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 Modern life's ubiquitous component of stress has a significant impact on many 

facets of human existence. This article presents the development of a wearable 

device integrated with internet of things (IoT) technology, aiming to identify 

and quantify stress levels in real-time. This technology provides a possible 

means of improving stress assessment, enabling prompt treatments and 

individualized stress management techniques. ESP32-PICO computation 

platform was used as part of wearable stress monitor. The developed wearable 

monitor also includes a high-sensitivity pulse oximeter and heart-rate sensor 

(MAX30102) and galvanic skin response (GSR) sensors to acquire 

physiological signals associated with stress status. The wearable monitor 

device delivers data to the firebase platform via Wi-Fi. The benefits and 

prospective uses of the IoT-enabled wearable device are also covered in the 

article. It demonstrates the mobile wearable monitor adaptability in a variety 

of scenarios, such as offices, classrooms, and healthcare facilities, where 

stress management is vita and required for activity optimization. Continuous 

monitoring capabilities allow users to learn about their stress levels and take 

proactive self-care measures. During the validation experiments, the accuracy 

of measurement capabilities of the developed wearable monitor were 

evaluated reduced errors of heart rate and respiratory rate being observed. 
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1. INTRODUCTION 

"Stress" is a loaded word. It has a lot of negative implications and is frequently utilized in advertising 

and the media as a "boogeyman" that needs to be driven out of people's lives. The role of stress and the stress 

response in the preservation of health and survival, however, is completely overlooked by this too simplified 

viewpoint when the environment places tremendous strain on the brain and body [1]. 

Any scenario can be stressful. Stress first affects the feeling, which leads to psychological illnesses. 

Early indicators of stress include anxiety, distracting anxiety, excessive worry, changes in sleep patterns, 

impatience, anger, melancholy, intolerance, thoughts of harming oneself or others, palpitation, stress headache, 

and internal pressure. Other symptoms include headaches, severe fatigue, nausea and vomiting, diarrhea, 

tachycardia, chest discomfort, increased blood pressure, flushing or disorientation, shortness of breath, 

restlessness, choking sensation, or hyperventilation [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The ability of the human body to react to stress and mobilize resources to deal with difficult 

circumstances is truly astounding. However, prolonged or excessive stress can have a number of physiological 

and psychological side effects that have a big impact on how people feel physically. Unmanaged stress can 

have a wide range of negative effects on a person's quality of life, including immune system deterioration, 

anxiety disorders, and depression. Stress comes in several forms, including eustress, distress, acute stress, and 

chronic stress. When we are stressed, our bodies go into fight or flight mode [3]. 

A vital action in the pursuit of ideal health is the monitoring of stress levels. It is possible to recognize 

triggers, comprehend the impact on various physical systems, and create efficient coping mechanisms by 

obtaining insight into personal stress patterns. This proactive approach gives people the power to take charge 

of their health and make wise decisions to lessen the negative impacts of stress. Monitoring stress levels is 

essential for protecting mental and emotional health in addition to physical health. Cognitive impairment, 

anxiety disorders, sadness, and a lower quality of life can all be influenced by psychological stress. Regular 

stress assessments provide people a better understanding of their mental and emotional states, empowering 

them to seek out the right help, put stress-reduction strategies into practice, and develop resilience. Monitoring 

stress levels also makes it easier to spot negative behavioral tendencies and lifestyle decisions. Stress can 

interfere with sleep cycles, decrease cognitive abilities, and trigger unhealthy coping strategies like binge eating 

or social withdrawal. By keeping track of their stress levels, people can acquire insight into how stress affects 

their behavior, enabling them to make educated decisions, form better habits, and create stress-reduction plans. 

Internet of things (IoT) technology is currently becoming more widely available. Recent 

developments in the technology of embedded processors, diverse sensors, and wireless communication systems 

had a major role in the development of this field. As a result, it was possible to create inexpensive, tiny, and 

ultra-low power embedded devices that may be networked and serve as essential elements of the IoT [4], [5]. 

