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 Load flow analysis is a crucial tool used by electrical engineers for 

simulating the power system. It is aimed at examining the most possible way 

of operating and controlling a power system and the exchange of power flow 

within the power system. For the economic and optimal operation of power 

systems, the most essential task is to find the most feasible solution 

technique suitable and efficient for the study of power generation, 

transmission, and distribution. There are various power flow study solution 

techniques, and for some solution techniques, the simulation of the system 

can take a long time, which prevents the simulator from attaining a higher 

accuracy result for the power flow simulation due to the interrupting rise and 

fall in power demand from the consumer, which also affects the power 

generation as well. This paper discusses the comparison of various 

techniques used in load flow studies with the assistance of a small power 

system with five buses. The numerical solution techniques used are the fast 

decoupled load flow solution technique, the Gauss-Seidel solution technique, 

and the Newton-Raphson solution technique for a power flow study solution 

on an IEEE 5-bus using MATLAB/Simulink. 
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1. INTRODUCTION 

Power flow is the elementary steady-state examination of the power system which focuses on 

maintaining the balance between the total power generated by the generation system and the total number of 

loads connected to the system along with the losses occurring in the system. Due to the commercial evolution 

within the society, the facility system's unbroken increment conjointly causes the increment in the number of 

power flow equations to many thousands [1]. Due to this exponential increment in the number of equations, 

any numerical solution technique is insufficient to converge to an accurate solution. These equality 

restrictions are responsible for the modeling of nonlinear algebraic solutions which are solved using 

numerous numerical techniques. The efficiency of numerical solution techniques depends upon the accuracy 

of the simulation and the time required to carry out the simulation. Out of all the distinct solution techniques 

used for load flow solutions [2]. Fast decoupled load flow solution technique, Gauss-Seidel load flow 

solution technique, and Newton Raphson load flow solution technique are the most commonly used power 

flow solving techniques and each of these numerical techniques differs from each other based on the solution 

https://creativecommons.org/licenses/by-sa/4.0/
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technique used to solve these nonlinear equations [3], [4]. The first and foremost step for executing the power 

flow study is the creation of Y bus admittance from the accessible data regarding transmission lines and 

transformers. The equations for any node in a power system with loads, generators, and buses with the help 

of the Y bus admittance matrix can be generally expressed as shown in (1) to (5). 
 

𝐼 = 𝑌𝐵𝑈𝑆𝑉  (1) 
 

The equation for the node can be expressed as shown in (2). 
 

𝐼𝑖 = ∑ 𝑌𝑖𝑗𝑉𝑗  𝑓𝑜𝑟  𝑖 =  1,2,3, … . 𝑛𝑛
𝑗=1  (2) 

 

The sum of both real and reactive power delivered to the Ith bus can be expressed as: 
 

𝑃𝑖 + 𝑗𝑄𝑖 = 𝑉𝐼∗ (3) 

 

𝐼𝑖 =
𝑃𝑖+𝑗𝑄𝑖

𝑉𝑖
∗  (4) 

 

now substituting the value of 𝐼𝑖 . 
 

𝑃𝑖+𝑗𝑄𝑖

𝑉𝑖
∗ = 𝑉𝑖 ∑ 𝑌𝑖𝑗 − ∑ 𝑌𝑖𝑗𝑉𝑗   , 𝑗 ≠ 1𝑛

𝑗=1
𝑛
𝑗=1  (5) 

 

The mentioned (1) makes use of iterative strategies that are used to solve the power flow equations 

and the solution is then examined to extract all the necessary information and this information is further used 

in setting up the system in real-time [5]−[7]. Therefore, it is essential to check the overall styles used in the 

available solution techniques; Gauss-Seidel solution technique, Newton-Raphson solution technique, and fast 

decoupled load flow solution technique [8], [9]. 

