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 The internet of things (IoT) underscores pivotal real-world applications 

ranging from security systems to smart infrastructure and traffic 

management. However, contemporary IoT devices grapple with significant 
challenges pertaining to battery longevity and energy efficiency, 

constraining the assurance of prolonged network lifetimes and expansive 

sensor coverage. Many existing solutions, although promising on paper, are 

intricate and often impractical for real-world implementations. Addressing 
this gap, we introduce an energy-efficient routing protocol leveraging 

reinforcement learning (RL) tailored for wireless sensor networks (WSNs). 

This protocol harnesses RL to discern the optimal transmission route from 

the source to the sink node, factoring in the energy profile of each 
intermediary node. Training of the RL algorithm is facilitated through a 

reward function that includes energy outflow and data transmission efficacy. 

The model was compared against two prevalent routing protocols, LEACH 

and fuzzy C-means (FCM), for a comprehensive assessment. Simulation 
results highlight our protocol’s superiority with respect to the active node 

count, energy conservation, network longevity, and data delivery efficiency. 
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1. INTRODUCTION 

The internet of things (IoT) is a network of electronic devices that can gather, process, and share 

data, aiming to better current services [1]. There are many practical use cases of IoT, such as in healthcare, 

waste management, transportation, and more [2], [3]. Devices like radio-frequency identification (RFID) 

tags, mobile phones, and sensors gather data via a vast IoT network. However, these devices, often called 

sensor nodes, have limited computing power and short battery life. The existing approaches to direct data, or 

routing methods, in wireless sensor networks (WSNs) are complex and need resources like processing power 

and memory that many IoT devices do not have in surplus [4]. 

Devices in the IoT include smartphones, wireless sensors, and RFID tags, among others [5], [6].  

A typical sensor has parts for power, sensing, processing, and communicating [7][10]. While the power part 

supplies energy to others, the other parts use very little energy [11][13]. This energy efficiency becomes 

paramount for devices deployed in challenging terrains and environment where frequent battery replacements 

or recharges are untenable [13], [14]. It is a widely accepted notion that energy-efficient routing algorithms 

can judiciously control the power consumption, thereby helping prolong the network’s operational longevity. 

Given these challenges, there is a growing demand for energy management strategies that are 

resource-dependent yet robust to implement. Distributing the routing process evenly across devices is pivotal 

https://creativecommons.org/licenses/by-sa/4.0/
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for such an energy-efficient network. This ensures balanced energy dissipation and increases the likelihood 

that more gadgets will keep working for longer. 

In this regard, our research introduces a reinforcement learning-centric approach strategy for 

designing a low-power IoT routing protocol. The proposed method improves the longevity and scalability of 

an IoT network by balancing the energy produced in the network, and adeptly distributing energy among 

devices. The protocol identifies optimal transmission routes by incentivizing nodes to exchange locally 

pertinent data using residual energy as criteria. Furthermore, the hop count attribute was finetuned to 

minimize overall network latency. The following are our contributions: 

 We repurpose energy optimization as a crucial part of routing concerns in the IoT landscape. 

 We suggest a new routing plan that uses the least energy. 

 We use a method called Q-learning to bolster energy savings further. 

 Benchmarking the network efficiency against two established state-of-the-art methodologies. 

The paper is in five sections: Section 2 discusses other works on power-saving routing for IoT-based 

WSNs. In section 3 explains the proposed methodology. The simulation setup and the ensuing results are 

presented in section 4. Section 5 summarizes the paper, offering concluding remarks and potential avenues 

for future exploration. 

 

 

2. RELATED WORKS 

2.1.  Reinforcement learning 

Reinforcement learning (RL) refers to a class of algorithms used to improve the efficiency of 

Markov property-based sequential decision-making [15], [16]. These algorithms operate by learning to make 

decisions through trial and error, essentially learning a strategy or policy that maps states of the world to the 

actions that should be taken in those states. The fundamental principle of RL is the concept of reward: 

algorithms learn to take actions that maximize cumulative reward over time. This approach makes RL 

especially suitable for complex environments where explicit programming of all possible scenarios is 

impractical. The RL paradigm can be divided into: i) model-based RL: when the model of the system is 

available and ii) model-free RL: when the system’s model is not known. 

