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 Hybrid precoding is a significant procedure for decreasing the hardware 

complexity and power usage in massive multiple-input multiple-output 

(MIMO) systems. However, the effectiveness of hybrid precoding is highly 

dependent on precise channel state info and designing of the beamforming 

matrix. In recent years, deep learning-based approaches have emerged as a 

promising solution to address these challenges. This research focuses on 

improving the performance of massive MIMO systems. However, several 

methods have been introduced to develop the hybrid precoding model, but 

these models suffer from several issues such as complexity, interference and 

quantization error. Currently, deep learning-based methods have gained huge 

attention in this domain where these methods learn from the data and try to 

overcome the challenges. Here, a deep learning-based model is presented 

where our main aim is to develop a hybrid precoder along with the deep 

learning-based optimal power allocation model. Therefore, the proposed 

model overcomes the issue of hybrid precoding and power distribution 

resulting in improving the overall performance of massive MIMO systems 

on the parameters such as spectral efficiency (SE) and the sum rate. 
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1. INTRODUCTION 

Recently, we have noticed a tremendous growth in wireless communication technology. This 

technological growth in wireless communication has increased the demand for high-speed communication 

and immediate access to several multimedia communications [1], [2]. A few examples of such applications 

are smart cities, autonomous vehicles, and smart healthcare. Moreover, a study has reported that by the end 

of year 2025, there will be over 39 billion active wireless devices worldwide [3]. Mobile networking play 

important role in wireless communication technology because it facilitates the voice and data networking 

facilities simultaneously with the help of radio transmission. These devices are widely used and the demand 

of these devices is still increasing. The voice communication over wireless networks started with the circuit 

switching methods and later it was upgraded to packet-switching for voice and data communication. 

Currently, the mobile communication systems are based on the packet switching. The communication 

spectrum has expanded from 1G to 4G and 5G [4]. This increased demand for wireless communication traffic 

would significantly affect forth coming mobile network system designs. The architectural designs must focus 

on several aspects [5] of communication such as: 

− High traffic volume: the increased demand leads to an increase the data traffic. In the future, data traffic 

will be increased by 1000x of current data traffic [6].  

https://creativecommons.org/licenses/by-sa/4.0/
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− Increased small cell and indoor traffic: as mentioned before, that the number of active devices is 

increasing and the major portion of mobile data traffic is generated from indoor communication. 

However, it is expected to exceed this figure.  

− Seamless connectivity: as the number of devices and communication demand increases, it requires 

better connectivity and it also requires machine-to-machine communication support.  

− Optimized energy consumption: these networks must support the green network paradigm to reduce 

power consumption.  

In the traditional cellular infrastructures e.g., GSM, the baseband and digital units are collocated at 

the bottom of the antenna tower with analog radio units. These units are connected through the thick low-loss 

coaxial cables to the antennas and positioned at the maximum height of the tower comprising amplifier  

units [7]. It helps to reduce the power loss by making use of coaxial cable. Distributed networks, which were 

previously only employed in 1G and 2G systems, are now used in 3G and 4G systems. In decentralized 

networks, the radio unit is separated from the baseband unit and installed above the aerial tower together with 

all of the transmitter and receiver modules accompanied by amplifiers. Fibre front hauls delivering signal 

data to the tower replace long coaxial cables that tend to drop data packets while having high frequency 

communication. The radio head positioned close to the antennas, allows this architecture to achieve a 

significant link gain. Moreover, in 4.5G and 5G systems, the baseband units are centralized to improve 

communication performance [8].  

All these advancements are achieved with the help of advanced communication technologies. 

multiple-input multiple-output (MIMO) systems are recognized as a global solution to improve the efficacy 

of cellular communication. In MIMO systems, user terminals are equipped with multiple antennas [9]. These 

systems take advantage of diversity to provide improved communication link reliability. Moreover, these 

systems also encompass multiplexing gains by permitting simultaneous processing of data streaming by 

multiple users using the shared resource which ultimately leads to increased spectral efficiency (SE) [10]. 

Therefore, these systems are widely adopted in 3G and 4G communication systems due to their several 

applications. For example, in LTE-A, the spatial multiplexing is allowed up to eight layers for both frequency 

division multiplexing (FDD) and time division multiplexing (TDD) [11].  

Therefore, we have noticed a noteworthy growth in the use of MIMO technology as it improves 

wireless link transmission capacity and reliability. In MIMO systems, several antennas are deployed at the 

transmitter and receiver side. MIMO antennas are crucial for boosting connection stability and channel 

capacity. Generally, two or four antennas are typically used in a single physical package in standard MIMO 

networks. Massive MIMO, conversely, is a MIMO system with a very large number of antennas. For the 

fourth generation (4G) mobile communications, a 2×2 MIMO system has been successfully implemented, 

and it is anticipated that the huge MIMO system having a high number of MIMO antennas will be extremely 

promising for 5G wireless communications [12]. Moreover, the massive MIMO systems are further resistant 

to jamming and signal interference. Thus, the MIMO and massive MIMO technologies play an important role 

in this domain of wireless cellular communication. Table 1 shows a brief comparison between these two 

techniques.  

