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 This paper presents an improved metaheuristic technique inspired by the 

foundational concepts of the artificial bee colony (ABC) algorithm adapted 

to deal with multi-objective optimization challenges. Our approach 
combines the main ideas of ABC with a non-dominated sorting strategy 

including aspects of Pareto dominance, crowding distance, and greedy 

selection method. Furthermore, the chosen non-dominated solutions are 

archived in a repository with a static size. The presented approach, multi-
objective artificial bee colony (MOABC), is compared to other state-of-the-

art algorithms including the non-dominated sorting genetic algorithm II 

(NSGA II) and the multi-objective particle swarm optimization (MOPSO). 

MOABC and selected algorithms from the literature are applied to five 
zitzler-deb-thiele (ZDT) Multi-objective benchmark functions. Then three 

key metrics are employed for performance evaluations: generational distance 

(GD), spread (SP), and hypervolume (HV). The simulation results suggest 

that the proposed method is competitive and presents an effective choice for 
tackling multi-objective optimization problems. 
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1. INTRODUCTION 

In various disciplines, such as engineering and computer science, professionals often encounter 

multi-objective optimization challenges that require balancing several goals simultaneously [1], [2]. These 

problems, rather than having a single solution, necessitate exploring a range of optimal outcomes known as a 

paret front. Over the last ten years, many metaheuristic algorithms have been developed to address difficult 

optimization problems using the ideas of Pareto-optimality and non-dominance [3], [4]. Notable 

contributions to this field include Karaboga's artificial bee colony (ABC), introduced in 2005 [5], [6], and 

Kennedy and Eberhart's particle swarm optimization (PSO),was developed in 1995 [7]. Other significant 

developments are price's differential evolution (DE) in 1996 and 1997 [8], [9], Holland's genetic algorithm 

(GA) from the 1960s and 1970s [10], and the ant colony optimization algorithm by Dorigo and Gambardella, 

first proposed in 1997 and further refined in 2006 [11][13]. The effectiveness of these algorithms is 

assessed using specific metrics that consider factors like solution diversity and the range they cover on the 

Pareto front [14]. 

The ABC algorithm draws inspiration from the foraging behavior of honeybees by which real bees 

discover food sources and relay this information to other bees. It stands out in single-objective optimization 

due to its simplicity, ease of implementation, minimal control parameters, and high speed of convergence. It 
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is extensively utilized in many fields. In light of the advantageous qualities inherent in the ABC algorithm, 

we present a novel enhancement to this algorithm, tailored for multi-objective problems. Our MOABC 

algorithm combines a non-dominated sorting strategy with a dedicated archive for elite solutions, to improve 

the Pareto front exploration. To assess the effectiveness of the MOABC, we conducted an evaluation of the 

performance of the MOABC algorithm with that of MOPSO and non-dominated sorting genetic algorithm II 

(NSGA-II) on a set of five zitzler-deb-thiele (ZDT) Multi-objective benchmark functions. 

The structure of the paper is organized as follows: section 2 provides an overview of the concepts 

related to multiobjective optimization problems (MOPs) and Pareto front metrics. Section 3 introduces the 

details of the MOABC algorithm. Section 4 outlines the experimental procedures. Section 5, the findings and 

discussion are provided. Finally, section 6 concludes the paper with our findings and future work. 

 

 

2. AN OVERVIEW OF MULTI-OBJECTIVE OPTIMIZATION PROBLEMS  

Multi-objective optimization problems (MOOPs) are a class of optimization problems involving 

simultaneous optimization of two or more conflicting objectives. In contrast to optimization issues focused 

on a single objective, MOOPs possess a set of optimal solutions referred to Pareto front [15]. In multi-

objective optimization, the concept of Pareto optimality is crucial: a solution is considered optimal if no other 

solution can advance one goal without worsening at least one other goal. Formally, a formulation of a multi-

objective optimization problem can be expressed as follows: 

 A collection of decision variables, 𝑥 = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛). 