Many of the mobile health platforms reported in the literature are using a variety of sensors, including heart 

rate sensors, to gather information on the patient's vital signs and overall health inside of internet of medical 

things (IoMT). Through the use of a platform, a collection of sensors, and other devices, interaction between 

people and things is ensured [6], [7]. Latest technologies has made it easier and more convenient to monitor 

stress levels. Thus, people now have the ability to track and analyze their stress responses in real-time thanks to 

wearable technology, smartphone apps, and online platforms. These tools combine physiological measurements, 

activity monitoring, and self-reported data to deliver individualized insights and actionable recommendations, 

empowering people to actively participate in stress management and improve their health outcomes. 

Chronic ailments include cardiovascular problems, diabetes, autoimmune diseases, and mental health 

issues place a heavy load on people and healthcare systems worldwide. Recent studies have illuminated the 

complex relationship between chronic disease and stress, emphasizing the crucial part that stress plays in the 

onset, progression, and management of disease. Healthcare providers can get important insights that guide 

individualized interventions, increase disease management, and ultimately improve the quality of life for those 

with chronic diseases by precisely quantifying and monitoring stress levels. Understanding the complex link 

between stress and chronic disease has made accurate and reliable stress measurement even more important. 

Traditional clinical evaluations and self-reported questionnaires offer only a limited amount of information 

about the subjective experience of stress, frequently depending on recollections from the past that could be 

biased and inaccurate. However, improvements in stress measuring methods, including wearable technology, 

biomarker analysis, and physiological monitoring, have created new opportunities for the objective and in-the-

moment assessment of stress. Stress is a normal response to the pressures of our constantly shifting world. 

Even though demands and change are continuous companions, how we perceive these internal and external 

changes directly affects how much stress we feel. Stress can accelerate the development of brain lesions, which 

can worsen Alzheimer's disease. Reducing stress may aid in slowing the disease's progression, according to 

some studies [8]. 

Knowing how stress affects chronic disease can guide focused interventions and individualized 

treatment plans. Healthcare professionals can lessen the harmful impacts of stress by designing therapies that 

target stress management, which may improve disease outcomes, lessen symptom burden, and improve overall 

quality of life for people with chronic diseases. Additionally, stress assessment offers a way to monitor the 

success of lifestyle changes and interventions that aim to reduce stress, enabling ongoing therapy monitoring 

and adaptation. 

An important step forward in the measurement and treatment of stress is the developments of a 

wearable device that is IoMT-enabled for stress level recognition. This gadget has the potential to empower 

people, healthcare providers, and researchers in understanding and reducing the impact of stress on human 

well-being by giving real-time and tailored stress data. It creates new opportunities for early stress-related 

disorder detection, preventive interventions, and the creation of specialized stress management techniques. 

By transmitting data to medical experts via IoT and mobile technology, technologies make patient 

health monitoring easier. Professionals would benefit from employing the intermediate storage strategy to 

retain and gather patient data so that it is always accessible. On the basis of the integration of data from multiple 
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functional health sensors, we suggest a wearable device that may also be utilized for monitoring the patient's status 

with a chronic disease. Numerous IoT devices are used for health monitoring, according to the literature [9], [10]. 

Long-term patient monitoring is necessary in many medical conditions, such as those involving chronic 

illnesses, and cardiac conditions. The IoMT device should be capable of doing real-time monitoring in such 

circumstances [11]. 

A Brazilian University's undergraduate students who are enrolled in health sciences courses were 

profiled and their levels of stress were examined in the work [12] to see how these factors affect their health 

and academic performance. Higher levels of stress had a negative impact on students' academic performance, 

socializing, relationship with the university, learning, sleep, and perceived health. Stress levels were connected 

to gender, course, and semester. According to the current study, stress has a negative impact on academic 

performance and health status for Brazilian undergraduate students majoring in health sciences. 

The aim of the study [13] was to investigate how stress and coping mechanisms in university students 

are related. Data were gathered using a quantitative study that used a cross-sectional non-probability sample 

research approach. A questionnaire was used to gather the data, and it also included the adolescent coping scale 

(ACS) and the perceived stress scale (PSS). The study's findings showed that the majority of college students 

experience moderate levels of stress. Among undergraduates, there was a substantial in-verse link between 

stress level and coping mechanisms. 