Due to these advancements in massive MIMO technology, these systems are widely adopted in the 

fifth generation (5G) and beyond 5G communication standards. Currently, various kinds of research have 

been conducted to achieve better SE and link reliability in multi-antenna systems. For instance, ultra-dense 

networks, mmWave, and spectrum sharing. The mmWave technique uses 30-300 GHz band frequency and it 

supports larger bandwidth when compared with the conventional 6 GHz massive MIMO system [13]. 

However, it suffers from excessive path loss. Similarly, massive M2M systems have also deployed recently. 

These systems use different types of detection schemes in which the antennas tend to generate interfering 

signals which lead to dilution of the original signal by noise and interference.  

 

 

Table 1. Brief comparison between MIMO and massive MIMO techniques 
 MIMO Massive MIMO 

Antenna count ≤8 ≤100 

Channel matrix Low demand High demand 

Channel capacity  Low High 
Diversity gain  Low High 

Link stability  Low High 

Resistant to noise Low High 
Antenna correlation  Low High 

Bit error rate High Low 

Throughput  Low High 

Cost Low High 
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As discussed before, the 5G networks boost the SE which can help to meet the increasing spectrum 

demand [14]. Moreover, the limited bandwidth and increased demand of system capacity forces network 

service providers to adopt the physical layer related solutions whereas the performance of these systems can 

be improved by using massive MIMO systems. In massive MIMO systems, base station (BS) serves single or 

large no. of antennas with matching frequency bands. In massive MIMO systems, the user equipment (UE) 

has own processing unit to sense the data. However, the smaller processing ability of UEs is not suitable for 

large antennas which degrade the system performance. Therefore, researchers have introduced a precoding 

methodology to offer a large processing ability for detection. Despite the BS's powerful and high processing 

capacity, finding low complexity precoding techniques is still remains an indispensable task in advanced 

cellular communication systems. Precoding is a process to combine the input signals in a predetermined 

manner and delivering them to the various antenna components in the proper ratio. These precoding methods 

are essential for the development of the enormous MIMO system in the next 5G technology. Moreover, the 

precoding methods are helpful in achieving the increased gain by incorporating mmWave, massive MIMO 

and precoding techniques. In third domain, codebook design [15] and compressed sensing [16] have been 

considered as promising techniques to design precoder. 

Recent studies have reported that fully digital precoding methods can help to achieve the 

hypothetical channel capacity by adjusting the precoding coefficients. However, increased no. of RF chains 

as well as number of the active transmitter, modules lead to increase in implementation cost. On the other 

hand, the fully analog beamforming model which minimizes the implementation complexity with a minimum 

number of RF chains, but it also reduces the gain of beamforming due to the limited resolution of phase 

shifters. To mitigate these issues of analog and digital precoding, researchers have introduced hybrid 

precoding as an efficient solution [17], [18]. Similarly, the deep learning based methods also have gained 

huge attention in this domain [19]. 

Hybrid precoding is a technique used in modern wireless communication systems, such as 

millimetre-wave (mmWave) and massive MIMO systems, to overcome the high cost and power ingestion 

linked with usage of huge number of radio frequency (RF) chains. In hybrid precoding, the transmit signal is 

divided into two stages: a baseband precoder and a RF precoder. The baseband precoder performs digital 

signal processing on the transmit signal in the baseband, such as channel equalization, spatial multiplexing, 

and data modulation. The RF precoder then maps the processed baseband signal onto the RF domain using a 

small number of RF chains. The advantage of hybrid precoding is that it enables efficient usage of the 

available RF chains while still achieving decent efficiency in terms of data rate and power consumption. This 

is particularly important in mmWave and massive MIMO systems, where a large number of antennas are 

used to increase the capacity of the system.  

Hybrid precoding is a complex technique that involves careful design of the baseband and RF 

precoders, as well as channel estimation and optimization algorithms. It is an active area of research in the 

field of wireless communication, and many advanced hybrid precoding techniques have been proposed in 

recent years to further improve the performance of modern wireless communication systems. Despite of 

several advancements, precoding methods suffer from various challenges and problems which are as follows: 

− Computational complexity: hybrid precoding uses combination of digital and analog precoding with 

complex algorithms and sophisticated hardware architectures which leads to increase the complexity. 

Moreover, varying channel conditions also increase the additional complexity. 

− The hybrid precoding methods require analog components such as phase shifters and RF chains and 

implementation of these devices at high frequency bands can be challenging due to hardware constraints 

such as cost, power consumption and limited phase resolution.  

− The performance of hybrid precoding model relies on channel state information (CSI) however, 

achieving perfect CSI remains a challenging task.  

Therefore, this work focuses mainly on improvising the overall performance of the massive MIMO 

communication by incorporating improved hybrid precoding. The proposed hybrid precoding model is 

established on the notion of a deep learning scheme where we use deep learning based model for beamformer 

and combiner prediction along with that optimal power allocation task is also accomplished by using DL 

based model. The complete process is divided into several stages, where first of all this model employs RF 

chain and produced outcome is processed through the two consecutive layers of 1D-convolution. This 

convoluted output then processed through the vectorization module then deep learning operations are 

performed and finally the output is processed through the RF chains and fed to the receiving baseband. The 

main contributions of this work are listed below: 

− A novel hybrid precoding approach is presented where both analog and digital precoding schemes are 

introduced. 
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− The complete precoding model is divided into two phases as BB stage and RF stage for downlink 

massive MIMO systems.  

