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 This paper introduces a novel approach to the approximate solution of linear 

differential equations associated with principal fractional trigonometry and 

the R function. This method proposes a solution that is expressed by adding 

appropriate fractional linear fundamental functions. Laplace transforms of 

these functions are irrational. Therefore, we rounded these functions to 

obtain rational functions in the form of damped cosine, damped sine, cosine, 

sine and exponential functions. This transformation was achieved by 

utilizing the concept of fractional commensurate order and, as a result, has 

direct practical relevance to real-world physics. The precision and 

effectiveness of the approach are demonstrated through illustrative examples 

of solving fractional linear systems. 
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1. INTRODUCTION 

The field of fractional calculus focuses on derivatives and integrals with non-integer orders in 

mathematics. In recent years, it has gained increasing attention in multiple areas of scientific and engineering, 

including control engineering, physical wave phenomena, heat and mass transfer, electromagnetic theory, 

neural networks, biological and medical treatment, mechanics, and more [1], [2]. 

Many researchers have found that using fractional calculus can provide a more accurate description 

of complex systems and phenomena that cannot be fully explained by classical integer-order calculus. 

Therefore, the statement you provided is consistent with the current understanding of the applications of 

fractional calculus [3]−[6]. Hence, researchers are currently working to develop precise and efficient methods 

for solving linear fractional-order differential equations and establish a clear linear fractional systems theory 

that can be readily understood by engineers. In recent years, there has been a notable focus on developing 

analytical techniques to solve these equations, with the aim of obtaining a mathematical expression that 

provides an explicit solution to fractional-order linear differential equations. See previous works [7]−[10]. 

Although the study of Hopf bifurcation in dynamical models of integer order is well-established, 

Hopf bifurcation in dynamical models of fractional order has received relatively little attention, as indicated 

by the limited number of prior studies [11]. In delayed neural networks, the emergence of Hopf bifurcation as 

a result of delays is a notable dynamic phenomenon. Despite its importance, research on delay-induced Hopf 

bifurcation in neural networks of fractional-order is relatively scarce, as indicated by the limited number of 
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previous studies [12]. Furthermore, the scarcity of research on Hopf bifurcation in models of prey-predator is 

evident from the limited number of previous studies [13], [14]. 

Numerous works have been published on fractional-order models, covering a diverse range of 

topics. For example, in their study, Xu et al. [1] investigated a stage-structured of fractional-order in  

predator-prey system with both distributed and discrete time delays. They obtained an isovalent version of 

the model, which provided a more accurate description of the system’s dynamics compared to the classical 

integer-order model. Albadarneh et al. [15] introduced new and powerful formulas for sequential solutions 

with residual errors to approximate the Riemann-Liouville fractional derivatives operator. These formulas 

were derived using explicit calculations and using weighted mean value theorem (WMVT), a theory used to 

develop new approaches that allow the solution of many fractional order differential equations, both linear 

and nonlinear. These formulas are an important improvement and provide accurate and powerful solutions to 

Riemann-Liouville fractional derivatives. A study by Shihab et al. [16] showed the use of the method of 

variational iteration in solving several types of partial differential equations, whether linear or nonlinear.  

In this study, it was shown that the Lagrange multiplier can be used to determine an ideal value of parameters 

in a functional form, and then use these values to construct an iterative series solution. This option is viable 

and effective in solving partial differential equations. Jameel et al. [17] the method of Bezier’s curves was 

introduced and modified to solve fuzzy delay problems while taking advantage of the properties of fuzzy set 

theory. The approximate solution was compared to different degrees with the exact solution to ensure that the 

process of differential equations of the fuzzy linear delay is accurate and efficient. The authors presented 

insightful numerical findings in the form of graphical representations, elucidating the influence of both the 

recycle ratio and the fractional order on the model’s dynamic evolution. Interested readers can refer to the 

bibliography on these topics for more information [10], [18]−[21]. 