The study offers a more comprehensive understanding of system behavior and performance under 

varying environmental conditions. Leveraging advanced optimization algorithms and intelligent control 

strategies, the model optimizes the power generation mix while ensuring grid stability and minimizing 

operational costs. By presenting a holistic framework that combines renewable integration, dynamic 

constraints handling, advanced optimization techniques, and resilience analysis, this study contributes 

significantly to the advancement of renewable energy integration in power system operation [10]. The major 

contributions of the proposed method are given: 

- Evaluate the impact of energy integration on the IEEE 5-bus system's power flow and stability. 

- Optimize power distribution to minimize transmission losses. 

- Assess the economic viability and potential environmental impacts of the system. 

 

 

2. METHOD 

Load flow study is carried out using four different programs which are used in the program of fast 

decoupled, Gauss-Seidel, and Newton-Raphson solution techniques. The five different programs used to 

carry out the desired operations are Busout, Lineflow, Lfgauss, Lfnewton, Fdlf, and Lfybus. The functions 

carried out by these programs are: 

- Busout: prints the solution of power flow carried out by the load flow analysis techniques on the screen. 

- Lineflow: analyses and prints the results of the losses occurring at each transmission line. 

- Lfybus: forms a bus admittance matrix from data provided by the user. 

- Lfnewton: performs the power flow study using the Newton-Raphson solution technique. 

- Lfgauss: performs the power flow study using the Gauss-Seidel solution technique. 

- Fdlf: performs the power flow study using the fast decoupled solution technique.  

The model designed for the simulation of the IEEE 5 bus in Simulink is shown in Figure 1. 

 

 

3. MATHEMATICAL ANALYSIS 

3.1.  Gauss-Seidel solution technique 

Gauss-Seidel numerical solution algorithm is an iterative numerical method that aims to solve a 

system of linear equations [11]−[14]. The Gauss-Seidel numerical solution technique solves these equations 

by repeatedly executing the equations again and again until the iteration answer is within a predefined 

acceptable range and is accurate enough to be accepted. It is a dependable load flow mechanism that can 
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handle even the most complicated power systems [15]−[17]. The equation used for the repeated and 

regressive solution technique in this method is shown in (6). 

 

𝑉𝑘
(𝑖+1)

=
1

𝑦𝑘𝑘
(

𝑃𝑘−𝑗𝑄𝑘

(𝑉𝑘
𝑖)∗

− ∑ 𝑌𝑘𝑛𝑉𝑛
(𝑖)𝑁

𝑛=1 ) (6) 

 

The equation represents the updated value of the ith component in the (k+1)th iteration, aij. Here Vk
 (i+1)

 denotes 

the elements of matrix A, and n is the dimension of the system. The method continues iterating until 

convergence is achieved, typically determined by a predefined tolerance or a maximum number of iterations. 

The Gauss-Seidel technique is known for its simplicity and suitability for solving sparse linear systems. 

Despite its advantages, convergence may not be guaranteed for all matrices, and careful consideration of the 

system's characteristics is necessary for successful application. 

 

 

 
 

Figure 1. IEEE model in MATLAB/Simulink 

 

 

3.2.  IEEE 5 bus 

The power system under study consists of five  buses. Bus 1 is considered a reference bus while bus 

2 is a generator, bus 3, 4, and 5 are all load buses. The type of bus, the rated of voltage, and the rated of 

power are shown in Table 1. 
 

 

Table 1. IEEE data (source: IEEE 5 bus standard data) 
Bus no. Bus voltage Generation Load 

(pu) MW MVar MW MVar 

1 1.06 0 0 0 0 

2 1.0 40 30 20 10 
3 1.0 0 0 45 15 

4 1.0 0 0 40 5 

5 1.0 0 0 60 10 

 

 

3.3.  Newton-Raphson solution technique 

Newton-Raphson's solution is a widely accepted and applied algorithm for determining the solution 

of nonlinear equations on workstations or any computational system. Besides this, the application of the 

Newton-Raphson solution technique in real arithmetic operations requires at least two times larger memory 

storage references to perform the exact same amount of complex arithmetic calculations in the same amount 
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of time [18], [19]. This algorithm is limited by the increased memory cycle time, as the computational system 

in which the simulation is taking place must repeatedly refer to the same memory references again and again 

until the solution is obtained, an algorithm that uses complex arithmetic rather than Newton-Raphson 

algorithm will be more efficient for the same number of operations [20]. 