Yikealo et al. [14] was to ascertain how stressed the college of education (CoE) students at the Eritrea 

Institute of Technology were. To determine the degree of stress among the pupils, descriptive research was 

conducted. A self-created questionnaire that measured participants' levels of stress across five domains 

(physiological, social, psychological, academic, and environmental) was completed by randomly selected 

participants (N=123). The findings showed that the kids' levels of stress were moderate. Academic and 

environmental stressors were discovered to be the two that contributed most to the students' degree of stress 

out of the five domains. Additionally, it was shown that there were no statistically significant correlations 

between the students' stress levels and their gender or grade point average (GPA). 

Surantha et al. [15], discuss using wearable technology to address issues with healthcare, such as 

disease detection, monitoring, and treatment. In addition, this review paper described how wearable device 

architecture was used. Chopra and Singhal [16] discuss the most popular wearable technology and sensors, 

wearable computing, wearable functioning and architecture, diverse applications, user preferences, and 

major wearable difficulties. The data under analysis revealed that the majority of consumers use wearables 

on a daily basis. 

The creation of an IoT physical rehabilitation system based on smart walkers is discussed in Nave and 

Postolache [17]. IMU, load cells, and an ultrasound sensor were used in the design and implementation of a 

multimodal sensing solution. The Arduino Mega computation platform, which calculates walking data 

throughout a rehabilitation session and stores them in the cloud, is what makes a walker smart. An established 

website and mobile app facilitate data analysis and data visualization. 

Using a smart wearable wristband, machine learning algorithms, and a dexterous robot hand that was 

three-dimensional (3D) printed, Yang et al. [18] introduced an IoT-enabled stroke rehabilitation system. The 

wearable device measures biopotential signals, and the robot hand receives the processed data remotely. In 

order to provide users with knowledge and feedback on their muscle movements, the received signals are then 

translated using a machine learning algorithm. 

To detect and track user cardiac abnormalities, Majumder et al. [19] devised and created an integrated 

smart IoT system. In order to help consumers better understand how they could feel about their 

electrocardiography (ECG), this research offers them a non-invasive technology. Brezulianu et al. [20] offer a 

system for tracking heart activity parameters utilizing wearable ECG devices and fabric-integrated sensors. 

Respiration and heart rate are the parameters that are measured. 

For patients with asthma, a smart IoT system to measure their respiratory rate is suggested in [21]. 

The patient's data is examined after the measured data is safely uploaded to the cloud. Mazgelytė et al. [22] 

looked at the dynamics of various stress indicators before, after, and during a quick session of respiratory 

biofeedback using virtual reality. In the study, 39 healthy participants took part. Before and after the session, 

participants appraised their mood status, level of weariness, and degree of strain using saliva samples. 

Throughout the session, measurements of the subjects' heart and respiratory rates, heart rate variability, and 

galvanic skin reaction were taken. The findings demonstrated a significant reduction in skin conductance 

values, heart and respiratory rates, and salivary cortisol levels following a single 12-minute relaxing session. 

When high levels of stress were experienced, Can et al. [23] recommended appropriate relaxation 

techniques (e.g., traditional or mobile) utilizing their automatic stress detection system and Empatica-E4 

smart-bands. The authors' technology uses contextual data based on physical activity to analyze high stress 

levels and provide the best relaxing technique. While traditional approaches may be helpful in free 
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environments, more constrained contexts may include less physical activity and be better suited for mobile 

relaxing techniques. 

The proposed work is a continuation of the research work [24], which was aimed at creating an 

mHealth monitoring system based on IoT, including sensors, medical bracelets, mobile devices with 

applications. Zholdas et al. [24] used a ready-made Xiaomi Mi Band 5 fitness bracelet to measure the patient's 

stress levels and physical activity, which includes: heart rate and steps. The primary disadvantage of utilizing 

Xiaomi Mi Band 5 is that it is impossible to get real-time data from a fitness wristband. The decision to develop 

a wearable health monitor was considered. 