Central to RL is the agent’s interaction with the environment. As depicted in Figure 1, the agent 

makes decisions based on the state St of the environment. The agent takes an action a, and as a result of the 

consequence of this action, the environment transitions to a new state St+1 and provides a reward Rt to the 

agent. 

 

 

 
 

Figure 1. Reinforcement learning agent interaction 

 

 

In scenarios where the return reward is not instantaneous but rather delayed, meaning that the 

immediate reward does not accurately reflect the agent’s true performance. The cumulative reward Rt is 

calculated as (1): 
 

𝑅𝑡 =  𝑟𝑡 +  ϓ𝑟𝑡+1 +  ϓ2𝑟𝑡+2 … =  ∑ ϓ𝑡ϓ𝑡+1
𝑇−1
𝑡=0  (1) 

 

where ϓ = factor, capturing the uncertainty of future rewards. The policy can never guarantee that the same 

future reward will be gained by the same behaviour because of the inherent uncertainty in the environment.  

The primary goal of RL algorithms is to ascertain the optimal action strategy, , argmax(), as described in (2): 
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𝜋+ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜉𝜋  [∑ ϓ𝑡𝑟𝑡
𝑡𝑚𝑎𝑥
𝑡=0 ] (2) 

 

2.2.  Deep reinforcement learning with deep neural networks 

Recent advances in deep learning (DL), particularly the use of deep neural networks (DNNs), have 

enabled the extraction of intricate patterns from high-dimensional data sources like images, audios, and 

videos [17]. DNNs in the context of RL, termed deep reinforcement learning (DRL), is depicted in Figure 2. 

DRL leverages DNNs to deduce optimal policies and extract relevant environmental data. DRL can 

determine either the Q-value (value-based) for every state-action combination or predict a probability 

distribution of potential actions (policy-based) [18], [19]. 

 

 

 
 

Figure 2. DRL framework 

 

 

2.3.  Wireless network protocols 

Wireless networks face challenges in security, reliability, and energy efficiency. Researchers have 

proposed different protocols to address these issues [20][22]. Recent advancements have also seen the 

integration of machine learning and game theory to factor-in the optimal routing approaches for wireless 

networks [23], [24]. WSNs have seen the evolution of diverse routing protocols. Kooshari et al. [25] 

classifies these into three primary categories: 

 Flat routing: data-centric protocols without any constraints on data origin [26], [27]. 

 Location-based routing: these assign addresses to sensor nodes based on their geographical locations. 

Techniques include relative distance calculations from signal strengths and global positioning system 

(GPS)-based location tracking [28]. 

 Hierarchical routing: these protocols prioritize energy conservation. They distribute routing 

responsibilities based on the capabilities of the devices, ensuring optimal energy use [29][31]. Table 1 

summarizes the findings of relevant literature. 

 

 

Table 1. Summary table of literature 
Topic Description References 

RL basics Algorithms for decision-making based on Markov property [15], [16] 

DRL with DNNs Integration of deep learning with RL for high-dimensional data [17][19], [32], [33] 

Wireless network protocols Protocols addressing security, reliability, and energy efficiency [20][24] 

WSN routing types Classification into flat, location-based, and hierarchical routing [25][31] 

 

 

3. METHOD 

In addressing energy efficiency challenges within IoT routing, this research employs the adaptability 

of RL. With RL’s potential to optimize decisions based on environmental feedback, it offers a solution for 

dynamic, resource-limited IoT networks. Central to the approach is an agent interacting with the IoT 

network, observing network states such as residual energy, data queue lengths, and traffic. To manage the 

high dimensionality in large-scale IoT networks, DRL is introduced, enabling the agent to extract patterns via 

DNNs for better policy learning. Building on this, the energy-efficient deep Q-network (EEDQN) routing 

protocol is proposed in Figure 3. EEDQN employs a Q-network that, using the network state, estimates  

Q-values for potential actions, emphasizing energy conservation. This ensures decisions that maximize long-

term rewards, adapting to IoT network dynamics. 
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Figure 3. Overview of the proposed methodology EEDQN 

 

 

3.1.  Network setup and cluster formation phase 
The process primarily focuses on establishing the network and selecting the cluster head, which is 

divided into two segments. Initially, devices determine their preliminary Q-values using inherent data.  

