
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.6, June 2014, pp. 4457 ~ 4462
DOI: 10.11591/telkomnika.v12i6.5482 4457

Received December 23, 2013; Revised February 17, 2014; Accepted March 3, 2014

A Power Effective Algorithm for State Encoding

Anping He, Hao Wu, X. Song1, Jinzhao Wu*2
Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,

Guangxi University for Nationalities, 530006, China
*Corresponding author, e-mail: song20100826@163.com1, hidrwu@sohu.com2

Abstract
Reducing the area and power dissipation of FSM circuit is of significant importance for EDA

technology. Many methods are adopted to achieve an effective and fast transformation of FSMs to binary
codes, including Genetic algorithm (GA) and others. In this paper, we propose a GA based state
assignment of a FSM circuit to gain the minimization of power consumption and area. We modify the
traditional mutation to be an ordered operation, which is also a substitution of the crossover that
guarantees every new individual owns better fitness than the old one. We test the proposed algorithm with
benchmarks, as well as do the comparison with the published; our method saves both power and area
dissipation in reasonable computation time.

Keywords: state assignment, low area, low power, genetic algorithm

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
 With the increasing scale of system-on-chip (SoC), the area and power dissipation

become the critical concerns in VLSI design, especially for portable computing and personal
communication applications. Sequential circuits, playing a major role in VLSI, is characterized
by the outputs depending on both the inputs and the past state, e.g., a feedback at the input of
the combinational logic. The Finite state machine (FSM) is of a most common way of system
level description for sequential logic.

In EDA technologies, the automatic synthesis of FSM to circuit plays a very important
role. The encoding procedure of the synthesis called state assignment that maps FSM states to
binary codes is essential for the whole synthesis, since it will not only affect circuit area but also
power dissipation with different switching activities finally. The problem of finding the state
assignment for minimization of power consumption and area belongs to NP hard.

The genetic algorithm (GA) is regarded as an excellent intelligent search algorithm, and
also an effective method to achieve fast convergence for some NP-hard problems. Many
investigations with GA have been done for state assignments, such as [1-5]. Almaini et al.
demonstrated that the GA method produced significantly simpler solutions in [2]. In [1], multi
objective GA has been used to optimize both area and power. Chattopadhyay et al. in [3]
optimized power only, Xia et al. in [4] optimized both area and power, Chattopadhyay et al. [5]
optimized area only. There are other effective methods based on symbolic minimization [6-8].

Other heuristic algorithms have been proposed: Shiue in [9] showed a new
comprehensive method consisting of an efficient state minimization and state assignment
technique. Goren and Ferguson [10] presented a heuristic for state reduction of incompletely
specified FSMs.

In this article, we proposed an enhanced GA based state assignment algorithm.
Comparing with the original one, the improvements include: the number of population, removing
the crossover operation and improving the mutation operation. Moreover, with this proposed
algorithm, each generation has only one individual, which enables the population evolving via
mutation instead of crossover. More importantly, the enhanced mutation operation ensures the
new individual owns better fitness than the old one. Comparing with others, our algorithm saves
more power and area dissipation in a reasonable computation time.

Our paper is structured as follows: in section 2 we introduce the state assignment and
the cost function; in section 3, we show our GA algorithm in detail and we show the experiment
and comparison of our algorithm in section 4; we concluded in section 5.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4457 – 4462

4458

2. State Assignment and Cost Functions
In this paper, state is a vector,),,,(21 lsssS , of a stable FSM/sequential-logic output.

The sequential circuit is usually modeled as Mealy FSM (with assumption of outputs relating
both input and current state).

Definition 1. A FSM is a quintuple 0,,,,, SSOI , where I is the sets of inputs,O is

the sets of outputs , S is a set of states, 0S is initial states, is the state-transition function:

SIS : , is the output function: OIS : .

EDA tools try to synthase the FSM to real circuits; it is a fundamental problem of how to
encoding the states with binary codes. Different encoding distinguishes the switching activates
from one binary code to another, which would finally affect circuit area and power dissipation.
On the other hand, the amount of sort of encoding would be huge, e.g., let n be the total number
states of S, it need ns 2log (for upper bound) state variables to encoding the states, then

according to [11], the total number of state assignments will be
!)!2(

)!12(

sns

s

.