The scientific novelty of this research is that the wearable monitor device consists of the main ESP32-

PICO-KIT microcontroller computation platform, photoplethysmography (PPG) sensor (MAX30102), 

galvanic skin response (GSR) sensor, light-emitting diode (LCD) organic LED (OLED), battery and power 

bank module. The operation of a wearable device is carried out using the human hand. From the human pulse, 

impulses are sent to the pulse sensor and galvanic skin sensor. Next, the sensors process impulses from the 

hand and the human skin. Next, the signals enter ESP32-PICO-KIT microcontroller, where the blood flow is 

processed. 

The hypothesis of this study is model (1) to (4), developed by Gonçalo Ribeiro, Octavian Postolache 

in work [25]. Based on this hypothesis, a wearable device is proposed. The theoretical significance of the study 

is to determine the values of a person’s health status when assessing the level of stress based on (1) to (4). The 

practical signif-icance of this study is that the developed wearable device can be used for patients with chronic 

diseases, since the level of stress affects a person’s health. 

The proposed wearable device has differences from the developed devices in [26]–[28]. In the 

proposed wearable device the following were used: ESP32-PICO-KIT as the main unit and PPG and GSR 

sensors. Sentilkumar et al. [26] in the development of the device the following were used: Arduino Mega as 

the main unit and the pulse sensor. Ragupathi et al. [27] in the development of the device following were used: 

Raspberry Pi, pulse sensor, temperature and blood pressure sensor. Valsalan et al. [28] develop body 

temperature sensor, pulse rate sensor were used for health monitoring. Due to the fact that the proposed device 

is wearable and this device uses ESP32-PICO computation platform with higher autonomy, it is convenient for 

monitoring human health stress for long periods during daily activities that recommend this prototype versus 

reported systems such as [26]–[28]. 

This paper is organized as follows. Section 2 describe and discusses the proposed wearable device to 

identify the existing solutions and to analyze the novelty and originality of the proposed solution. Section 3 

presents the stress monitor validation results obtained for different scenario, as well as some considerations 

and comparisons. Conclusion and future work follow in section 4. 

 

 

2. METHOD 

2.1.  Hardware components of the system 

Figure 1 shows the ESP32-PICO-KIT microcontroller, MAX30102 and GSR sensors. The ESP32-

PICO-KIT Figure 1(a) is powered by the ESP32-D0WDQ6 microcontroller, a dual-core Tensilica LX6 32-bit 

processor with a clock speed of up to 240 MHz. It supports IEEE 802.11 b/g/n Wi-Fi with a range of features 

like WPA/WPA2 and WEP encryption, station mode, access point mode, and Wi-Fi direct peer to peer (P2P). 

It has a 12-bit SAR ADC with up to 18 channels, making it suitable for analog sensor interfacing. The ESP32 

features two 8-bit DACs for analog signal generation. Combining a PPG sensor Figure 1(b) and a GSR sensor 

Figure 1(c) into a wearable device allows for the monitoring of physiological reactions to stress and the 

evaluation of general well-being. The GSR sensor detects fluctuations in the skin's electrical conductivity, 

whereas the PPG sensor analyzes changes in blood volume using visual methods. The PPG sensor measures 

blood flow and oxygen saturation levels using light-emitting diodes (LEDs) and photodetectors. The PPG 

sensor illuminates the skin in order to detect variations in reflected light intensity brought on by variations in 

blood volume, giving important information on cardiovascular function. 

The GSR sensor, on the other hand, gauges the electrical conductance of the skin, which is impacted 

by sympathetic nervous system arousal and sweat gland activity. Stress causes the sympathetic nervous system 

to become active, which increases sweat production and changes the electrical conductivity of the skin.  

A measure of emotional arousal and stress response is provided by the GSR sensor, which recognizes these 

changes. Figure 2 shows the wiring diagram of the proposed wearable device.  