 A series of objective functions denoted as ,F(𝑥) = (𝑓1(𝑥 ), 𝑓2(𝑥 ), . . . , 𝑓𝑘(𝑥 )), where each 𝑓𝑖(𝑥 ) is a 

function that maps the decision variable space to the real numbers. 

 A group of constraints, 𝐺(𝑥) = (𝑔1(𝑥 ), 𝑓2(𝑥 ), . . . , 𝑔𝑚(𝑥 )),where each 𝑔𝑗(𝑥 ) represents a boundary 

condition within the space of decision variables. 

The objective is to identify the collection of decision variables, denoted as x, such that: 

 Satisfy the constraints: 𝑔𝑖(�⃗�) ≤ 0 ,i= 1,2... m. 
 Optimize the vector of objective functions F(𝑥), typically by finding the optimal solutions. 

The concept of Pareto optimality states that given vectors u⃗⃗ = (u1 , u2 , . . . , un ) and v⃗⃗ = (v1 , v2 , . . . , vn ) in 

the multidimensional space 𝑅𝑛, we say that vector u⃗⃗ a is in a position of dominance over v⃗⃗ when each 

element of u⃗⃗ is less than or equal to the corresponding element of v⃗⃗, symbolically  ui < vi for every i from 1 

to n, with at least one element being strictly less, ensuring u⃗⃗ ≠ v⃗⃗. 

An element 𝑥∗ from the feasible set X is considered to be in a state of Pareto optimality if there 

exists no other element x in X for which the function F(x) is dominant over F(x∗). Solutions satisfying Pareto 

optimality are alternatively known as efficient, non-dominated, or non-inferior [16]. The collection of all 

such Pareto-optimal solutions is referred to as the Pareto set, symbolized as PS. The corresponding outcomes 

of the objective function F, {𝐹(𝑥)𝑥 ∈ 𝑃𝑆}, form what is known as the Pareto frontier, and this concept is 

visually exemplified in Figure 1. 

 

 

 
 

Figure 1. Pareto frontier illustration for multi-objective minimization analysis 
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3. MULTI-OBJECTIVE ARTIFICIAL BEE COLONY 

In 2005, Karaboga proposed the fundamental artificial bee colony algorithm based on the foraging 

behavior of bees. This algorithm features three types of bees: employed, onlooker, and scout. Each food 

source position represents a solution to the problem being optimized and is found by employed bees. The 

onlooker bees assess the quality of the food source positions received, and the scout bee intervenes when a 

food source cannot be optimized by searching randomly for a new food source position [17]. The MOABC 

algorithm introduced in this paper begins with an initialization phase that randomly generates the initial 

positions of the food sources. An archive is utilized to store the non-dominated solutions identified during the 

selection process. 

The refinement of existing solutions occurs during the employed bee phase. The process of 

generating new solutions can be described by (1): 

 

soli
j∗

=  foodi
j

+ rand[−1; 1] ∗ (foodi
j

− foodk
j

) (1) 

 

where, 

 

i ≠ k ; i ∈ (1,2, … , n). 

 

𝑓𝑜𝑜𝑑𝑖
𝑗
 denotes the current solution, foodk

j
 represents the neighbor solution and soli

j∗
becomes the potential 

new solution. 

n is the number of employed bees. 

j, k are selected randomly. 

rand[−1; 1] is a randomly chosen number within the [-1;1] interval. 

The current solution and the candidate solution are compared, and the greedy selection method 

evaluates and determines which is better. The trial counter increases if the current solution maintains its 

position. The counter resets to zero if the candidate solution is the new one. After that, every solution is 

compared with every member in the archive. This is an important step since it updates the archive, making 

sure that it only has the best and most recent solutions. 