The central station disseminates a periodic signal detailing its geographical coordinates. On intercepting this 

signal, every device registers the central station’s location and applies (1) and (2) to deduce its starting  

Q-value, considering the energy reserve and number of hops. It’s presumed that each device possesses a 

unique energy reserve. A set distance boundary is maintained between the cluster heads (CHs) and the central 

station to streamline the network and aid distant sensors in locating a CH. To ensure efficient energy usage 

and direct connections towards the central station, CHs are strategically positioned away from the network’s 

periphery, minimizing extended communication paths. The entire election process is described in  

Algorithm 1. Q-value computation based on energy level and hop count, as presented in (3) and (4): 

 

𝑄(𝑥, 𝑦)  =  𝑄𝑝𝑟𝑒𝑣(𝑥, 𝑦)  +  𝛽(𝑟 +  𝛾. ℎ𝑖𝑔ℎ𝑒𝑠𝑡(𝑄𝑛𝑒𝑥𝑡(𝑥′, 𝑦′))  −  𝑄(𝑥, 𝑦)) (3) 

 

Energy level update 𝐸(𝑡 + 1)  =  𝐸(𝑡)  −  𝐸𝑇𝑥(𝑘)  −  𝐸𝑅𝑥(𝑘) –  𝐸𝐷𝐴 (4) 

 

where: Q (x, y)=Q-value of a state-action pair; x=learning rate; r=reward for taking action y in state s. 

γ=discount factor; max (Q (x’, y’))=maximum Q-value over all possible actions x’ in the next state y’. 

E(t)=current energy level; ETx(k)=energy used to transmit a packet of length k. ERx (k)=energy used to 

receive a packet of length k. EDA is the energy consumed by the device for data aggregation. 

 

Algorithm 1. The entire election processes 
1. Network setup and cluster head election: 

             For each device do: 

                           1a. SELECT a random backoff time and wait for it to expire 

                           1b. ASSIGN the cluster head to the device with maximum energy 

                           1c. BROADCAST a group head announcement message to inform other 

devices of its status. 

              End For 

2. Cluster Formation: 

             For each device that detects a group head announcement do:                  

                         2a. JOIN the group with the strongest signal strength. 

                         2b. SEND a message to the identified cluster head. 

                         2c. UPDATE its routing table using the local information from the 

cluster head. 

             End For 

3. Data Transmission: 

            WHILE! Destination Node do:                               

                        3a. SELECT the next-hop device using its routing table, 

prioritizing residual energy and position coordinates. 
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                        3b. TRANSMIT local information to the selected next-hop device. 

                        3c. EXTRACT information from the received packet header and UPDATE 

its routing table. 

             End While 

                                  Extract the information encapsulated in the packet header 

and UPDATE its routing table. 

4. Reinforcement learning: 

                   4a. EVALUATE the energy efficiency of routing decisions based on energy 

consumption and packet transmission distance. 

                  4b. UPDATE routing decisions using a Q-learning algorithm to optimize 

future choices. 

 

3.2.  Data transmission phase 

In the phase of data transmission, each device harnesses RL to maximize its routing decisions. This 

adaptive decision-making process involves recalculating the Q-value, considering both immediate rewards 

from recent actions and the anticipated cumulative rewards. The methodology encompasses three integral 

components: a model estimating energy usage, a function that determines rewards, and a mechanism to refine 

the Q-value. The energy model gauges the remaining energy, adjusting for energy expended during packet 

transfers. Using this updated energy data alongside the hop count, the system computes the reward. This 

reward subsequently informs the Q-value recalibration, as detailed in (5) to (7). Equation for updating Q-

value: 

 

𝑄(𝑠, 𝑎)  =  𝑄(𝑠, 𝑎)  +  𝛼(𝑟 +  𝛾 𝑚𝑎𝑥(𝑄(𝑠′, 𝑎′))  −  𝑄(𝑠, 𝑎)) (5) 

 

in (6) for energy consumption model: 

 

𝐸(𝑡 + 1)  =  𝐸(𝑡)  −  𝐸𝑇𝑥(𝑘)  −  𝐸𝑅𝑥(𝑘) –  𝐸𝐷𝐴 (6) 