Individuals can acquire the PPG, and GSR signals that can be used for a better understanding of their 

physiological reactions to stress. The developed monitor device can continually track changes in daily GSR as 

well as heart rate and respiration rate. Using optical methods, the MAX30102 sensor, a combined pulse 

oximeter and heart-rate sensor module, is intended to monitor a range of physiological indicators. It is 

frequently used to track heart rate and blood oxygen saturation levels (SpO2) in wearable technology, 

healthcare software, and fitness trackers. 
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Figure 1. Main sensors of a wearable monitor: (a) ESP32-PICO-KIT, (b) MAX30102 sensor, and (c) grove 

GSR sensor 

 

 

On the basis of the PPG principle, the MAX30102 sensor functions. Depending on the blood's 

oxygenation level, some of the light that the LEDs produce into the skin is absorbed by the blood vessels 

beneath the skin. The photodetector gauges how much light is being reflected or transmitted. The sensor can 

calculate the oxygen saturation level and heart rate by observing variations in light intensity. Analog-to-digital 

converters (ADCs) and digital signal processing (DSP) algorithms are integrated into the sensor module to help 

improve the precision and dependability of the measured signals. It offers configurable sample rates and 

resolution, enabling customisation based on the demands of the individual application. 

The MAX30102 sensor also has a number of built-in noise-reduction and ambient light-cancellation 

capabilities that guarantee reliable measurements even in difficult conditions. It offers adjustable LED timing 

and current management, making it possible to customize for various skin kinds and situations. Typically, 

microcontrollers or development boards are used to communicate with the MAX30102 sensor. The inter-

integrated circuit (I2C) interface used by the sensor and host device for communication makes it simple to 

integrate the sensor into a variety of platforms. 

The GSR sensor, also known as the electrodermal activity (EDA) sensor, is a device used to measure 

the electrical conductance of the skin. It is commonly employed in applications related to stress monitoring, 

emotional arousal assessment, and biofeedback training. The GSR sensor works on the premise that 

fluctuations in sweat gland activity, which is controlled by the sympathetic nervous system, modify the 

electrical conductance of the skin. The sympathetic nervous system is engaged when a person feels emotional 

or physiological stimulation, such as stress or excitement, which results in an increase in sweat production. 

The electrical conductivity of the skin is changed by the increase of perspiration on the surface. 

Two electrodes that are in touch with the skin, often on the fingers or palm, make up the GSR sensor 

in most cases. The "measurement electrode" tracks the electrical current produced by the "excitation electrode," 

which uses one electrode to apply a little voltage to the skin. The measured current is a reflection of the skin's 

conductivity, which is impacted by sweat. 

Skin conductance response (SCR) and skin conductance level (SCL) measurements are also possible 

with the GSR sensor. SCL is the normal level of skin conductance, and it varies with temperature and humidity, 

among other things. SCR, on the other hand, describes brief variations in skin conductance that happen in 

reaction to events or stimuli. SCR is frequently employed to evaluate stress reaction or emotional arousal. 
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Signal conditioning circuits can amplify and process the GSR analog output signals. These circuits 

clean up the signal, amplify variations in skin conductance, and prepare it for future analysis or system 

integration. Real-time or postponed study of the GSR sensor's data are also options. It frequently works in 

tandem with additional physiological sensors or biofeedback devices to offer a thorough understanding of  

a person's emotional or stress response. 

 

 

 
 

Figure 2. Block diagram of wearable stress monitor 

 

 

Stress management, mental health monitoring, biofeedback training, and studies of human-computer 

interactions are among the applications of GSR sensors. The GSR sensor provides invaluable insights into  

a person's mental state and physiological reactions to diverse stimuli by tracking variations in skin conductance, 

enabling tailored interventions and stress-reduction approaches. Figure 3 shows design of proposed wearable 

device. The wearable device has a battery and a charger that provide 5 to 6 hours of operation for the device. 

