), vol. 11, no. 3, p. 942, Sep. 2018, doi: 10.11591/ijeecs.v11.i3.pp942-948. 

[24] H. V. Gamido, A. M. Sison, and R. P. Medina, “Implementation of modified AES as image encryption scheme,” Indonesian 
Journal of Electrical Engineering and Informatics (IJEEI), vol. 6, no. 3, pp. 301–308, Sep. 2018, doi: 10.11591/ijeei.v6i3.490. 

[25] H. V. Gamido, “Implementation of a bit permutation-based advanced encryption standard for securing text and image files,” 

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 19, no. 3, p. 1596, Sep. 2020, doi: 
10.11591/ijeecs.v19.i3.pp1596-1601. 

[26] E. M. D. L. Reyes, A. M. Sison, and R. Medina, “Modified AES cipher round and key schedule,” Indonesian Journal of Electrical 

Engineering and Informatics (IJEEI), vol. 7, no. 1, pp. 29–36, Mar. 2019, doi: 10.11591/ijeei.v7i1.652. 
[27] E. M. D. L. Reyes, A. M. Sison, and R. P. Medina, “File encryption based on reduced-round AES with revised round keys and key 

schedule,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 16, no. 2, p. 897, Nov. 2019, doi: 

10.11591/ijeecs.v16.i2.pp897-905. 
[28] A. Roy, S. Wang, B. Meschede-Krasa, J. Breffle, and S. D. Van Hooser, “An early phase of instructive plasticity before the typical 

onset of sensory experience,” Nature Communications, vol. 11, no. 1, p. 11, Jan. 2020, doi: 10.1038/s41467-019-13872-1. 

[29] O. Hajihassani, S. K. Monfared, S. H. Khasteh, and S. Gorgin, “Fast AES implementation: a high-throughput bitsliced approach,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp. 2211–2222, Oct. 2019, doi: 

10.1109/TPDS.2019.2911278. 

[30] N. Franciscus, X. Ren, and B. Stantic, “Precomputing architecture for flexible and efficient big data analytics,” Vietnam Journal of 
Computer Science, vol. 5, no. 2, pp. 133–142, May 2018, doi: 10.1007/s40595-018-0109-9. 

[31] S. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and M. R. Mufti, “Cryptographic strength evaluation of key schedule algorithms,” 

Security and Communication Networks, vol. 2020, pp. 1–9, May 2020, doi: 10.1155/2020/3189601. 
[32] Z. Hu and S. Kais, “A quantum encryption design featuring confusion, diffusion, and mode of operation,” Scientific Reports, vol. 

11, no. 1, p. 23774, Dec. 2021, doi: 10.1038/s41598-021-03241-8. 

[33] S. D. Sanap and V. More, “Performance analysis of encryption techniques based on avalanche effect and strict avalanche 
criterion,” in 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India: IEEE, 

May 2021, pp. 676–679. doi: 10.1109/ICSPC51351.2021.9451784. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 33, No. 3, March 2024: 1641-1652 

1652 

BIOGRAPHIES OF AUTHORS  

 

 
 

Jerico S. Baladhay     is a faculty member serving as an Information Technology 

College Instructor at Dominican College of Tarlac under the department of College of Computer 

Studies since 2020. In addition to this, he is also a senior software developer at the same 

institution under the Management Information Systems Office from 2020. He is pursuing a 

master's degree in Information Technology at Tarlac State University. The individual's expertise 

lies in software development, particularly in web applications, mobile applications, and game 

development. Moreover, he holds skills certifications in completing Cisco Certified Network 

Associate Version 7 (CCNAv7) courses in Networking. The individual is also a law student at 

Tarlac State University, where he is actively engaged in the vibrant nexus of legal s 

tudies and technology within the academic environment of this esteemed institution. His 

research interests include data security and encryption algorithms. He can be contacted at email: 

j.baladhay0785@student.tsu.edu.ph. 

  

 

Dr. Edjie M. De Los Reyes     is an esteemed Research Director, Associate Professor 

IV currently serving at Tarlac State University for 20 years with a strong background in 

academics. He was designated the university's Research Director and previously served as an 

Associate Dean from 2014 to 2016. Additionally, he holds numerous skills certifications, 

including Cisco Certified Network Associate, Cisco Certified Academic Instructor, Microsoft 

Office Specialist, and Electronic Data Processing Specialist - Programmer. He is an active 

member of various academic and research organizations, such as the Philippine Society of 

Information Technology Educators (PSITE), Philippine Schools Universities and Colleges 

Computer Education and Systems Society (PSUCCESS), and International Association of 

Multidisciplinary Research. Furthermore, he has published several research papers in  

Scopus-indexed journals that focus on data security. He can be contacted at email: 
emdelosreyes@tsu.edu.ph. 

 

 

https://orcid.org/0009-0005-5695-3163
https://orcid.org/0000-0001-6765-8737
https://scholar.google.com/citations?user=702BcCcAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57208207447