 

in (7) for reward function: 

 

𝑟 =  𝑅𝑒𝑤𝑎𝑟𝑑(𝐸(𝑡 + 1), ℎ) (7) 

 

where: 

Q(s,a)=Q-value of a state-action pair 

α=learning rate 

r=the immediate reward obtained from taking action a in state s 

γ=the discount factor 

max(Q(s’,a’))=the maximum Q-value over all possible actions a' in the next state s' 

E(t)=the current energy level 

ETx(k)=the energy used to transmit a packet of length k 

ERx(k)=the energy used to receive a packet of length k 

EDA=the energy consumed by the device for data aggregation 

h=the hop count 

 

3.2.  Reinforcement learning 

3.2.1. Reward function 

This metric is obtained by evaluating the remaining energy, denoted as Lr, and the aggregate of 

hops, represented by Nhops: 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑔(𝐿𝑟, 𝑁ℎ𝑜𝑝𝑠) (8) 

 

where g=reward function. In this stage, the proximity between the transmitting device and its neighboring 

devices is also taken into account. The span between a device, labeled Si, and the central station through a 

connecting device, Sj, is labeled as Dlink and is determined as per (9): 

 

𝐷𝑙𝑖𝑛𝑘 =  𝑠𝑞𝑟𝑡((𝑥𝑖 −  𝑥𝑗)2 +  (𝑦𝑖 −  𝑦𝑗)2 +  (𝑧𝑖 −  𝑧𝑗)2) (9) 

 

where xi, yi, and zi=the coordinates of device Si and xj, yj, and zj are the coordinates of device Sj.  

The estimated hop count is computed as (10): 

 

𝑁ℎ =  𝐷𝑙𝑖𝑛𝑘/(𝑇𝑋𝑟𝑎𝑛𝑔𝑒) (10) 
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where TXrange is the transmission range. The reward function is then computed as: 

 

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝐸𝑟 −  𝑎 ∗  𝑁ℎ (11) 

 

where a is a constant that determines the trade-off between energy consumption and hop count. 

 

3.2.2. Q-value update 

To ascertain the true worth of a specific action, it is essential to calculate the action-value function. 

This function gauges the efficacy of executing a certain action in a designated state while adhering to a 

strategy denoted by π. The function is calculated as a discounted total of rewards received by the agent post 

specific action in a given state. This can be mathematically represented in (12): 

 

𝑄(𝑠, 𝑎)  =  𝐸[𝑅𝑡 + 1 +  𝛾𝑅𝑡 + 2 +  𝛾^2𝑅𝑡 + 3 + . . . | 𝑆𝑡 =  𝑠, 𝐴𝑡 =  𝑎, 𝜋] (12) 

 

where: 

Q(s,a)=the action-value function for taking action ‘a’ in state ‘s’ 

E=the expectation operator 

Rt=the reward received at time ‘t’ 

γ (gamma)=the discount factor used to balance immediate and future rewards 

St=the current state of the agent 

At=the action taken by the agent in the current state 

π=the policy being followed by the agent 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Model training and implementation 

Training the EEDQN network entails using past data from the IoT network alongside simulated 

scenarios. This ensures robustness in the learned policies. The model is trained iteratively, with each episode 

involving. Observing the current state, taking an action based on the Q-network, receiving a reward from the 

environment, and adjusting the Q-network based on the observed reward using backpropagation. 

We performed simulations in Python 3.10 to validate the effectiveness of the model. 120 devices 

were randomly distributed over a sensing field of 150 m×150 m. The sub station was positioned at the center 

of the sensing field with coordinates of (75, 75). The network was designed with diversity in mind, featuring 

devices that have energy capacities spanning between 1 and 2 joules. The simulation parameters are detailed 

in Table 2. 

 

 

Table 2. Simulation parameters and corresponding values 
Parameters Values 

α 1.00 

γ 0.92 

h 20 

Field size 150 m×150 m 

Sum of devices 120 

Initial energy 1.5 joules 

 

 

The suggested protocol incorporates two crucial metrics: the hop count and the remaining energy. 