 

2.2.  Measured physiological parameters 

The cardiovascular, pulmonary, endocrine, gastrointestinal, neurological, muscular, and reproductive 

systems are just a few of the biological systems that are typically impacted by stress. Acute stress affects the 

cardiovascular system by raising heart rate, intensifying heart muscle contractions, expanding the heart, and 

diverting blood flow to big muscles. The circulatory system and respiratory system collaborate to deliver 

oxygen-rich blood to body cells while eliminating carbon dioxide waste [29]. 

Heart rate refers to the number of times a person's heart beats per minute (BPM). It is a vital 

physiological parameter that reflects the rate at which the heart pumps blood throughout the body to supply 

oxygen and nutrients to tissues and organs. Heart rate is commonly used as a measure of cardiovascular health 

and fitness and can provide valuable insights into an individual's overall well-being. The National Institutes of 

Health have included the average heart rate for each age group, as shown in Table 1. Heart rate and stress are 

directly related because when a person is under stress, their body briefly generates adrenaline, which raises 

heart rate and consequently blood pressure. Additionally, having high blood pressure increases the risk of heart 

attacks by damaging the arteries, resulting in blood clots. 

The respiratory rate is a basic vital sign that can be affected by a variety of pathological disorders, 

such as pneumonia, unfavorable cardiac events, and clinical deterioration, as well as stresses including 

emotional stress, cognitive load, heat, cold, physical effort, and exhaustion from exercise. The increased 

sensitivity of respiratory rate to these situations compared to most other vital signs, as well as the variety of 

appropriate technological solutions monitoring respiratory rate, have significant implications for healthcare, 

workplace environments, and sport [30]. 

The term "respiratory rate", frequently abbreviated as "RR", refers to how many breaths a person takes 

in a minute. Given that it offers crucial details regarding a person's respiratory function and general health, it 
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is one of the vital indicators that is frequently examined in hospital settings. A person's respiratory rate is  

a critical measure of how effectively their respiratory system is working and can provide information about 

any potential medical issues or changes in their state of health. 

 

 

 
 

Figure 3. Design of wearable device 

 

 

Table 1. Levels for heart rate [31] 
Age Normal resting heart rate (bpm) 

0-1 month 70 to 190 

1-11 months old 80 to 160 

1-2 years old 80 to 130 
3-4 years old 80 to 120 

5-6 years old 75 to 115 

7-9 years old 70 to 110 
10 years and older and adults (including seniors) 60 to 100 

Athletes in top condition 40 to 60 

 

 

The average resting respiratory rate for a healthy adult is between 12 and 20 breaths per minute. 

However, it may differ according to elements including age, level of physical activity, emotional stability, and 

general health. As an illustration, babies and infants often have higher respiratory rates than adults do, and 

people who are physically active or under stress may have brief increases in their respiratory rates. 

For patients with respiratory diseases such asthma, chronic obstructive pulmonary disease (COPD), 

or pneumonia, monitoring respiratory rate is a crucial part of patient assessment. Any appreciable difference 

from the average respiration rate could be a symptom of respiratory distress or other serious problems, 

demanding further testing and medical attention. Typically, respiratory rate is determined by counting breaths 

for one minute, watching a person's chest or abdomen, or measuring it during a shorter time frame and then 

extrapolating it to one minute. In order to assess the overall respiratory health and direct appropriate medical 

care when required, an accurate measurement of respiratory rate is essential. The normal respiratory rate as a 

function of age is established as shown in Table 2. 

 

 

Table 2. Normal respiratory rate by age [32] 
Age Breaths per minute 

Newborns 70 to 190 
Infants 80 to 160 

Preschool children 80 to 130 

Older children 80 to 120 
Adults 75 to 115 

Adults exercising 70 to 110 
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Stress and breathing have a direct relationship because while under stress, a person breathes more 

quickly in order to quickly circulate oxygen-rich blood throughout their body. Stress can make breathing more 

challenging for someone who already has a breathing condition like asthma or emphysema. The condition of 

the skin's sweat glands affects skin conductivity. The sympathetic nervous system regulates sweating, and skin 

conductivity is a sign of either psychological or physical arousal. Sweating gland activity increases when the 

sympathetic branch of the autonomic nervous system is significantly activated, which in turn raises skin 

conductivity. Figure 4 shows measured physiological parameters with proposed wearable device: heart rate, 

respiratory rate and skin conductivity. As a result, skin conductivity can be used as a gauge of emotional and 

sympathetic reactions in categories, which are shown in Table 3. 