In the onlooker bees phase, the archive members are involved in the process of improving other 

archive members. This improvement process is represented by (2): 

 

soli
rp∗

=  foodi
rp

+ rand[−1; 1] ∗ (ARk
rp

− foodi
rp

) (2) 

 

where, 

 

i ∈ (1,2, … , FN), FN: The quantity of food is equivalent to half of the colony size. 

k ∈ (1,2, … , n) , Is chosen randomly from the archive, where n represents the size of the archive. 

rp is chosen at random from the archive. 

During this phase, a candidate solution is generated using two archive members: the current one 

and a neighboring one. The selection of the neighbor involves considering the crowding distance values of 

all archive members, with the one having the lowest crowding distance value being chosen. In the scout 

bee phase, unlike employed bees that focus on improving known solutions, the scout bees are tasked with 

investigating unexplored regions of the problem space. This exploration is random and independent, 

meaning scout bees do not use information from other bees. Their job is to randomly identify new food 

sources, without prior knowledge from existing solutions. The random solution is generated by the 

following (3): 

 

foodi =  lb + rand[1; d] ∗ (ub − lb) (3) 

 

where, 

 

lb is the lower bound of parameters. 

ub is the upper bound of the parameters. 

d: the dimension of the problems. 

During this phase, the trial counts for each food source are tracked. A new site is identified for any 

food source that exceeds a certain limit. Moreover, the procedure allows only a single scout bee in each 

cycle. The method is designed to stop after a set number of evaluations. Once this stopping criterion is met, 

the algorithm concludes its operations and returns the current archive as its output. The flowchart presented 
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in Figure 2 and pseudocode of the MOABC algorithm presented in Pseucode 1, respectively, which is 

composed of five main parts: initialization, employed bees, onlooker bees, scout bees. 

 

 

 
 

Figure 2. Flowchart of the MOABC algorithm 

 

 

Pseucode 1. MOABC algorithm 
Begin 

Initialization phase () 

Population, MaxIteration, Number of variables, and Limit. 

Employed Bees phase () 

 For i=1 to FoodNumber 

    Select a parameter k randomly. 

    Select a parameter j randomly  

    Generate the new solution by the equation (1)  

% Evaluate the new solution using the greedy selection method 

      If the new food source position dominates the old one 

       Update the position. 

      Else  

       Increment the trial by one. 

     End 

     update the Archive. 

End 

 

Onlooker bee phase () 

  Evaluate the quality of food source positions found by the employed bee. 

  For i=1 to FoodNumber 

     Select a parameter k randomly. 

     Select a parameter rp randomly from the archive 

     Generate the new solution by equation (2) 

% Evaluate the new solution using the greedy selection method.   
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     If the new food source position dominates the old one 

        Update the position. 

     Else  

        Increment the trial by one. 

     End  

update the Archive. 

  End 

 

Scout Bees phase () 

  For i=1 to FoodNumber 

        If I have the maximum the trial  

          Reset setting the trial value to zero. 

          Generate a random solution by equation (3) 

        End   

  End  

End 

 

 

4. EXPERIMENTAL PROCEDURES  
This section presents a comparative analysis of the proposed MOABC algorithm's performance. For 

this study, two popular and advanced multi-objective algorithms were selected for comparison: NSGA and 

MOPSO. Additionally, this analysis includes the metrics utilized and highlights some key features of the 

benchmark test functions in the competition problem. 

 

4.1.  Overview of selected algorithms for comparison 

4.1.1. Non-dominant sorting genetic algorithm II  

The technique known as NSGA-I) was introduced by Deb et al. [18], [19] and integrates elite and 

diversity-preserving mechanisms. NSGA-II initiates by generating a parent population P0 through a random 

process. These solutions are then organized into different non-domination fronts, with each solution assigned 

a fitness level corresponding to its non-domination front.  

The initial front comprises the best solutions, while subsequent fronts represent progressively 

inferior solutions. Binary tournament selection, utilizing the crowded comparison criterion, is employed, 

along with crossover and mutation operators, to form the initial child population Q0 of size N. For t>1, the 

NSGA-II approach proceeds as follows: 

 Combining the parent population Pt with the child population Qt. 