− Further, a method is presented to compute the phase vector which is used to compute the received signal 

vector and later achievable rate computation is used to derive the SINR model.  

− Finally, a deep learning based model is introduced, which helps to obtain the optimal power allocation 

solution.  

Rest of the article has the following sections: section 2 presents the literature review on massive 

MIMO systems where we explored the current trends and advancements in the field of massive MIMO. 

Section 3 presents the proposed deep learning based solution for hybrid precoding, where the system 

architecture is briefly explained, section 4 presents the outcome of proposed approach and comparative 

analysis. Finally, section 5 presents the concluding remarks of the work.  

 

 

2. LITERATURE SURVEY  

This section presents a brief discussion about existing precoding schemes, which includes analog, 

digital and hybrid precoding techniques have gained huge attention in mmWave massive MIMO, and 5G 

communication standards because of its nature to reduce the RF chains while achieving the desired 

performance of fully digital architecture. Several precoding algorithms have been presented such as 

codebook-based hybrid precoding, simultaneous orthogonal matching pursuit, and manifold optimization 

based alternate minimization. In these algorithms, it becomes an important step for BS to acquire the 

appropriate downlink CSI.  

On the other hand, it becomes a challenging task for BS to obtain the downlink CSI due to uplink-

downlink reciprocity. At this stage, the user UEs estimates the downlink CSI and it is reported to the BS via 

feedback links. Several feedback mechanisms are presented in literature such as codebook design [15] and 

compressive sensing [16]. Similarly, some researchers have focused on jointly optimizing the CSI feedback 

and hybrid precoding [17], [18]. Li et al. [17] presented a two-stage beamformer for downlink massive 

MIMO system in FDD mode where both links are furnished with hybrid beamforming structures. Further, 

users are grouped based on channel statistics and analog beamforming where UEs feedback its intra-group 

effective channel. It aids in reducing the overall cost of the CSI. 

Wang et al. [18] reported that the hybrid precoding methods play important role in improving the 

system capacity, reducing the hardware cost and minimizing the power consumption, therefore, it has 

become a key technology in the 5G and 6G millimetre-wave communication systems. Though, designing a 

hybrid precoder with minimal computational complexity is considered as a challenging task. To overcome 

this issue, authors introduced SVD based hybrid precoding system for multi-user massive MIMO system. 

This model focused on developing the joint analog precoder and combiner while considering the single-user 

massive MIMO systems. The main aim of this model was to obtain the maximized square of sum eigenvalues 

for an equivalent channel. Later, a corresponding equivalent channel is developed. The digital precoding 

method is realized with the help of SVD technique. However, these methods lead to increase the 

implementation cost and computational overhead to the system for large no. of antennas and users.  

Recently, deep learning-based schemes are widely adopted to develop the CSI feedback and hybrid 

precoding methods. Wen et al. [19] reported in their work that, for increasing the gains of massive MIMO 

systems, the downlink CSI must get transmitted to BS through the feedback links. However, this 

transmission is hindered due to excessive feedback overhead. For overcoming this problem, researchers 

adopted deep learning approach and developed CsiNet which is a channel sensing and recovery mechanism 

which learns channel structure effectively. During learning phase, it learns transformation from CSI to 

codewords and inverse transformation from codewords to CSI.  

Wang et al. [20] also reported the importance of CSI feedback in massive MIMO to achieve the 

desired gain performance in FDD mode. However, increased no. of antennas leads to an increase in feedback 

overhead. Therefore, authors presented a deep learning-based CSI feedback scheme which is based on the 

combination of CsiNet and long short-term memory (LSTM). This model helps to improve the recovery 

quality and enhances the trade-off between compression ratio and complexity. It is obtained because the 

CsiNet model directly learns from the spatial structures and time–varying massive MIMO channels.  

Sun et al. [21] introduced a deep learning model to realize CSI and hybrid precoding for mmWave 

communication systems in FDD mode. Authors reported that the traditional algorithms consider the CSI and 

precoding as two distinct problems, therefore, the deep learning model is designed which bypasses channel 

reconstruction phase and integrated with the hybrid precoder and combiner by taking the feedback codewords 

into consideration. 
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Massive MIMO systems benefit greatly from hybrid precoding's ability to reduce hardware 

complexity and power consumption, but it also comes with a number of issues that need to be resolved. Some 

of the issues are listed below: 

− Quantization error: quantization errors may be introduced by the analog-to-digital converter (ADC) 

used in RF chains to digitise the signal. The effectiveness of hybrid precoding systems can be greatly 

lowered by these problems. 

− Limited feedback: accurate CSI is necessary for hybrid precoding to work well. Yet, because to the 

constrained feedback resources in actual systems, acquiring sufficient user UE feedback is necessary to 

produce correct CSI. 

− Interference: hybrid precoding is extremely susceptible to interference, particularly when there are 

several antennae. Performance of the system may suffer significantly as a result, particularly if the 

interference is co-channel. 

− Hardware constraints: the efficiency of hybrid precoding may be constrained by hardware limitations 

related to RF chains and subarrays. The quantity of RF chains available, incidentally, may restrict the 

number of subarrays, or the RF chains' power consumption may make their deployment impractical. 

As a summary of review the recent methods of hybrid precoding in this domain of massive MIMO. 