 

 

 
 

Figure 4. Implemented werable stress monitor with measured physiological parameters display 

 

 

Table 3. Levels for skin conductivity [25] 
Skin conductivity Information Symptoms/Consequences 

0% to 31% Low levels Does not pose a problem or risk to human health 
32% to 82% Normal levels Does not pose a problem or risk to human health 

83% to 100% High levels It does not pose any problem or risk to human 
health, however, there is a high psychological 

stimulation (increased emotional response) and greater sweat production 

 

 

Finding the greatest possible value for this parameter, which is done using (1) [25], is a crucial step 

in converting heart rate from beats per minute to %. Knowing each subject's age is important to calculate their 

maximal heart rate, hence it was made necessary to provide it when new users registered for the mobile 

application. 

 

MAXHeart_Rate = 220–age (1) 

 

Once the subject's maximal heart rate is known, (2) [25] may be used to calculate the heart rate in percentage 

using the heart rate data gathered by the sensor, as this equals 100%. 

 

Heart_Rate [%] = (Heart_Rate*100)/ MAXHeart_Rate (2) 

 

The maximum value for the respiratory rate must also be established, but unlike the heart rate, this 

does not depend on age, in order to convert it from breaths per minute to %. However, it is common for many 

athletes who engage in sports requiring significant physical exertion to present maximum values for respiratory 

rate in the range of 70 breaths per minute, and as such, it was admitted as a maximum value in this system, i.e., 

this equals 100%. Using the respiratory rate recorded by the sensor, the respiratory rate in percentage is 

obtained using (3) [25]. 
 

Respiratory_Rate [%] = (Respiratory_Rate×100)/MAXRespiratory_Rate (3) 

 

The algorithm developed in this system for the estimation of stress levels can then be used. It is based on the 

weighted average of the 3 parameters obtained by the sensory system and is defined by (4) [25]. 
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Stress[%] = (Heart_Rate[%]+Respiratory_Rate[%]+SC[%])/3 (4) 

This algorithm can be applied after determining the heart rate and respiratory rate, both in percentage, and 

getting the skin conductivity value, also in percentage, directly from the sensor. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Firebase Web App to display sensors readings 

To create a web app that displays sensor readings from an ESP32-PICO computation platform, 

firebase was as the backend for storing and synchronizing the data. Firebase is a comprehensive platform 

offered by Google that provides a set of backend services and tools to help developers build and scale web and 

mobile applications quickly and efficiently. Firebase is known for its ease of use, real-time capabilities, 

scalability, and seamless integration with other Google services. It is popular among both small startups and 

large enterprises as it simplifies many backend tasks, enabling developers to focus more on building great user 

experiences. The Figure 5 shows a high-level overview of the application. 

 

 

 
 

Figure 5. Structure of the web application 

 

 

− The ESP32-PICO computation platform verifies a user's identity using their email address and password 

(the user must be configured for Firebase authentication methods); 

− The ESP receives the user ID (UID) following authentication; 

− Security guidelines secure the database. The user's user UID is the sole way for them to access the 

database nodes underneath the node. The ESP can publish data to the database once it has obtained the 

user's UID; 

− The ESP sends measured parameters to the database. 

Using firebase hosting and a worldwide content distribution network (CDN), firebase hosts developed 

web application and offers an SSL certificate. The domain name established by firebase can be used to access 

your web app from any location. You must authenticate with a valid email address and password the first time 

you visit the online app. You can access a web app page that displays the sensor readings kept on the real-time 

database after logging in. Once logged in, you can always log out. You will have to log in again the next time 

you access the application. Figure 6 shows measured parameters in the firebase platform. 