 The population Rt = Pt U Qt is sorted using the non-domination method, with a size of 2N. 

 A new parent population Pt+1 is created by selecting solutions from the first front until the population 

size is greater than N. 

 The crowding distance Fi (for all non-dominated fronts of Rt) is calculated. 

 A new population Qt+1 is generated using selection, crossover, and mutation. 

 

4.1.2. Multi-objective particle swarm optimization 

In 1995, Kennedy and Eberhart introduced the PSO technique, drawing inspiration from the flock 

choreography of birds [20]. To address multi-objective optimization problems, Coello et al. [20] introduced 

the MOPSO technique, which applies the Pareto dominance theory to extract non-dominated solutions and an 

elitist selection by crowding distance factor. The algorithm also stores the found solutions in an archive, and 

an adaptive grid manages the archive and guides the update of particles [21]. In each iteration, the particle's 

velocity and position are determined using (4) and (5). 

 

Vid
n+1 = ω. vid

n + c1. rand1
n(pbestid

n − Xid
n )  + c2. rand2

n(gbestid
n − Xid

n ) (4) 

 

𝑋𝑖
𝑛+1 = 𝑋𝑖

𝑛 + 𝑉𝑖
𝑛+1 (5) 

 

Where, i represents the particle index (1, 2, ..., N), N is the swarm size, d represents the search space 

dimension (1, 2, ..., D), and n is the iteration number. Vid
n  and Vid

n+1 represent the d-dimensional velocity of 

particle i in iterations n and n+1, respectively. Xid
n  and Xid

n+1 represent the d-dimensional positions of particle 

i in iterations n and n+1, respectively. pbestid
n  and gbestid

n  represent the personal best and global best of 

particle i in iteration n, respectively. rand1 and rand2 represent values selected randomly from the range 

between 0 and 1. c1 and c2 are the cognitive weight and social weight, respectively, and they are usually 

set to 2. 
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4.2.  Performance metrics 

To assess the performance of various multi-objective algorithms for a specific problem, each 

algorithm was executed for an equal number of generations. The resulting solutions, referred to as Pareto 

front approximations, were then compared using two quality measures: solution, which determines the 

similarity of the solution to the true Pareto front, and solution diversity, which evaluates the distribution of 

points in the solution. We utilized the three most used metrics identified in a recent literature survey. These 

metrics, ranked in order of popularity, include generational distance (GD), spacing (SP), and hypervolume 

(HV) [22], [23]. The definitions of these metrics are as follows: 

 

4.2.1. Generational distance  

The GD is a measure of how far the non-dominated solutions obtained by an algorithm are from 

these at the true Pareto front. This Metric is given by (6): 

 

GD =
((∑ di

p|Q|
i=1 )

1
p⁄

)

|Q|
 (6) 

 

For p=2, the parameter di is the Euclidean distance between each point in PF∗and the closest point in PF 

denoted as: 

 

di = mink=1
|P∗|

(∑ (PFm
i − PF∗

m
i )

2M
m=1 )

1/2

  (7) 

 

4.2.2. Spacing 

The SP is the distance measure between the obtained solutions and describes the distribution of non-

dominated solutions using a specific algorithm. This criterion can show how the solutions were distributed 

among each other and can be defined as: 

 

Sp = √
1

|Q|
∑ (di − d̅)

2|Q|
i=1  (8) 

 

where, 

 

di is the Euclidean distance and d̅ is the mean value of all di: 

 

d̅ = ∑
di

|Q|

|Q|
i=1  (9) 

 

4.2.3. Hypervolume 

The HV metric, also referred to as the S-metric or Lebesgue measure is used in this research due to 

its ability to provide a single number that expresses convergence as well as variety. With the help of a 

reference point (r*), (𝑟∗= 𝑟1*. . ., 𝑟𝑚*) in Ω, this metric is used to calculate the normalized volume inside the 

space of objective Ω that is covered by the obtained Pareto front ( 𝑃∗). A hypercube 𝑐𝑖 is computed for every 

solution, i ∈ 𝑃∗given i and the reference point r. The hypervolume HV is calculated as (10). 