However, despite of achieving perfect CSI, designing the precoder still remains a challenging task because 

developing the analog precoder via phase shifter array leads to impose the non-convex constraint on the 

designing parameters. Due to these constraints, the computational complexity of these systems increases. 

Moreover, this type of hybrid architectures affects the uplink channel sensing capability. Some recent hybrid 

precoding methods are still relying on the traditional communication methodology where the precoding 

process is decomposed into two separate components as (a) channel estimation and channel sensing and (b) 

designing the downlink precoding. During the channel estimation phase, these methods exploit the spatial 

correlation of mmWave channel. In recent years, deep learning-based hybrid precoding has been proposed as 

a technique to cut down the complexity and enhance the efficacy of massive MIMO systems. The proposed 

algorithms use various types of neural networks, including deep neural networks (DNNs), convolutional 

neural networks (CNNs), and recurrent neural networks (RNNs), to learn the association link between the 

CSI and the hybrid precoding matrix. The simulation results demonstrate that the deep learning-based 

algorithms achieve better outcomes than conventional algorithms, including OMP, CGD, ADMM, ZF, MMSE, 

sparse precoding, and random matrix-based algorithms. However, the design and training of the deep neural 

networks require significant computational resources and may require a large amount of training data. 

Therefore, further research is required to develop efficient and practical deep learning-based hybrid precoding 

algorithms for massive MIMO systems. 

 

 

3. PROPOSED DEEP LEARNING BASED HYBRID PRECODING FOR MASSIVE MIMO 

SYSTEMS  

Previous sections have described the significance of hybrid precoding in massive MIMO systems. 

The current technological advancements have identified deep learning based models as promising solutions 

to exploit the spatial multiplexing gain and beamforming gain. Moreover, it requires less number of RF 

chains and this reduced RF chain requirement is beneficial in mitigating the complexities. Therefore, we 

adopt the deep learning based model and present a hybrid precoding model to solve the challenges faced in 

the massive MIMO systems.  

Hybrid precoding has been proposed as a solution to decrease the cost and complexity of mmWave 

communication systems. Hybrid precoding uses fewer RF chains than full-digital precoding, which reduces 

the hardware complexity and power depletion. Hybrid precoding also provides the flexibility to manipulate 

the beamforming and channel characteristics in real time. Hybrid precoding is composed of two stages: 

analog precoding and digital precoding. Analog precoding is performed in the RF front-end and involves 

steering the signal in the desired direction. Analog precoding is performed using a phase shifter network, 

which manipulates the amplitude and phase of the RF signal. The phase shifter network is designed to have a 

low loss and high resolution. 

Digital precoding is performed in the baseband processor and involves processing the signal using 

DSP techniques. Digital precoding is used to further manipulate the signal to compensate for the channel 

distortion and improve the signal-to-noise ratio (SNR). Digital precoding is performed using a matrix that 

maps the signal to the desired directions. Hybrid precoding has several challenges, including the design of the 

phase shifter network, the optimization of the analog and digital precoding matrices, and the trade-off 

between performance and complexity. 
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3.1.  Network model and problem formulation  

This work mainly considers a downlink massive MIMO system where BS has 𝒩𝑡  transmit antennas 

and, similarly, 𝒩𝑟  receiver antennas are serving total 𝐾 users. This user UEs are arranged in a clustered 

group. For this configuration, the received signal at 𝑘𝑡ℎ user 𝑦𝑘 ∈ ℂ𝑁𝑟×1can be estimated according to (1): 

 

𝑦𝑘 = 𝐻𝑘𝑉𝑘𝑠𝑘 + ∑ 𝐻𝑘𝑉𝑚𝑠𝑚 + 𝑛𝑘, ∀𝑘∈ 𝒦 𝐾
𝑚=1,𝑚≠𝑘  (1) 

 

Where 𝐻𝑘 ∈ ℂ𝑁𝑟×𝑁𝑡  represents the channel matrix between user 𝑘 and BS, 𝑉𝑘 ∈ ℂ𝑁𝑡×𝑑𝑘 represents the 

precoding matrix for the user 𝑘, 𝑑 is the data stream. During this transmission, there is a probability that nose 

may get added to the original signal therefore we consider additive white Gaussian noise. The Gaussian noise 

distribution is 𝒞𝒩(0, 𝜎2𝐼), the data transmitted by user 𝑘 is denoted as 𝑠𝑘 ∈ ℂ𝑑𝑘×1 which also satisfied the 

condition 𝔼[𝑠𝑘𝑠𝑘
𝐻] = 1. We assume that the data transmission between two users in independent and 𝒦 

represents the set of users as 𝒦 = {1,2, ,3… , 𝐾]. Figure 1 depicts the massive MIMO architecture with 

hybrid precoding.  