For a concrete state assignment, we can use ESPRESSO [12] to generate the
minimized circuit. The number of the generated circuits varies with their encoding methods, so it
would be very useful to find a state encoding corresponding to less gates that be with less area
and power cosumption consequently.

We evaluate the state encodings by a cost function. With the preliminaries in [1], the
cost function of a transition could be computed by the production of the Hamming distance and
total transition probability [13], and the whole cost of a state graph would be the sum of all
possible transitions:

Sss

jiss

ji

ji
sencsencHDtpC

,

))(),(((1)

3. A GA Based Power Effective Encoding
GA is a heuristic optimization algorithm imitating the process of natural evolution, the

solution of optimization is seen as individual, which expressed by a variable sequence, called
chromosomes. Chromosome is generally expressed as an alphabetic string or numeric one, and
then to gain the string is called encoding. While GA processing, it generates a certain number of
individuals generally and randomly. In every generation, each individual get its fitness by a
specific fitness function. The next generation and composition can be calculated with selecting
and breeding operations in terms of current fitness. The mutation exists anywhere that can
generate new "child" individuals always by exchanging the position of two genes. Figure 1
shows the pseudo code for GA.

After long term study of the state and coding pattern, we find GA based state encoding
algorithm would enhanced more if do some modifications, including the number of population,
removing the operation of crossover, modified the way of mutation and the way calculating the
fitness. The main idea of our algorithm is that, every generation has one individual only, and in
each generation, the optimal individual is generated by mutating the one individual only, then
we would get the global optimal individual by comparing all optimal ones. The detailed
explanation is shown below.

Initially, we talk about why every generation only has one individual in this algorithm.
There is considerable amount of population in traditional GA, and a lot of new individual product
by crossover, in this process, the search region for the assignments is enlarged, meanwhile, a
sizable majority individual of new generation don’t have better fitness than the individuals of the
old generation, besides, this process Consumes a lot of CPU time. So in our algorithm every
generation only has one individual, the mutation takes the place of crossover, and after every
mutation the new individual must have better fitness than the old. Specific method is as follows.

TELKOMNIKA ISSN: 2302-4046

A Power Effective Algorithm for State Encoding (Anping He)

4459

Our GA based algorithm encodes all FSM states to a individual. Let s be the amount of

the states, sb 2log bits binary code for each state. In each generation, we initialize an

individual randomly and then find a local optimal assignment. The mutation is the primary
operation in this algorithm, which includes several swaps of exchanging the position of two
genes, after each swap the fitness of the individual would be better or we knock off the swap. In
detail, the mutation consists of two loops, the first gene i loops from 1 to n (n is the amount of
genes), while the second gene j loops from i to n , if exchanging not exists, exchange their

position and then calculate the fitness; if the fitness is better than the previous, then the
exchange occurs and then continue the loop; if the fitness is not better than the previous,
exchange the two genes back and then continue the loops. In the comparison procedure, the
individual with less product terms owning the better fitness, however, if equal, the one with less
switching activities would be better. This method reduces a lot of CPU time.

In each generation, we could get a local optimal assignment by some steps of mutation.
At the last mutation, if there is no swap occurs, we consider the current individual is the optimal
assignment; the generation ends and a new generation would be initialized continually.

The pseudo code of proposed algorithm is as follow (Figure 2, Figure 3 and Figure 4)：
We explain the pseudo in detail: In the main function in Figure 2, the loop in the main

function generates the local optimal state assignment for each generation; the main function
outputs the global optimal assignment by comparing all the state assignments finally. The
get_the_local_optima function in Figure 3 generates the optimal assignment for one generation,
the loop there guarantee that exchanging any of two genes of the individual not result in a better
fitness, which calls Mutations function in Figure 4. The Mutation function is the main procedure
for the whole algorithm, the Mutation function swap two genes by nested loops, which ensures
that any two genes can be swapped except for the one has been exchanged.