 

3.4.  Fast decoupled solution technique 

The fast decoupled power flow approach is a very rapid as well as very efficient approach for 

solving the power flow scenarios. The speeds of the solution as well as the rarity of the solution are exploited 

in this approach. It is an evolved technique of the approach used in the Newton-Raphson formulated in polar 

coordinates with positive approximations which end up in a quick set of rules to remedy the energy flow [21]. 

This approach takes benefit of the belongings of the energy system in which, in MW, the flux voltage attitude 

and the flux voltage amplitude multivariate autoregressive (MVAR) are weakly combined. It can also be 

interpreted as, a small alternate in the amplitude of the bus voltage no longer having an effect on the real 

energy glide at the bus and in addition a small alternate in the section attitude of the bus voltage does. 

Sincerely no impacts on reactive power flow [22], [23]. This decoupling offers a totally simple, rapid, and 

dependable set of rules. As we know, the parsimony characteristic of the admittance matrix minimizes the 

reminiscence necessities of the computer and permits quicker calculations. The precision is similar to that of 

the Newton-Raphson approach.  

 

 

4. RESULT AND DISCUSSION 

In this study, we utilized three distinct solution techniques, namely Gauss-Seidel, Newton-Raphson, 

and fast decoupled, to analyze a power system. From the analysis, we determine the real and reactive power 

generation, load, line losses, and maximum power mismatch. The result for the power flow solution, line 

parameters, and line losses using the Newton-Raphson solution technique is shown in Figures 2 and 3. The 

result and program written for power flow solution, line parameters and line losses using fast decoupled 

solution technique are shown in Figures 4 and 5. 

The presented Table 2 outlines the results obtained from three distinct power system solution 

techniques: Gauss-Seidel, Newton-Raphson, and fast decoupled. In terms of real power generation, the 

methods yielded slightly varying values, with Gauss-Seidel producing 169,496 MW, Newton-Raphson 

169,575 MW, and fast decoupled 169,559 MW. The real load, representing the power consumed by the 

system, remained consistent across all three techniques at 165,000 MW. Real line losses, indicative of power 

dissipated during transmission, also exhibited minimal differences, with Gauss-Seidel, Newton-Raphson, and 

fast decoupled reporting 4,588 MW, 4,587 MW, and 4,587 MW, respectively. For reactive power aspects, 

there were nuanced distinctions. Reactive power generation values were 22,677 MVar, 22,430 MVar, and 

22,567 MVar for Gauss-Seidel, Newton-Raphson, and fast decoupled, respectively. Reactive loads, 

representing the reactive power consumed by the system, were consistent at 40,000 MVar for all techniques. 

Reactive line losses, denoting the difference between reactive power generation and consumption in 

transmission, displayed marginal differences, with Gauss-Seidel reporting -17.417 MVar, Newton-Raphson 

-17.421 MVar, and fast decoupled -17.420 MVar. Furthermore, the analysis included a measure of 

convergence, Max. power mismatch, which gauges the effectiveness of each technique in reaching a 

balanced state. Gauss-Seidel recorded a value of 0.00095095, Newton-Raphson 0.000965758, and fast 

decoupled 0.000435626. Smaller values signify better convergence. In summary, the results underscore the 

subtle divergences among the three solution techniques in determining the operational parameters of the 

power system, with each approach presenting its unique strengths and precision in achieving a balanced and 

stable state. Figure 6 shows the comparison of Gauss-Seidel method, Newton-Raphson method, and fast 

decoupled methods. 