The aim of this research is to find new solutions for linear fractional systems with commensurate 

order specifically, the focus is on systems related to fractional trigonometry and real fractional exponential 

functions in the form of the R function. This is done by using appropriate fundamental functions that 

correspond to the range of commensurate order, and by using Laplace transforms for these functions. The 

solution can be expressed as a linear combination of generalized exponential functions, which fulfill a similar 

role as classical exponential functions. 

Our planned approach for this work is outlined as follows: In section 2, we begin by introducing the 

fractional generalization of the exponential function, which serves as the foundation for deriving the 

specialized Laplace transforms and R-function from the principal meta-trigonometric fractional order 

functions. Moving on to section 3, we showcase the accuracy and practicality of our proposed analytical 

approach by presenting and analyzing the results obtained thus far. Finally, in section 4, we conclude this 

article by summarizing the key findings and implications of our work. 

 

 

2. METHOD 

2.1.  Fractional meta-trigonometry: a generalization of classical trigonometry for fractional calculus 

applications 

The applications of traditional (integer-order) trigonometry extend far beyond the calculation of 

triangles and triangulation and are widely used in analysis, engineering, and science. Trigonometric functions 

hold tremendous significance in various mathematical domains, including spectral analysis, fourier analysis, 

and the solutions to both ordinary and partial differential equations, and many other mathematical fields, 

making them an essential part of modern mathematics. 

Fractional meta-trigonometry [22]−[25] provides a generalization of classical trigonometry and 

encompasses an infinite set of fractional trigonometric based on the R-function [26], which is: 

 

𝑅𝑞,𝜐(𝑎𝑖𝛼 , 𝑖𝛽𝑡), 𝑡 ≻ 0, 𝑖 = √−1, 𝑞, 𝜐, 𝛼, 𝛽 ∈ ℜ (1) 

 

and are based on the definition: 

 

𝑅𝑞,𝜐(𝑎, 𝑡) = ∑
𝑎𝑛𝑡(𝑛+1)𝑞−1−𝜐

𝛤((𝑛+1)𝑞−𝜐)

∞
𝑛=0 , 𝑡 ≻ 0 (2) 

 

the meta-trigonometric functions are derived based on the intricacy of (1), specifically considering its real 

and imaginary components, are defined as follows for t > 0: 

 

sinq,υ(a, α, β, κ, t) ≡ ∑
ant(n+1)q−1−υ

Γ((n+1)q−υ)

∞
n=0 × sin ((n(α + βq) + β[q − 1 − υ]) (

π

2
+ 2πκ)) (3) 
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𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝜅, 𝑡) ≡ ∑
𝑎𝑛𝑡(𝑛+1)𝑞−1−𝜐

𝛤((𝑛+1)𝑞−𝜐)

∞
𝑛=0 × 𝑐𝑜𝑠 ((𝑛(𝛼 + 𝛽𝑞) + 𝛽[𝑞 − 1 − 𝜐]) (

𝜋

2
+ 2𝜋𝜅)) (4) 

 

these following functions corresponding to Laplace transforms can be expressed as [24]: 

 

𝐿{𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = 𝑠𝜐 [
𝑠𝑞 𝑠𝑖𝑛(𝜆)−𝑎 𝑠𝑖𝑛(𝜆−𝜎)

𝑠2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2 ] , 𝑞 > 𝜐 (5) 

 

𝐿{𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = 𝑠𝜐 [
𝑠𝑞 𝑐𝑜𝑠(𝜆)−𝑎 𝑐𝑜𝑠(𝜆−𝜎)

𝑠2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2 ] , 𝑞 > 𝜐 (6) 

 

with 𝜆 = 𝛽 [𝑞 − 1 − 𝜐](𝜋/2 + 2𝜋𝑘) 𝑎𝑛𝑑 𝜎 = (𝛼 + 𝛽𝑞)(𝜋/2 + 2𝜋𝑘), 𝑞, 𝜐, 𝑎, 𝛼, 𝛽 ∈  

 