Procedure proposed algorithm //main function
{
 Input (benchmark file, number of generation)
 Loop until generation=0 //generate all the local optimal state assignment
 {
 Initialize individual (individual)
 Get the local optima (individual)
 Output local optima
 Number of generation - 1
 }
 Output the global individual
}

Figure 2. Main Function

Procedure GA
{
Create an initial population of random genes
 Evaluate all chromosomes
 Repeat
 {
 Select chromosomes with the best fitness to reproduce
 Apply crossover operator
 Apply mutation operator
 Evaluate the new child
 If(child fitness != any existing fitness)
 Apply termination operator
 } until termination condition
} end GA

Figure 1. Proposed Structure for Dynamic Overmodulation in DTC-CSF Based

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4457 – 4462

4460

4. Experimental Result
In this section, we show the experimental results of the proposed algorithm. We

implement our algorithm by C++ and Matlab with a 2.9GHz AMD CPU and 1.75GB RAM.
In our algorithm, each generation produces a local optimal solution. Table 1 shows local

optimal produced by every generation (the 20 generation in the front), product terms, switching
activity and time comsuming, the circuit designers could make a targeted selection form so
many local optimal assignments.

Table 1. Experimental Result

generation 1 2 3 4 5 6 7 8 9 10

PT 27 27 23 23 23 24 23 23 23 24

Esw 0.239 0.314 0.267 0.257 0.286 0.311 0.291 0.341 0.285 0.492

Time/sec 3 4 7 9 13 15 17 22 24 26

generation 11 12 13 14 15 16 17 18 19 20

PT 26 25 25 23 26 27 23 23 21 22

Esw 0.334 0.352 0.272 0.329 0.318 0.370 0.288 0.281 0.377 0.326

Time/sec 27 29 31 33 35 37 41 43 45 47

Table 2 shows the comparison of the experimental results of our algorithm and one

from MOGA [1] by time requirement, low power consumption and area requirement. From this
table, the area requirement is slightly better than MOGA in average, low power is substantially
equal to the MOGA, the time for seeking the best results is very less than MOGA.

Mutation(individual)//main operator to find the local optimal state assignment
{
 Loop for (i=0 to i=number of genes)//first state i
 {
 Loop for (j=i to j=member of genes)//second state j
 {
 Exchange i and j gene//exchange position of the i and j
 Calculate fitness
 If fitness better mark the tag of the genes//have been exchanged
 Else exchange back
 }
 }
}

Figure 4. Mutation

Get the local optima(individual) //generate the local optimal state assignment
{
 Loop until there is no exchange happen in this loop
 {
 Initial the exchange tag (individual)
 Mutation (individual)
 }
}

Figure 3. Get the Local Optima

TELKOMNIKA ISSN: 2302-4046

A Power Effective Algorithm for State Encoding (Anping He)

4461

Table 2. Experimental Result

Benchmarks In/out/no.of states
This algorithm MOGA [1]

PT C Time PT C Time (sec)

bbtas 2/2/6 9 0.502 4sec

9 0.613

1min 10 0.56

11 0.44

bbara 4/2/10 21 0.377 45sec
22 0.49

8min
27 0.39

keyb 7/2/19 44 0.643 7min

46 0.98

3h 47 0.75

55 0.54

Cse 7/7/16 41 0.442 28min

43 0.39

2h 49 0.32

54 0.30

S1 8/6/20 44 1.726 1h4min

43 1.37

6h 53 1.19

60 1.04

S1a 8/6/20 31 1.233 11min
29 1.21

5h19min
30 1.174

Table 3 shows the comparison of our algorithm and the algorithms introduced in [14],

[15, 16]. On average, our algorithm has fewer product terms and less switching activities in
terms of the results from [16]. It also outperforms other methods in both area saving and less
power consumption.

Table 3. Experimental Result
 Algorithm

Benchmarks

This algorithm

[14] [15] [16]

Result Improved (%) Result Improved (%) Result Improved (%)

bbtas
PT 9 - - 9 0 8 -13

C 0.502 - - - - 0.815 34

bbara
PT 21 22 5 23 9 24 13

C 0.337 0.317 -6 - - 0.459 27

keyb
PT 44 46 4 46 4 48 8

C 0.643 0.674 5 - - 1.469 56

Cse
PT 41 43 5 45 9 46 11

C 0.442 0.355 -26 - - 0.602 27

S1
PT 44 66 33 68 32 80 45

C 1.726 1.48 -17 - - 1.698 -2

S1a
PT 31 - - 66 53 80 61

C 1.233 - - - - - -

5. Conclusion
In this paper, we presented a FSM state encoding procedure for reducing the power

and area consumption of circuits. Our algorithm bases on GA, the enhancements include:
removement of the operation of crossover and modified the operation of mutation. With the

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4457 – 4462

4462

comparison of the published algorithms, ours shows its strong effects. In short, we regard our
algorithm more suitable for area/power optimized realization of FSMs.