 

 

 
 

Figure 1. Massive MIMO with hybrid precoding 

 

 

The hybrid precoding architecture consists of two stages: BB stage and RF stage which are 

connected through the available 𝑁𝑅𝐹 number of RF chains. This interconnectivity helps to reduce the 

hardware complexities. In this work, the first phase includes the development of RF beamformer as 𝐹 ∈
ℂ𝑀×𝑁𝑅𝐹  by employing the low cost phase shifters. Similarly, the second stage includes the development of 

digital BB precoder as 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝐾] ∈ ℂ𝑁𝑅𝐹×𝐾 where 𝑏𝑘 ∈ ℂ𝑁𝑅𝐹  represents the precoding vector of BB 

precoder, and it also considers the power allocation matrix 𝑃 = 𝑑𝑖𝑎𝑔(√𝑝1,… ,√𝑝𝐾) ∈ ℝ𝐾×𝐾  where 

𝑝𝑘denotes the allocated power for 𝑘𝑡ℎ UE. Considering all these components, below given (2) can be used to 

the downlink vector can be expressed as: 

 

𝑠 = 𝐹𝐵𝑃𝑑 ∈ ℂ𝑀 (2) 

 

Where 𝑀 is the antenna array and 𝑑 is the data vector given as 𝑑 = [𝑑1, … , 𝑑𝐾] ∈ ℂ𝐾 . Similarly, the channel 

vector for the 𝑘𝑡ℎ user can be computed based on (3): 

 

ℎ𝑘
𝑇 = ∑ 𝒯𝑘𝑙

𝜂
𝓏𝑘𝑙

𝜙𝑇𝑄
𝑙=1 (𝛾𝑥,𝑘𝑙

, 𝛾𝑦,𝑘𝑙
) = 𝑧𝑘

𝑇𝜙𝑘 ∈ ℂ𝑀 (3) 
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Where 𝑄 denotes the total number of paths, 𝒯𝑘𝑙
 distance of 𝑙𝑡ℎ path, 𝑧𝑘𝑙

 is the complex path gain of path 𝑙 

which is distributed as 𝑧𝑘𝑙
~𝒞𝒩(0, 1 𝑄⁄ ), 𝜂 represents the path loss exponent, 𝜙(. , . ) ∈ ℂ𝑀 represents the 

phase response vector, 𝛾𝑥,𝑘𝑙
 represents the coefficients which reflects elevation AoD denoted as 𝛾𝑥,𝑘𝑙

=

sin(𝜃𝑘𝑙
) cos(𝜓𝑘𝑙

), similarly 𝛾𝑦,𝑘𝑙
 represents the azimuth AoD as 𝛾𝑥,𝑘𝑙

= sin(𝜃𝑘𝑙
) cos(𝜓𝑘𝑙

) for the 

corresponding path. Based on these parameters, below given (4) can be used to compute the phase vector as 

follows: 

 

𝜙(𝛾𝑥, 𝛾𝑦) = [1, 𝑒−𝑗2𝜋𝑑𝛾𝑥 , … , 𝑒−𝑗2𝜋𝑑(𝑀𝑥−1)𝛾𝑥]
𝑇

⊗ [1, 𝑒−𝑗2𝜋𝑑𝛾𝑦 , … , 𝑒−𝑗2𝜋𝑑(𝑀𝑦−1)𝛾𝑦]
𝑇

∈ ℂ𝑀 (4) 

 

Where 𝑑 represents the antenna spacing. Finally, we can use (5) to compute the received signal vector at 

𝑘𝑡ℎUEwhich can be expressed as: 

 

𝑟𝑘 = ℎ𝑘
𝑇𝑠 + 𝑛𝑘 = ℎ𝑘

𝑇𝐹𝐵𝑃𝑑 + 𝑛𝑘 

√𝑝𝑘ℎ𝑘
𝑇𝐹𝑏𝑘𝑑𝑘 + ∑ √𝑝𝑡

𝐾
𝑡≠𝑘 ℎ𝑘

𝑇𝐹𝑏𝑡𝑑𝑡 + 𝑛𝑘 (5) 

 

Based on these assumptions, our main aim in this work is to maximize the sum rate while 

considering the transmit power constraint, thus, the overall sum rate problem can be computed by using (6) 

as follows: 

 

𝑃1 : max
{𝑉𝑘}

∑ 𝛼𝑘𝑅𝑘
𝐾
𝑘=1   

𝑠. 𝑡. ∑ 𝑇𝑟(𝑉𝑘𝑉𝑘
𝐻) ≤ 𝑃𝑇

𝐾
𝑘=1  (6) 

 

Where 𝑃𝑇  denotes the constraints for transmit power,𝛼𝑘 is the scalar value which is used to represent the 

priority of user 𝑘. Based on aforementioned parameters, the achievable rate can be computed by following 

the (7). Thus the achievable rate for 𝑘𝑡ℎ user is denoted by 𝑅𝑘 and expressed as: 

 

𝑅𝑘 = log det(𝐼 + 𝐻𝑘𝑉𝑘𝑉𝑘
𝐻𝐻𝑘

ℎ(∑ 𝐻𝑘𝑉𝑚𝑉𝑚
𝐻𝐻𝑘

𝐻 + 𝜎2𝐼 𝑚≠𝑘 )−1) (7) 

 

Further, we also incorporate SINR of 𝑘𝑡ℎUE. In (8) uses power, beanforemer and precoder 

parameters to estimate the SINR value which can be represented as follows: 

 

𝑆𝐼𝑁𝑅𝑘(𝐹, 𝐵, 𝑃) =  
𝑝𝑘|ℎ𝑘

𝑇𝐹𝑏𝑘|
2

∑ 𝑝𝑡|ℎ𝑘
𝑇𝐹𝑏𝑡|

2
+𝜎𝑛

2𝐾
𝑡≠𝑘

 (8) 

 