𝐿{𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = 𝑠𝜐 [
𝑠𝑞 𝑠𝑖𝑛(𝜆)−𝑎 𝑠𝑖𝑛(𝜆−𝜎)

𝑠2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
] = [𝑠𝜐] × [

𝑠𝑖𝑛( 𝜆) (
𝑠𝑞+‖𝜆′‖𝜁

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
) −

(
𝑎 𝑠𝑖𝑛(𝜆−𝜎)

‖𝜆′‖2
+

𝜁 𝑠𝑖𝑛(𝜆)

‖𝜆′‖
) (

‖𝜆′‖2

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
)

] (7) 

 

𝐿{𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = 𝑠𝜐 [
𝑠𝑞 𝑐𝑜𝑠(𝜆)−𝑎 𝑐𝑜𝑠(𝜆−𝜎)

𝑠2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
] = [𝑠𝜐] × [

𝑐𝑜𝑠( 𝜆) (
𝑠𝑞+‖𝜆′‖𝜁

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
) −

(
𝑎 𝑐𝑜𝑠(𝜆−𝜎)

‖𝜆′‖2
+

𝜁 𝑐𝑜𝑠(𝜆)

‖𝜆′‖
) (

‖𝜆′‖2

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2
)

] (8) 

 

with ‖λ’‖ = a. 

To effectively solve the differential equation for fractional-order linear systems, it is crucial to 

approximate the irrational functions F1(s) and F2(s) of (
𝑠𝑞+‖𝜆′‖𝜁

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2) and (
‖𝜆′‖2

(𝑠)2𝑞−2𝑎 𝑐𝑜𝑠(𝜎)𝑠𝑞+𝑎2) with 

rational functions. In (7) and (8) provide the relevant context for this approximation. 

 

2.2.  Fundamental functions approximations 

In previous works [27]−[32] have approximated the elementary fundamental functions using 

rational functions. This approach facilitated the representation of these functions through linear time-

invariant system models. Consequently, their closed-form impulse and step responses could be derived, and 

their performance characteristics could be examined. Moreover, these approximations played a crucial role in 

enabling the derivation of straightforward analogue circuits capable of accurately representing the complex 

irrational functions associated with the fractional-order system. 

Note that all these fundamental functions are irrational functions. Then, to establish the explicit 

expressions for solving linear differential equations of fractional order and to study of the dynamic behavior 

of fractional-order systems, similar to the analysis of regular linear systems, the irrational functions Hk(s) 

must be approximated by rational functions. We followed the methods of [27]−[32], the fundamental 

functions have been approximated by rational functions of practical interest in a frequency band.  

This approximation allowed for the representation of these functions by time-invariant linear system models. 

 

 

3. RESULTS AND DISCUSSION 

In order to highlight the effectiveness of the proposed method. We will present a numerical example 

that has been implemented in MATLAB on a PC. The numerical example will showcase the results obtained 

through the implementation, providing evidence of the efficacy and applicability of the proposed method. 

 

3.1.  q = 0.23 (0 < q < 0.5) 

We followed the methods of [28], [30]-[32], the fundamental functions fdsin (t, λ3, 0.23),  

fdcos (t, λ3, 0.23), which can be summarized as follows: 
 

fdsin(t,λ3,0.23) = 𝐿−1 {
5

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
} = 𝐿−1 {∑ 𝑘3𝑖

𝑎3𝑖𝑠+√1−𝜁2

𝑠2+2𝛽𝜔𝑖𝑠+𝜔𝑖
2

𝑁3
𝑖=1 } =

∑ 𝜔𝑖𝑘3𝑖
𝑁3
𝑖=1 𝑒𝑥𝑝(−𝛽𝜔𝑖𝑡) 𝑠𝑖𝑛(𝜔𝑖(√1 − 𝛽2)𝑡 − (3.35)𝜙3)   