 

 

Table 2. Comparison in Gauss-Seidel, Newton-Raphson, and fast decoupled for various parameters of load 

flow study 
Parameter Gauss-Seidel 

solution technique 

Newton-Raphson 

solution technique 

Fast decoupled 

solution technique 

Real power generation 169,496 MW 169,575 MW 169,559 MW 
Real load 165,000 MW 165,000 MW 165,000 MW 

Real line loss 4,588 MW 4,587 MW 4,587 MW 

Reactive power generation 22,677 MVar 22,430 MVar 22,567 MVar 
Reactive load 40,000 MVar 40,000 MVar 40,000 MVar 

Reactive line loss -17.417 MVar -17.421 MVar -17.420 MVar 

Max. power mismatch 0.00095095 0.000965758 0.000435626 
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Figure 2. Results of load flow study using Newton-

Raphson solution technique 

 

Figure 3. Results showing line flow and losses 

using Newton-Raphson solution technique 

  

  

  
 

Figure 4. Results of load flow study using fast 

decoupled solution technique 

 

Figure 5. Results showing line flow and losses 

using a fast decoupled solution technique 

 

 

 
 

Figure 6. Results showing a comparison between solution techniques 
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Real power generation closely matching the real load is a key objective for power system stability 

and efficiency. The differences in real power generation among the three methods are minimal, indicating the 

effectiveness of all techniques in maintaining power balance. Accurate estimation and minimization of line 

losses are crucial for efficient power transmission [24], [25]. The slight differences in line losses among the 

techniques highlight their efficacy in managing power losses within the system. Maintaining a balance 

between reactive power generation and load is essential for ensuring voltage stability and system reliability. 

The results show minor variations in reactive power generation, demonstrating the robustness of the utilized 

techniques in achieving this balance. The maximum power mismatch represents the degree of convergence 

achieved by each solution technique. A smaller mismatch indicates better convergence, highlighting the 

computational efficiency and accuracy of the respective method. This comparative analysis provides valuable 

insights into the performance of Gauss-Seidel, Newton-Raphson, and fast decoupled solution techniques in 

power system analysis. These findings can guide power system engineers and researchers in selecting the 

most suitable approach for their specific applications, ultimately contributing to an optimized and reliable 

power infrastructure. 

 

 

5. CONCLUSION 

All the simulations of the load flow study were executed using MATLAB R2021b for a system of 

IEEE 5 buses. The tolerance value for all the solution techniques is 0.001, which conveys that all three 

iterative solution techniques have very high accuracy. The time taken by the Gauss-Seidel solution technique 

to complete the iterations is much larger than the time taken by both the Newton-Raphson solution technique 

and the fast-decoupled solution technique. The computation time for the Gauss-Seidel solution technique is 

much greater than that of the Newton-Raphson solution technique and the fast-decoupled solution technique 

due to the vast difference in the number of iterations taken by the Gauss-Seidel solution technique. The 

number of iterations taken by Gauss-Seidel is 38, while the number of iterations taken by Newton-Raphson is 

only 3, and the number of iterations taken by the fast decoupled solution technique is 9, which makes it faster 

than Gauss-Seidel but slower than Newton-Raphson. The Newton-Raphson and fast decoupled solution 

techniques take more time for computation and operation as a result of the high complexity of the Jacobian 

matrix used for every single iteration, but even after the high complexity of the Jacobian matrix. The 

convergence in the fast decoupled solution technique is faster due to the reduced number of iterations as 

compared to other numerical solution techniques. The maximum power mismatch in the Gauss-Seidel 

solution technique is less than the power mismatch in the Newton-Raphson solution technique. Hence, it is 

conclusive that the Newton-Raphson solution technique and the fast decoupled solution technique are reliable 

for large systems as they converge fast and have high accuracy with a very small computation time, whereas 

the Gauss-Seidel solution technique has a slow computation rate but is very accurate for load flow studies of 

small systems. 
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