The sum rate capacity corresponding to the SINR can be computed as 𝑅𝑠𝑢𝑚 𝑟𝑎𝑡𝑒 = 𝔼{∑ log2[1 +𝐾
𝑘=1

𝑆𝐼𝑁𝑅𝑘(𝐹, 𝐵, 𝑃)]}. Relying on these expressions, in (9) presents the sum rate problem corresponding to SINR, 

which is given as: 

 

max
𝐹,𝐵,𝑃

∑ log2 (1 +
𝑝𝑘|ℎ𝑘

𝑇𝐹𝑏𝑘|
2

∑ 𝑝𝑡|ℎ𝑘
𝑇𝐹𝑏𝑡|

2 + 𝜎𝑛
2𝐾

𝑡≠𝑘

)
𝐾

𝑘=1
 

                              𝑠. 𝑡.   𝐶1: 𝔼{‖𝑠‖2
2} = ∑ 𝑝𝑘𝑏𝑘

ℎ𝐹𝐻𝐹𝑏𝑘 ≤ 𝑃𝑇
𝐾
𝑘=1  (9) 

𝐶2: 𝑝𝑘 ≥ 0, ∀𝑘 

𝐶3: |[𝐹]𝑖,𝑗| =
1

√𝑀
, ∀𝑖,𝑗 

 

This problem is refereed as a non-convex optimization problem because the distributed power is associated 

with each other and constrains to RF beamformer. Therefore, it leads to increase the high computational costs 

and delay which raises the difficulty to implement these modules for real-time systems.  

 

3.2.  Deep learning model  

The traditional models accomplish the hybrid precoding design in three stages which include 

leveraging the sparsity of mmWave channels, channel reconstruction, and using this constructed channel to 

design hybrid coding matrices. However, these methods do not use the information from prior channel 

observation to reduce the training complexity. In this work, we present a deep learning based model adopted 

from [22] which consists of two main components, a channel encoder and a precoder. The channel encoder 
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module considers the channel vectors as input to the model and passes it through the 1D convolution 

operation which performs the Kronecker product operation. The output of this module is passed to the 

precoder module where fully connected layer and output layers are employed for prediction. 

In the encoder module, we adopt the neural network model to employ the compressive sensing 

model. Let 𝑃 is given as 𝑁𝑡 × 𝑀𝑡 and 𝑄 in denoted as 𝑁𝑟 × 𝑀𝑟, represents the channel measurement 

matrices. These matrices are used in channel sensing 𝐻. In a condition where pilot symbols are equal to 1 

then (10) can be used to model the received datawhichcan be expressed as: 
 

𝑌 = √𝑃𝑇𝑄H𝐻𝑃 + 𝑄H𝑉 (10) 
 

Where [𝑉]𝑚,𝑛~𝒩ℂ(0, 𝜎𝑛
2) represents the noise parameter. Further, this measurement matrix is vectorised and 

𝑦 can be written as mentioned in (11): 
 

𝑦 = √𝑃𝑇(𝑃𝑇 ⊗ 𝑄H)ℎ + 𝑣𝑞 (11) 
 

Where 𝑦 = 𝑣𝑒𝑐 (𝑌), 𝑣 = 𝑣𝑒𝑐(𝑄H𝑉 )and ℎ = 𝑣𝑒𝑐(𝐻) 

In this encoder architecture, the convolution layer uses 𝑀𝑟 kernels as filter where each kernel size 

and stride are given as 𝑁𝑟. The kernel weights are used for representing the entries of receive measurement 

vector in 𝑄. The output of this layer is obtained as feature map and transformed into a vector form. Further, 

this vectorised data is fed to the second convolution layer. The second layer also consists of 𝑀𝑡 number of 

kernels to realize the measurement matrix 𝑃. 

The final received channel measurement vector is 𝑦 where we use the deep neural network model to 

directly map the received vector and beamforming or combining vector. Here, main aim of deep learning 

module is to predict the beamforming vector 𝐹𝑅𝐹 and combining vector 𝑊𝑅𝐹. once the RF beamformer and 

combiner vectors are generated then the low-dimensional effective channel can be constructed as 𝑊𝑅𝐹
𝐻 𝐻𝐹𝑅𝐹 

which is used to construct the baseband precoder and combiner. However, these beamforming and combining 

vectors are selected from the codebooks denoted as ℱ and 𝒲  and the prediction of beamformer and 

combiner is formulated as multi-label classification problem.  

In prediction phase, the precoder network plays important role. This network consists of fully 

connected layer and two output layers and the input is received from the channel encoder module. Further, 

the fully-connected layer is connected to the rectified linear unit (ReLu) activation function which is further 

connected to the batch normalization layer. For ReLU function, the activation function is defined as 

𝑅𝑒𝐿𝑈(𝑎) = max(0, 𝑎)for any given argument𝑎. Further, the output of the network can be denoted as 

characterized in (12) given: 
 

𝑧 = 𝑓(𝑣, 𝑤) = 𝑓(𝑛−1) (𝑓(𝑛−2)(… 𝑓1(𝑣))) (12) 

 

Where 𝑣 denotes the input data, 𝑛 denotes the number of layers and 𝑤 denotes the weights of the neural 

network. Finally, this layer has two output layers which are used for predicting the beamforming vector and 

combiner vectors, respectively. The dimension of the obtained vector is equal to the combining vector.  

Along with this, we also incorporate the power allocation module for efficient power distribution. 