 

fdcos(t,λ3,0.23) = 𝐿−1 {
𝑠0.23+(2.24)𝜁

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
} = 𝐿−1 {∑ 𝑘4𝑖

𝑎4𝑖𝑠+𝜁

𝑠2+2𝛽𝜔𝑖𝑠+𝜔𝑖
2

𝑁4
𝑖=1 } =

∑ 𝜔𝑖𝑘4𝑖
𝑁4
𝑖=1 𝑒𝑥𝑝(−𝛽𝜔𝑖𝑡) 𝑐𝑜𝑠(𝜔𝑖(√1 − 𝛽2)𝑡 − (3.35)𝜙4)  
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with ‖𝜆3‖ = 2.24,  = 0.97,  = 0.48,  =  = 0.25, N3 = N4 = 821 and the parameters 𝜔𝑖, 𝑎3𝑖, 𝑎4𝑖and 

𝑘3𝑖 = 𝑘4𝑖 are given, for 1 ≤  𝑖 ≤  821, as: 

 

𝜔𝑖 =
1

(0.03)∗(1.10)(411−𝑖) ,  𝑎3𝑖 = (−0.022) ∗ (1.10)(411−𝑖)

 ,  
𝑎4𝑖 = (0.022) ∗ (1.10)(411−𝑖),  

 

𝑘3𝑖 = 𝑘4𝑖 =
1

(0.002)∗(1.10)2(411−𝑖) [
𝑠𝑖𝑛[0.77𝜋]

𝑐𝑜𝑠ℎ[(0.23) 𝑙𝑜𝑔((1.10)(411−𝑖))]−𝑐𝑜𝑠[0.77𝜋]
]  

 

𝐿{𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = [𝑠𝜐] × [(
𝑠0.23+(2.24)𝜁

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
) + 5.43*10-6 (

5

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
)]  

 

𝐿{𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = [𝑠𝜐] × [1.57 ∗ 10−6 (
𝑠0.23+(2.24)𝜁

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
) − 0.11 (

5

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
)] . 

 

Figure 1 and Figure 2 illustrate the bode plots representing the transfer function of the fundamental 

fractional-order system, as well as the corresponding rational function approximations proposed by our 

method. The bode plots of L {sinq, υ (a, α, β, t)} Figure 1(a), Figure 2(a) (magnitude) and L {cosq, υ (a, α, β, 

t)} Figure 1(b), Figure 2(b) (phase) were generated, accompanied by their respective rational function 

approximations obtained using the proposed method. Remarkably, both curves exhibit an exact match, 

confirming the accuracy and effectiveness of the proposed method. 

 

 

  
(a) (b) 

 

Figure 1. Magnitude bode plot of (a) L {sinq, υ (a, α, β, t)} and (b) L {cosq, υ (a, α, β, t)}, respectively, along 

with their corresponding rational function approximations proposed by the method 

 

 

 
 

(a) (b) 

 

Figure 2. Phase bode plot of (a) L {sinq, υ (a, α, β, t)} and (b) L {cosq, υ (a, α, β, t)}, respectively, along with 

their corresponding rational function approximations proposed by the method 

 

 

Upon examination, it is evident that the functions significantly overlap within the frequency band of 

interest. The significant overlap observed between the bode plots indicates that the proposed rational function 

approximation provides a good approximation of the original fractional-order system within the frequency 
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band of interest. Nevertheless, it is important to note that the accuracy of the approximation may vary outside 

this frequency band and may depend on the type and range of the fractional order q. Furthermore, the choice 

of rational function approximation may also depend on the nature of the poles and their impact on the decay 

or growth rate of the model. 

The inverse laplace transforms of the functions, (
𝑠0.23+(2.24)𝜁

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
) and (

5

[𝑠0.46+(4.47)𝜁𝑠0.23+5]
) are, 

respectively, given by the expressions fdcos (t, 𝜆3, 0.23) and 𝑓𝑑sin (t, 𝜆3, 0.23). So, the inverse laplace 

transform of (7) and (8), sinq, υ (a, α, β, t) and cosq, υ (a, α, β, t) are given by [28], [30]−[32]. 