Additionally, probabilistic values, denoted as ‘a’ and ‘b’, play a role. The choice of a device hinges on its 

energy status and hop count. When 'a' has a larger value, devices with abundant energy are more likely to be 

chosen. Conversely, a greater 'b' value favors devices that have fewer hops to the primary station. Figure 4 

provides the results of the initialization of nodes using the RL approach, while Figure 5, showcasing the 

simulation results with parameters set at a=0.3, and b=0.7 demonstrates the protocol’s optimal performance. 

Remarkably, the best performance was reached with fewer than 35 operating nodes, highlighting the 

efficiency of our approach. This is particularly evident when assessing the energy consumption metrics, as 

depicted in Figures 6 and 7. The cumulative energy consumed tends to decrease as the sum of nodes 

increases, this effect is captured in Figure 7. 
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Figure 4. RL-based node initialization 

 

 

 
 

Figure 5. Effects on performance (a=0.3, b=0.7) 

 

 

 
 

Figure 6. Cluster-based energy consumption 
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Figure 7. RL-based energy consumption 

 

 

An assessment was conducted against established clustering protocols. Key performance indicators 

included energy consumption per operational round and the duration of sustained network activity before 

energy depletion, using state of the art (SoTA) clustering protocols like LEACH, HEED, and smart-BEE 

[34]. We used two metrics for comparison: i) network area per round which also helps evaluate the network 

lifetime and ii) energy consumed by all devices each round. In Figure 8, we assessed the network efficiency 

by varying the number of sensor devices used. 

 

 

 
 

Figure 8. Proposed method comparison with SoTA 

 

 

To improve the network lifetime and avoid the challenges associated with a cold start, a cluster-

based routing protocol with RL was incorporated [35]. The learning rate α set to 1 accelerates the learning 

process, which resulted in a significant reduction in energy consumption per round. Additionally, by setting 

the discount factor c to 0.92, we were able to prioritize future rewards, which contributed to better balancing 

of energy consumption over time, minimizing energy consumption per device, and ultimately extending the 

network lifetime, as demonstrated in Figure 7. 

The consequent energy distribution, as illustrated in Figure 8, underscores the protocol’s efficiency, 

yielding enhanced energy efficiency and a more extended network operational span. Such advancements 

underscore the potential benefits for enterprises and researchers, highlighting avenues for optimizing IoT 

network efficiency and reduce energy costs. Table 3 provides a comparative analysis of the proposed 

approach. 

 

 

Table 3. Comparative analysis with state-of-the-art protocols 
Metrics (average over 50 rounds) Proposed protocol LEACH HEED Smart-BEE 

Network area per round (m2) 11,250 9,750 10,500 9,800 

Energy consumed per round (Joules) 1.1 1.5 1.4 1.6 
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From Table 3, the following implications and observations can be drawn: the proposed protocol 

demonstrates superior area coverage, registering 11,250 m2 per round and outpacing LEACH, HEED, and 

smart-BEE by significant margins. It also excels in energy efficiency, consuming only 1.1 Joules per 

round, notably less than its counterparts. This efficiency translates to extended device battery life and 

network longevity. Moreover, the protocol's expansive coverage and low energy consumption highlight its 

operational efficacy. It promises scalability, maintaining performance as network size grows [36]. When 

compared to the established protocols like LEACH, HEED, and Smart-BEE, the proposed protocol's 

advantages become evident, underscoring the benefits of integrating reinforcement learning with a cluster-

based routing approach [37]. 

 

 

5. CONCLUSION 

This research introduced an RL-based routing protocol for IoT aimed at optimizing energy 

consumption and extending network lifespan. By leveraging initial energy and hop count, the protocol 

effectively determined the optimal route for data transmission. Through a multi-phased approach, including 

cluster formation and data transmission, reinforcement learning was employed to prioritize energy-efficient 

routing. Comparison with existing protocols like LEACH, smart-BEE, and HEED validated the superior 

energy efficiency and longevity of the proposed method. The result further showcased the protocol's 

suitability for modern IoT networks, emphasizing its balance between sustainability and reach. An extension 

of this work will explore additional parameters, like network traffic and node mobility, and the possibility of 

incorporating other deep learning techniques to refine the protocol. 
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