Our future work is focused on two directions: firstly, we improve the efficiency of the
mutation operation since the most swaps in mutation may be unnecessary; secondly, we should
improve the model of power consummation more accurate.

Acknowledgements

This work is partly supported by Bagui scholarship project, the Natural Science
Foundation of Guangxi under Grant No. 2011GXNSFA018154 and 2012GXNSFGA060003, the
Science and Technology Foundation of Guangxi under Grant No. 10169-1, and Guangxi
Scientific Research Project No.201012MS274 , Funded Projects of Innovation Plan for Guangxi
Graduate Education No.gxun-chx2013t18 and Guangxi University for Nationalities Project, No.
2012QD017

References
[1] Al Jassani BA, N Urquhart, AEA Almaini. State assignment for sequential circuits using multi-objective

genetic algorithm. IET computers & digital techniques. 2011; 5.4: 296-305.
[2] Almaini AEA, Miller JF, Thomson P, Billina S. State assignment of finite state machines using a

genetic algorithm. IEE Proc. Comput. Digit, Tech., 1995; 142(4): 279-286.
[3] Chattopadhyay S, PN Reddy. Finite state machine state assignment targeting low power

consumption." Computers and Digital Techniques. IEE Proceedings. 2004; 151(1).
[4] Xia Y, Almaini AEA. Genetic algorithm based state assignment for power and area optimisation. IEE

P. Comput. Dig. T., 2002; 149(4): 128–133.
[5] Chattopadhyay S, Kumar A, Tewari N. Flipflop (D/T) and polarity selection for finite state machine

synthesis with area overhead constraint genetic algorithm approach. Proc. International Conference
on Recent Trends and New Directions of Research in Cybernatics and Systems Theory,
Guwahati, India. 2004.

[6] S Devadas, HK Ma, R Newton, A Sangiovanni Vincentelli. State Assignment of Finite State Machines
Targeting Multilevel Logic Implementations. IEEE Transactions on Computer-Aided Design. 1988:
1290-1300.

[7] T Kam, T Villa, R Brayton, A Sangiovanni Vincentelli. Synthesis of Finite State Machines: Functional
Optimization. Kluwer Academic Publishers, Boston/London/Dordrecht. 1998.

[8] T Villa, T Kam, R Brayton, A Sangiovanni Vincentelli. Synthesis of Finite State Machines: Logic
Optimization,” Kluwer Academic Publishers, Boston/London/Dordrecht. 1998.

[9] Shiue WT. Novel state minimization and state assignment in finite state machine design for low power
portable devices. Integr. VLSI J., 2005; 38: 549-570.

[10] Goren S, Ferguson FJ. On state reduction of incompletely specified finite state machines. Computer
Electr. Eng., 2007; 33(1): 58-69.

[11] Dolotta TA, EJ McCluskey. The coding of internal states of sequential circuits. Electronic Computers.
IEEE Transactions on. 1964; 5: 549-562.

[12] G De Micheli Synthesis and Optimization of Digital Circuits. New York: McGraw Hill. 1994.
[13] Benini L, Micheli De G. State assignment for low power dissipation. IEEE Custom. Integr. Circuits

Conf., 1994; 30(3): 136-139.
[14] Xia, Yinshui, AEA Almaini, Xunwei Wu. Power optimization of finite state machine based on genetic

algorithm. Journal of Electronics (China). 2003; 20.3: 194-201.
[15] Chattopadhyay S. Area conscious state assignment with flip flop and output polarity selection for finite

state machine synthesis genetic algorithm approach. Comput. J., 2005; 48(4): 443-450.
[16] Hong SK, Park IC, Hwang SH, Kyung CM. State assignment in finite state machines for minimal

switching power consumption. IEE Electron. Lett., 1994; 30(8): 627–629.