 

{
𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡) = fdcos (t, λ3, 0.23) + 5.43*10-6fdsin (t, λ3, 0.23)

𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡) =  1.57*10-6fdcos (t, λ3, 0.23)-0.11fdsin (t, λ3, 0.23)
 

 

Figure 3 illustrates the time-domain plots. The Figure 3(a)  showed the function sinq, υ (a, α, β, t) and 

the Figure 3(b) illustrate the function cosq, υ (a, α, β, t). The solutions obtained are presented as a linear 

combination of basic functions, which have been meticulously chosen and are composed of a linear 

combination of trigonometric and regular exponential functions, just as is the case with regular linear 

systems. 
 

 

  
(a) (b) 

 

Figure 3. Shows the time-domain plots of the functions sinq, υ (a, α, β, t) (a) and cosq, υ (a, α, β, t) and (b) with 

respect to time (t), using the parameters a=2.24, α =2.1424, β =-1.2987, q=0.23 and υ =0 

 

 

3.2.  q = 0.77 (0.5 < q < 1) 

We followed the methods of [28, 30-32], the fundamental functions fdsin (t, λ3, 0.77), fdcos 
(t, λ3, 0.77), which can be summarized as follows: 

 

fdsin (t, λ3, 0.77) = 𝐿−1 {
5

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
} = 𝐿−1 {∑ 𝑘3𝑖

𝑎3𝑖𝑠+√1−𝜁2

𝑠2+2𝛽𝜔𝑖𝑠+𝜔𝑖
2

𝑁3
𝑖=1 } =

∑ 𝜔𝑖𝑘3𝑖
𝑁3
𝑖=1 𝑒𝑥𝑝(−𝛽𝜔𝑖𝑡) 𝑠𝑖𝑛  (𝜔𝑖(√1 − 𝛽2)𝑡 − (0.30)𝜙3). 

 

fdcos (t, λ3, 0.77) = 𝐿−1 {
𝑠0.77+(2.24)𝜁

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
} = 𝐿−1 {∑ 𝑘4𝑖

𝑎4𝑖𝑠+𝜁

𝑠2+2𝛽𝜔𝑖𝑠+𝜔𝑖
2

𝑁4
𝑖=1 } =

∑ 𝜔𝑖𝑘4𝑖
𝑁4
𝑖=1 𝑒𝑥𝑝(−𝛽𝜔𝑖𝑡) 𝑐𝑜𝑠  (𝜔𝑖(√1 − 𝛽2)𝑡 − (0.30)𝜙4). 

 

with ‖𝜆3‖ = 2.24,  = 0.71,  = 0.52,  =  = 0.79, N3 = N4 = 63 and the parameters 𝜔𝑖, 𝑎3𝑖, 𝑎4𝑖and 𝑘3𝑖 =
𝑘4𝑖 are given, for 1 ≤ i ≤ 63, as: 
 

𝜔𝑖 =
1

(0.35)∗(1.50)(32−𝑖) ,  𝑎3𝑖 = (−0.082) ∗ (1.50)(32−𝑖) ,  𝑎4𝑖 = (0.34) ∗ (1.50)(32−𝑖),  

 

𝑘3𝑖 = 𝑘4𝑖 =
1

(0.78)∗(1.50)2(32−𝑖) [
𝑠𝑖𝑛[0.23𝜋]

𝑐𝑜𝑠ℎ[(0.77) 𝑙𝑜𝑔((1.50)(32−𝑖))]−𝑐𝑜𝑠[0.23𝜋]
]  

 

𝐿{𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)}[𝑠𝜐] × [0.45 (
𝑠0.77+(2.24)𝜁

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
) + 0.28 (

5

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
)]  
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𝐿{𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡)} = [𝑠𝜐] × [0.89 (
𝑠0.77+(2.24)𝜁

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
) − 0.14 (

5

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
)] . 