As discussed before, we have a channel matrix 𝐻 and baseband precoder 𝐵, which are processed through the 

feature scaling and vectorization operations. These parameters can be used to represent the feature vector and 

the final vector can be obtained according to (13). Thus, the final vector is expressed as: 
 

𝑥0 =

[
 
 
 
 
 
 
𝛼1𝑥ℎ1̅̅ ̅̅

⋮
𝛼1𝑥ℎ𝐾̅̅ ̅̅

𝛼2𝑥𝑏1

⋮
𝛼2𝑥𝑏𝐾

𝛼3𝑥𝐵𝐵]
 
 
 
 
 
 

 (13) 

 

With the help of this feature vector, we compute the output of the 𝑖𝑡ℎ hidden layer which is computed as 𝑥𝑖 =
𝑓𝑟(𝑊𝑖−1𝑥𝑖−1 + 𝑏𝑖−1) ∈ ℝ𝐿𝑖 where 𝑊 is the weight matrix given as 𝑊𝑖−1 ∈ ℝ𝐿𝑖×𝐿𝑖−1  and 𝑏is the bias vector. 

In (8) uses the ratio of power for varied number of users to obtain the maximum absolute optimal power 

which can be expressed as (14). 
 

�̅�𝑘 = 
𝑝𝑘

𝑜𝑝𝑡

max(𝑝1
𝑜𝑝𝑡

,…,𝑝𝐾
𝑜𝑝𝑡

)
∈ [0,1] (14) 
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This power related information is used in (15) which is used to predict the overall power with the 

help of DNN which can be expressed as: 

 
[�̂�1, �̂�2, … , �̂�𝐾] = 𝑓𝜎(𝑊3𝑥3 + 𝑏3) 

= 𝑓𝜎(𝑊3𝑓𝑟(𝑊2𝑓𝑟(𝑊1𝑓𝑟(𝑊0𝑥0 + 𝑏0) + 𝑏1) + 𝑏2) + 𝑏3)  (15) 

 

With the help of this expression and baseband precoder which is expressed as 𝐵 = [𝐻𝐻𝐻 +

𝐾
𝜎𝑛

2

𝑃𝑇
𝐼𝑁𝑅𝐹

]
−1

𝐻𝐻 ∈ ℂ𝑁𝑅𝐹×𝐾  , we derive the power value which satisfy the power constraint. This is used in 

(16) to obtain the final power allocation which is characterized as (16). 

 

𝑃 =  √
𝑃𝑇

∑ 𝑝𝑘𝑏𝑘
𝐻𝑏𝑘

𝐾
𝑘=1

𝑑𝑖𝑎𝑔(√�̂�1, √�̂�2, . . , √�̂�𝐾) (16) 

 

According to this approach, the initial signal is produced with all required parameters such as total 

number of users, noise consideration and varying channel conditions. Later, BB and and RF stages are 

defined where BB precoder considers the power allocation components for UEs. Similarly, this model 

computes the final channel vector for the given users. Later it considers power constraints which becomes 

important aspect for these communication standards because appropriate power allocation is helpful in 

achieving the sum rate. Algorithm 1 presents the algorithmic overview of proposed approach: 

 

Algorithm 1. Proposed approach 
Define system parameters: 𝑁𝑡 Number of transmit antennas, 𝑁𝑟 Number of receive antennas, 𝑁𝑢  

- Number of users, 𝑁𝑓 - Number of frequency bands 

Initialize deep learning model architecture for power allocation 

Channel Estimation  

Obtain channel state information (CSI): 

− 𝐻𝑒𝑠𝑡 ∈ ℂℕ𝑡×ℕ𝑟Estimated channel matrix 

RF and Baseband Codebook Design 

RF precoders and combiners: 

− 𝐹𝑅𝐹 ∈ ℂ𝑁𝑡×𝑁𝑅𝐹Analog precoding matrix 

− 𝑊𝑅𝐹 ∈ ℂ𝑁𝑡×𝑁𝑅𝐹 - Analog combining matrix 

BB precoders and combiners: 

− 𝐹𝐵𝐵 ∈ ℂ𝑁𝑡×𝑁𝑑 digital precoding matrix 

𝑊𝐵𝐵 ∈ ℂ𝑁𝑡×𝑁𝑑-  digitalcombining matrix 

Hybrid Precoding Optimization: 

𝐹ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐹𝑅𝐹 . 𝐹𝐵𝐵 

𝑊ℎ𝑦𝑏𝑟𝑖𝑑 = 𝑊𝑅𝐹 .𝑊𝐵𝐵 

Deep Learning-Based Power Allocation: 

− Train a DNN model to predict power allocation: 

− Input: Features including CSI 𝐻𝑒𝑠𝑡), interference levels, system parameters 

Output:Power allocation matrix 𝑃𝐷𝐿 

 
 

4. RESULTS AND DISCUSSION 

This section presents the complete experimental analysis of the proposed deep learning based hybrid 

precoding approach for a massive MIMO system. The obtained performance is compared with the existing 

mechanisms as mentioned in [23]. The complete simulation parameter set is described in Table 2. According 

to this experiment, we have considered a total of 16 transmitter and 16 receiver antennas which are part of a 

downlink massive MIMO communication system. 
 