 

𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒(⋂ 𝑐𝑖
|𝑃|
𝐼=1 ) (10) 

 

4.3.  Benchmark test problems 

In this paper, we utilize a set of benchmark functions to assess and validate the performance of 

different algorithms through comparison. These benchmark functions are designed for multi-objective 

optimization problems and aim to simulate real-world scenarios. We specifically focus on five well-known 

problems from literature, known as the ZDT benchmark functions [24].  

These problems are unconstrained and distinguished by well-defined mathematical models, 

including convex or concave characteristics. Furthermore, they have different shaped Pareto optimum 

borders. Table 1 provides mathematical models and characteristics associated with these test functions. 
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Table 1. Mathematical models and characteristics of five ZDT test functions 

Function name Mathematical model formula 
Search domain/function 

characteristic 

ZDT1 

f1(x) = x1 

f2(x) = g(x)h(f1(x), g(x)) 

g(x) = 1 +
9

(n − 1)
∑ xi

n

i=2

 

h(f1(x), g(x)) = 1 − √
f1(x)

g(x)
 

0 ≤ xi
∗ ≤ 1 ;  1 ≤  i ≤  30. 

Has a convex Pareto 

optimal front. 

ZDT2 

f1(x) = x1 

f2(x) = g(x)h(f1(x), g(x)) 

g(x) = 1 +
9

(n − 1)
∑ xi

n

i=2

 

h(f1(x), g(x)) = 1 − (
f1(x)

g(x)
)

2

 

0 ≤ xi
∗ ≤ 1 ;  1 ≤  i ≤  30. 

Has a concave Pareto 

optimal front. 

ZDT3 

f1(x) = x1 

f2(x) = g(x)h(f1(x), g(x)) 

g(x) = 1 +
9

(n − 1)
∑ xi

n

i=2

 

h(f1(x), g(x)) = 1 − √(
f1(x)

g(x)
) − (

f1(x)

g(x)
) sin(10πf1(x)) 

0 ≤ xi
∗ ≤ 1 ;  1 ≤  i ≤  30. 

Has several disconnected 

Pareto optimal front. . 

ZDT4 

f1(x) = x1 

f2(x) = g(x)h(f1(x), g(x)) 

g(x) = 1 + 10(n − 1) + ∑(xi
2 − 10𝑐𝑜𝑠(4πxi))

n

i=2

 

h(f1(x), g(x)) = 1 − √(
f1(x)

g(x)
) 

0 ≤ xi
∗ ≤ 1 ;  1 ≤  i ≤  30. 

Has many local fronts, 

single global convex front 

ZDT6 

f1(x) = 1 − 𝑒4x1sin6(6πx1) 

f2(x) = g(x)h(f1(x), g(x)) 

g(x) = 1 + (
9

(n − 1)
∑ xi

n

i=2

)

1
4⁄

 

h(f1(x), g(x)) = 1 − (
f1(x)

g(x)
)

2

 

0 ≤ xi
∗ ≤ 1 ;  1 ≤  i ≤  30. 

Non-uniform distribution, 

non-convex front 

 

 

5. RESULTS AND DISCUSSION 

In this section, we tested the suggested technique's effectiveness in solving unconstrained multi-

objective mathematics ZDT problems, using performance metrics. We used MATLAB software to code the 

algorithm. For our work, we utilized a computer with an Intel Core i5 processor running at 1.6 GHz and  

4 GB DDR3 RAM. The problems allowed us to assess how well multi-objective optimizers handle non-

convex and non-linear problems. 

We also conduct a comparison between MOABC, NSGA II, and MOPSO algorithms and present 

the best result from a set of Pareto optimal solutions. Table 2 provides the initial control parameters for each 

algorithm. Each experiment was carried out with a maximum of 100 iterations and 100 populations. The 

proposed algorithm is tested in five distinct case studies, as depicted in Table 1. As shown in Figure 3, the 

statistical results for various algorithms applied to multi-objective benchmark functions are presented. It was 

observed that all algorithms successfully converged towards the Pareto front, except for MOPSO and NSGA-

II on certain ZDT problems.  