 

Figure 4 and Figure 5 illustrate the bode plots of the transfer function for the fundamental fractional-

order system, along with the rational function approximations proposed by our method. The bode plots of L 

{sinq, υ (a, α, β, t)} Figure 4(a), Figure 5(a) (magnitude) and L {cosq, υ (a, α, β, t)} Figure 4(b), Figure 5(b) 

(phase) were meticulously constructed, alongside their corresponding rational function approximations 

derived through the proposed method. Notably, both curves demonstrate a remarkable congruence, providing 

compelling evidence for the exceptional accuracy and effectiveness of the proposed method. 

 

 

  
(a) (b) 

 

Figure 4. Magnitude bode plot of (a) L {sinq, υ (a, α, β, t)} and (b) L {cosq, υ (a, α, β, t)}, respectively, along 

with their corresponding rational function approximations proposed by the method 

 

 

  
(a) (b) 

 

Figure 5. Phase bode plot of; (a) L {sinq, υ (a, α, β, t)} and (b) L {cosq, υ (a, α, β, t)}, respectively, along with 

their corresponding rational function approximations proposed by the method 
 

 

Upon examination, it is evident that the functions significantly overlap within the frequency band of 

interest. The significant overlap observed between the Bode plots indicates that the proposed rational 

function approximation provides a good approximation of the original fractional-order system within the 

frequency band of interest. Nevertheless, it is important to note that the accuracy of the approximation may 

vary outside this frequency band and may depend on the type and range of the fractional order q. 

Furthermore, the choice of rational function approximation may also depend on the nature of the poles and 

their impact on the decay or growth rate of the model. 

The inverse laplace transforms of the functions, (
𝑠0.77+(2.24)𝜁

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
) and (

5

[𝑠1.54+(4.47)𝜁𝑠0.77+5]
) are, 

respectively, given by the expressions fdcos (t, 𝜆3, 0.77) and 𝑓𝑑sin (t, 𝜆3, 0.77). So, the inverse Laplace 

transform of (7) and (8), sinq, υ (a, α, β, t) and cosq, υ (a, α, β, t) are given by [28], [30]-[32]. 
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{
𝑠𝑖𝑛𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡) = 0.45fdcos(t,λ3,0.77) + 0.28fdsin(t,λ3,0.77)

𝑐𝑜𝑠𝑞,𝜐(𝑎, 𝛼, 𝛽, 𝑡) =  0.89fdcos(t,λ3,0.77) − 0.14fdsin(t,λ3,0.77)
 

 

Figure 6 illustrates the time-domain plots. The Figure 6(a)  showed the function sinq, υ (a, α, β, t) and 

the Figure 6(b) illustrate the function cosq, υ (a, α, β, t). The obtained solutions are formulated as a meticulous 

selection of fundamental functions, which themselves consist of a linear combination of trigonometric and 

exponential regular functions. This parallels the structure found in regular linear systems. 

 

 

  
(a) (b) 

 

Figure 6. Shows the time-domain plots of the functions (a) sinq, υ (a, α, β, t) and (b) cosq, υ (a, α, β, t) with 

respect to time (t), using the parameters a=2.24, α =2.1424, β =-1.2987, q=0.77 and υ =0 
 
 

4. CONCLUSION 

This paper presents a novel method for solving such equations using Laplace transforms of 

fractional meta-trigonometric functions in conjunction with the R-function. The method offers several 

benefits, including the ability to express solutions in the form of exponentials, sine, and cosine fractional 

order functions. This approach presents a highly promising analytical tool for effectively solving fractional 

differential equations with commensurate order. To illustrate the effectiveness and usefulness of the proposed 

method, a numerical example is solved. As a perspective, we suggest considering extending the research 

work carried out to solve fractional ordinary differential equations fully online distance education symposium 

(FODEs) using an Adomian decomposition or the solution by the green’s function or bifurcation analysis, 

they are promising techniques for solving and analyzing FODEs. Further research in this area can lead to the 

development of new and improved methods for solving these equations and gaining insights into the behavior 

of complex systems modeled by FODEs. 
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