 

3.2.  Data analysis and assessment of stress levels 

An important development in the field of stress management and individual wellbeing is the 

measurement of stress levels using data from a proposed wearable device, such as heart rate, respiratory rate 

and skin conductivity. Utilizing the capabilities of these tools allows users to get a deeper understanding of 

their stress patterns and reactions, resulting in more intelligent and proactive approaches to stress reduction. 

Checking the correctness of the heart rate results from a proposed wearable device using a reliable reference 

device, such as the MEDLAB P-OX 100 pulse oximeter, is essential to ensure the accuracy and validity. This 
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verification process helps to establish the wearable device's credibility and its ability to provide trustworthy 

data to users and healthcare professionals. In this research the comparison was carried out by simultaneous 

measurement: to ensure accurate comparison, both the proposed wearable device and the pulse oximeter should 

be worn or used simultaneously on the same individual. This means that the heart rate data from both devices 

is recorded simultaneously during the same period. 

As we Figure 7, the heart rate readings from the proposed wearable device and  MEDLAB P-OX 100 

are the same, they are equal to 97 (because only the heart rate was measured and the sensor was not worn, the 

GSR value is 0). In the proposed device, deviations by an average of 3 to 5 beats per minute are observed in 

some seconds for heart rate. Figure 8 shows values of parameters measured during 15 minutes: heart rate  

Figure 8(a), respiratory rate Figure 8(b) and skin conductivity Figure 8(c). 

 

 

 
 

Figure 6. Sensor data sent from ESP32-PICO-KIT to firebase 

 

 

 
 

Figure 7. Comparison of heart rate readings of the proposed wearable device and MEDLAB P-OX 100 

 

 

Checking the stress level accuracy of a proposed wearable device is a crucial step in ensuring its 

reliability and effectiveness in stress management applications. To check and compare the results, the Mi Band 5 

fitness bracelet was used, which has its own method for tracking the level of stress and the ability to monitor 

it on a mobile application. Several different conditions for the experiment were considered: the state of rest 

and stressful situations. According to the results of the experiments, it was known that at rest the stress level 

does not exceed the low stress levels and normal stress levels in Table 4. In the Mi Band 5 fitness bracelet, 

stress levels are divided as follows: relaxed (0 to 39%), mild (40 to 59%), moderate (60 to 79%) and high (80 

to 100%). In the proposed device, deviations by an average of 5 to 10 % are observed in some intervals for 

stress levels. 
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(a) (b) 

 

 
(c) 

 

Figure 8. Measured data for 15 minutes: (a) heart rate, (b) respiratory rate and (c) skin conductivity 

 

 

Table 4. Levels for stress [25] 
Stress Information Symptoms/consequences 

0% to 25% Resting state - 

26% to 50% Low stress levels - 

51% to 75% Normal stress 
levels 

- 
 

76% to 100% High stress levels Difficulty controlling emotions, heart problems, teeth and gums 

problems, weight gain, weakened immune system 

 

 

4. CONCLUSION 

In conclusion, the development of a wearable device to identify stress levels using the IoT holds 

immense potential in transforming the way we understand and manage stress. The integration of IoT 

capabilities into wearable devices has unlocked new possibilities for real-time stress monitoring, offering 

invaluable insights into users' physiological and behavioral responses. By leveraging IoT, these wearable 

monitor can collect and analyze a vast array of biometric data, including heart rate variability, skin 

conductance, and sleep patterns, enabling a comprehensive understanding of an individual's stress profile. With 

this data at their disposal, users can gain self-awareness about their stress triggers, patterns, and responses, 

empowering them to adopt healthier coping mechanisms and make positive lifestyle changes. 

In this study wearable device to identify and quantify stress levels with vital signs was developed. 

MAX30102 sensor showed values from 76 to 97 beats per minute for heart rate and between 12 and 17 breaths 

per minute for respiratory rate. GSR sensor showed values from 71% to 79%. Deviations by an average of  

5 to 10 % are observed for stress levels. The proposed wearable device can measure, in addition to the heart 

rate, respiratory rate and skin conductivity in comparison with other wearable devices of researchers that were 

described in the article. Future studies will examine heart rate variability and the impact of stress on specific 

chronic disease. 
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