 

Table 2. Simulation parameters 
Parameter name Parameter value 

Number of antennas 𝑀 = 16 × 64 = 1024 

Transmit power of BS 20 dBm 

BS height 10 m 

UE height 1.5m -2.5m 
Path Loss exponent 3.76 

Channel bandwidth 10 kHz 

Number of path 20 

Antenna spacing 0.5 
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Similarly, the deep learning module also required certain configuration during training process. 

Table 3 shows the configuration parameter for deep learning. Based on these parameters we generate the 

deep learning data as 〖10〗^5 to accomplish the supervised learning process. In each round, the channel 

vector is presented as mentioned in (3) which is generated for each UE by randomly varying the path gain, 

AoD parameters and UE locations with respect to BS. In this offline learning process, the dataset is split into 

a ratio of 80%-20% where 80% of data is considered in the training process and 20% of data is used for the 

validation process. In this experiment, we have divided the complete experiment into two cases and 

considered variable parameters presented in Table 4. 

 

 

Table 3. Configuration parameters for deep learning architecture 
Parameter name Value 

Size 1st hidden layer  1024 

Size of 2nd hidden layer 512 
Size of 3rd hidden layer 256 

Epoch  25 

Batch size  32 
Learning rate  0.001 

Optimizer  ADAM 

 

 

Table 4. Variable parameters for two cases 
Parameter name Values for case 1 Values for case 2 

𝑁𝑡 16 64 

𝑁𝑟 2 4 

K 4~8 8~16 

𝑑𝑘 1 2 

 

 

First of all, we measure the performance of proposed approach in terms of sum rate for varied 

number of users for two cases of 𝑑𝑘 (i.e. with varied 𝑑𝑘 and same 𝑑𝑘) by considering weighted minimum 

mean square error (WMMSE), and low complexity precoding (LCP) as mentioned in [23]. This precoding 

matrix is designed based on the noisy channel �̂� = 𝐻 + 𝑛. The experiment shows that the existing WMMSE, 

eigen-based zero-forcing (EZF), and deep learning based LCP approach face difficulty due to their 

dependency of the accurate channel estimation whereas the proposed model uses deep learning based optimal 

power allocation model to improve the overall performance of the system. Moreover, the extensive training 

process of the proposed model helps to adapt these noisy parameters. Figure 2 shows the obtained sum rate 

performance for varied number of users. As per the experiment, the average performance is obtained as 47.8, 

42.4, 44.5, and 43.2 bits/s/Hz by using the proposed approach, deep LCP with zero filling, deep LCP without 

zero filling, and WMMSE, respectively. 

 

 

 
 

Figure 2. Sum rate performance for varied number of users (training process) 

 

 

In the next experiment, we measure performance of the proposed approach in terms of sum rate with 

respect to channel estimation error and actual channel. Figure 3 show the comparative representation of these 

methods. In this experiment, we have measured the sum rate performance for varied channel estimation error. 

The proposed approach achieves better performance when compared with the other algorithms. The increase 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 36, No. 1, October 2024: 570-582 

580 

in channel estimation error leads to affect the sum rate performance. The proposed model uses a huge amount 

of data for training purpose, which helps to reduce the estimation error. For this experiment, the average sum 

rate is obtained as 28.2, 33.5,33.6, 35.1, and 39.2 by using EZW, WMMSE, LUW, DeepLPC and proposed 

approach, respectively.  

 

 

 
 

Figure 3. Sum rate performance for imperfect CSI 

 

 

Further, we measure the SE performance for varied number of training samples and obtained 

performance is presented in Figure 4 and obtained performance is compared with the existing methods as 

mentioned in [24], [25]. Long et al. [24] authors presented a broad learning method for time-varying channel, 

similarly, in [25] authors introduced semi-supervised learning method. The average SE performance is 

obtained as 13.10, 13.20, and 13.60 by using broad learning [24], semi-supervised learning [25], and 

proposed deep learning approaches, respectively. The robust architecture of the proposed approach helps to 

achieve the better performance during the initial training process due to consideration of optimized power 

distribution by using DL approach. 

 

 

 
 

Figure 4. SE performance  

 

 

In the next experiment, we measure the SE performance for 200 realizations and compare the 

obtained performance with standard CNN, supervised BL, semi supervised broad learning. We also measure 

the optimum SE performance for 200 realizations. Figure 5 shows the obtained SE performance. In the 

Figure 5, the optimal SE for 200 realizations is obtained as 13.72 (bits/s/Hz) and other methods obtained the 

overall SE as 13.61, 13.6 and 12.8 as mentioned in [24], [25] whereas the proposed approach reported SE 

performance as 13.65 which is close to the optimum SE. This shows the robustness of the deep learning 

model.  
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Figure 5. SE performance via diverse approaches 

 

 

5. CONCLUSION 

In this article, we have focused on massive MIMO communication systems and identified the 

importance of precoding scheme. However, the traditional precoding methods face several challenges 

therefore; deep learning based methods have gained huge importance to cater issues in the current 

communication environment. Several researchers have adopted deep learning based hybrid precoding but the 

performance of these systems is degraded due to computational complexity and inappropriate power 

allocation. To overcome these issues, we have introduced a combined problem formulation model which 

considers the sum rate and power allocation performance. The experimental analysis shows that the proposed 

DL based model achieves better performance when compared with the existing hybrid precoding methods.  
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