Table 3 provides a comparison of the GD, SP value, and HV values among the three algorithms. The 

results indicate that the multi-objective artificial bee colony algorithm demonstrates exceptional convergence 

accuracy, outperforming the other algorithms in solving all ZDT benchmark functions, as shown in Table 3. 

In terms of the SP values, all algorithms consistently achieve values lower than 0.1 across all ZDT problems. 

Notably, the MOABC algorithm stands out as the top performer on all ZDT problems. Regarding the HV 

results, the MOABC algorithm consistently exhibits strong performance across all ZDT benchmark 

functions. 
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Table 2. Control parameters of all algorithms 
Parameters MOABC MOPSO NSGA II 

Max iteration 100 100 100 

Population size 100 100 100 

Dimension of the solution space (D) 4 4 4 

Number of employed bees (%) 50 - - 

Number of onlookers bees (%) 50 - - 

Number of scouts 1 - - 

Limit (=number of onlookers bees*D) 100 - - 

Size of the external archive (sizeAR) 25 25 - 

Weight damping rate (Wdamp) - 0.99 - 

Weight factor (w) - 0.5 - 

Acceleration coefficient (𝟎. 𝟓 ≤ 𝑪𝟏 ≤ 𝟐. 𝟓) - 1 - 

Acceleration coefficient (𝟎. 𝟓 ≤ 𝑪𝟐 ≤ 𝟐. 𝟓) - 2 - 

Number of grids per dimension (NGrid) - 7 - 

Inflation rate (𝜶) - 0.1 - 

Leader selection pressure (𝜷) - 2 - 

Deletion selection pressure (𝜸) - 2 - 

Mutation rate (𝝁) - 0.1 - 

Crossover ratio (pc) - - 0.8 

Mutation ratio (pm) - - 0.3 

 

 

 
 

Figure 3. True and obtained Pareto fronts by MOABC, MOPSO, and NSGA-II algorithms on 5 ZDT test 

problems 

 

 

As depicted in Figures 4 to 6, the box plots display the results of the GD, SP, and HV metrics, 

respectively, for the three algorithms. These box plots provide a visual representation of the data distribution.  

As can be seen from Figure 4, the results of the box plots for the GD metrics on the ZDT benchmarks 

indicate the performance of three algorithms: MOABC, MOPSO, and NSGA-II. 

Overall, MOABC consistently performed better than MOPSO and NSGA-II in terms of their 

closeness to the true Pareto front, as indicated by the lower values of the GD metric. Specifically, MOABC 

achieved the lowest best values on most of the ZDT benchmarks, indicating its ability to generate solutions 

that are closer to the optimal Pareto front. While MOPSO and NSGA-II had higher best values, they still 

achieved reasonable performance in approaching the true Pareto front, especially on certain benchmarks such 

as ZDT3. 
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As shown in Figure 5, the box plots depict the results of the SP metrics on the ZDT benchmarks. 

The plots indicate that both MOABC and MOPSO consistently yield the smallest spacing outcomes, 

indicating a more diverse and evenly distributed set of solutions. On the other hand, NSGA-II tends to show 

higher spacing values, implying a less uniformly distributed set of solutions. 

In Figure 6, the box plot analysis of the HV metrics provides insights into the algorithmic 

performance based on the best-estimated hypervolume values. Across the ZDT benchmarks, MOABC 

consistently exhibits the highest hypervolume values among the three algorithms. It outperforms both 

MOPSO and NSGA-II in terms of maximizing the hypervolume metric, indicating superior coverage of the 

Pareto front. This suggests that MOABC can generate diverse and well-distributed solutions, offering better 

trade-offs between multiple objectives. 

 

 

Table 3. The statistical results of the performance metrics for 5 ZDT function of the algorithms 
Algorithms 

Test 

function 

 

MOABC 

this work 

MOPSO 

[25] 

NSGA II 

[26] 

MOABC 

this work 

MOPSO 

[25] 

NSGA II 

[26] 

MOABC 

this work 

MOPSO 

[25] 

NSGA II 

[26] 

GD metric SP metric HV metric 

ZDT1 

Best 8.52E-04 1.22E-03 2.45E-03 8.52E-04 2.65E-03  1.43E-02 7.20E-01 6.19E-01 

Mean 8.52E-04 1.83E-03 2.59E-03 8.52E-04 5.56E-03 1.63E-02 7.17E-01 5.93E-0,1 

Worst 1.06E-03 2.44E-03 2.72E-03 1.06E-03 8.48E-03 1.83E-02 7.14E-01 5.68E-01 

ZDT2 

Best 8.54E-04 1.06E-03 2.21E-03 2.69E-03 2.57E-03 2.84E-03 4.56E-01 3.66E-01 

Mean 8.91E-04 5.91E-03 4.47E-03 2.75E-03 2.73E-02 3.14E-02 4.52E-01 3.22E-01 

Worst 9.29E-04 1.07E-02 6.72E-03 2.81E-03 5.20E-02 5.99E-02 4.49E-01 2.36E-01 

ZDT3 

Best 4.93E-03 2.74E-03 3.72E-03 1.84E-02 7.91E-03 2.13E-02 8.33E-01 8.35E-01 

Mean 5.02E-03 2.74E-03 3.72E-03 1.93E-02 7.91E-03 2.13E-02 8.32E-01 8.28E-01 

Worst 5.11E-03 3.52E-03 5.97E-03 2.01E-02 1.16E-02 4.56E-02 8.29E-01 7.93E-01 

ZDT4 

Best 1.08E-03 8.19E-02 5.84E-03 4.01E-03 1.36E-01 5.17E-02 7.20E-01 1.85E-01 

Mean 1.08E-03 8.19E-02 5.84E-03 4.01E-03 1.36E-01 5.17E-02 7.17E-01 1.17E-01 

Worst 1.17E-03 8.28E-02 8.15E-03 4.64E-03 1.45E-01 7.77E-02 7.15E-01 8.29E-02 

ZDT6 

Best 1.03E-03 8.02E-02 2.32E-01 2.72E-03 3.92E-01 3.13E-01 4.26E-01 4.18E-01 

Mean 1.03E-03 8.02E-02 2.38E-01 2.72E-03 3.92E-01 3.13E-01 4.23E-01 4.11E-01 

Worst 1.16E-03 9.01E-02 2.45E-01 3.21E-03 4.40E-01 5.43E-01 4.19E-01 4.01E-01 

 

 

 
 

Figure 4. Box plot for the statistical results for GD on 5 ZDT test problems 
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Figure 5. Box plot for the statistical results for SP on 5 ZDT test problems 

 

 

 
 

Figure 6. Box plot for the statistical results for HV on 5 ZDT test problems 

 

 

6. CONCLUSION 

This paper introduces an adapted version of the Artificial Bee Colony algorithm, tailored for 

addressing multi-objective optimization challenges. Our modified algorithm combines a non-dominated 

sorting strategy, including aspects of Pareto dominance, crowding distance, and a greedy selection method. 

This ensures a diverse population and effective convergence to the true Pareto optimal front. We evaluated 

the effectiveness of our MOABC algorithm using five distinct test functions, assessing its performance with 

three established metrics from the literature. The statistical analysis demonstrates that our algorithm achieves 

superior convergence towards the Pareto front and higher HV values compared to existing methods, 

establishing it as a top performer in this field. These results highlight the MOABC's efficiency and its 

potential as a preferred choice for tackling multi-objective optimization problems. Future research could 
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focus on enhancing the MOABC framework and exploring its potential applications in the domain of analog 

circuit design. 
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